生物医用材料详解

合集下载

生物医用材料

生物医用材料

生物医用材料生物医用材料是指用于医学领域的一类材料,广泛应用于医疗器械、医疗器具等领域。

生物医用材料具有生物相容性好、生物降解性以及生物仿生性等特点,可以与人体组织有效地进行交互作用,提供持久、安全和可靠的医疗效果。

生物医用材料一般可分为金属材料、聚合物材料、陶瓷材料和复合材料四大类。

其中,金属材料一般采用不锈钢、钛合金等;聚合物材料主要有聚乳酸、聚偏氟乙烯等;陶瓷材料则包括氧化铝、羟基磷灰石等;复合材料则可以是一种或多种材料的组合。

不同的材料在生物医用领域起到不同的作用,满足不同的医疗需求。

在生物医用器械中,金属材料常用于制作支架、骨板等。

金属材料具有强度高、硬度好的特点,可以有效承担人体部位的力学负荷。

常用的钛合金材料具有生物相容性好、不易引起过敏等优点,广泛应用于骨科和牙科领域。

聚合物材料则在生物医用领域中具有广泛的应用。

聚乳酸被广泛应用于可吸收缝合线、骨内固定器等器械中。

聚乳酸具有良好的生物降解性,可以在人体内自然降解,避免了二次手术取出材料的需要。

此外,聚合物材料还可以根据不同的需求进行修饰,如改变材料的表面形态,提高材料与人体组织的相容性。

陶瓷材料主要应用于牙科和骨科领域。

陶瓷材料具有优异的生物相容性和生物降解性能,可以模拟人体骨组织的结构和力学性能,实现与人体骨组织的良好结合。

羟基磷灰石是一种常用的陶瓷材料,被广泛使用于人工骨、缺损修复和牙科修复等领域。

复合材料则是将不同的材料进行组合,以达到更好的功能和性能。

复合材料可以包括金属与聚合物的组合,或是多种不同的金属的组合。

在生物医用领域中,复合材料常用于制作人工关节等器械。

复合材料在强度和生物相容性上可以兼具,提高了材料的性能。

总的来说,生物医用材料是一类专门用于医疗领域的材料,具有生物相容性、生物降解性和生物仿生性等特点。

不同的生物医用材料在医疗领域起到不同的作用,满足不同医疗需求。

随着科技的不断进步,生物医用材料的研究发展将为医学领域的发展提供更多可能性。

生物医用材料名词解释

生物医用材料名词解释

生物医用材料名词解释生物医用材料是指在医疗保健、生物工程和生物技术领域应用的材料。

生物医用材料具有特定的物理、化学和生物学特性,可以在入侵机体时保持安全性和功能性,年岁较长的材料有可能成为改变生物体性能的缓慢和有害的外源物质。

1.胞培养用材料:细胞培养用材料是指用于细胞培养的生物材料,是一种由细胞组成的复杂体系。

其中包括:细胞培养基、细胞分离剂、细胞膜和细胞增殖促进因子等。

它们可以被用来维持和改变细胞生长和能量代谢状态,促进细胞的繁殖和活动,有助于细胞的形成和稳定。

2.胞支架:细胞支架是支撑细胞增殖活动的材料。

它们可以提供细胞性能所需的物理和化学环境,促进分子和细胞构成体内环境的相互作用,它们也可以改变细胞的形状和迁移行为以及控制细胞的位置和活性。

3.合材料:缝合材料是用于缝合组织的外科材料。

它们具有吸水性和耐疲劳性,它们可以被用来支撑伤口边缘以促进组织愈合,保护伤口免受外界的污染和损伤。

4.物载体:药物载体是一种用于药物投递的材料。

它们有助于药物在机体中的传输和释放,它们能够水解在肝脏中,以实现更有效的药物投递。

药物载体也可以应用于药物和细胞治疗领域,促进细胞的生长和迁移,改善细胞的质量和性能。

5.入材料:植入材料是一种生物材料,用于植入人体内部以取代受损或缺失的组织和器官。

其主要功能是维护组织间的结构,并根据组织发生变化,有效地管理细胞在组织中的活动。

它们能够抵抗微生物和机体免疫应答,耐受体内温度、pH和湿度等环境变化,对身体无害,可以有效刺激组织和细胞的再生和修复。

以上就是关于生物医用材料的解释。

生物医用材料的应用可以解决复杂的医疗保健问题,改善患者的生活质量。

它们不仅能够提高治疗效率,还能使治疗变得更加安全、有效、可靠。

因此,对于对生物技术有兴趣的人来说,学习和研究生物医用材料是一个非常有意义的活动。

生物医用材料介绍

生物医用材料介绍

生物医用材料导论一、生物医用材料定义生物材料:广义的说,一是指用于生物体内的材料,达到治疗康复的目的,例如隐形眼镜、人工髋关节;二是指来源于生物体,可能用于或不再用于生物体,例如动物皮革用于服装。

生物医用材料:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。

生物医用材料本身不是药物,而是通过与生物机体直接结合和相互作用来进行治疗。

另一种说法是:生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。

生物医用材料又叫做生物材料,分别来自于Biomedical Materials 和Biomaterials的译名。

目前国际上两本最主要的学术期刊是英国的《Biomaterials》和美国的《Journal of Biomedical Materials Research》,两个期刊所涉及的内容是相同的,由此可见Biomedical Materials 和Biomaterials两词是指相同的材料。

举例说明:(FDA分类:美国食品与药物管路局对医用材料的分类)名称是否生物材料相接触的组织FDA分类眼镜架no隐形眼镜yes 与角膜接触III假肢no人工髋关节yes 与骨组织接触并要求牢固结合III假牙yes 与口腔粘膜接触II牙根植入体yes 与牙床骨接触并希望牢固结合III人工心肺系统yes 与血液接触III生物医用材料学科的研究内容1.各种器官的作用;2.生物医用材料的性能;3.它们之间的相互作用,在体内生物医用材料如何影响活组织(称之为宿主反应);活组织又如何影响生物材料的性能变化(称之为材料反应)。

相互作用重点研究化学和力学两方面。

(例如植入髋关节,磨损碎屑,炎症反应,以及金属离子的溶出)二、生物医用材料的分类:生物材料应用广泛,品种很多,有不同的分类方法。

按材料的传统分类法分为:(1)合成高分子材料(如聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物、其他医用合成塑料和橡胶)、(2)天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖)、(3)金属与合金材料(如钦金属及其合金)、(4)无机材料(生物活性陶瓷,羟基磷灰石)、(5)复合材料(碳纤维/聚合物、玻璃纤维/聚合物)。

《生物医用材料课件》

《生物医用材料课件》

常见的生物医用材料
骨科材料
心脏血管材料
用于修复断骨和进行骨重建手术的
用于血管扩张和支架植入等心脏血
材料,如人工髋关节和骨修复螺钉。 管手术的材料,如心脏支架。
人工器官材料
用于制造人工心脏、人工肝脏等器 官的材料,如生物相容性高的聚合 物。
生物医用材料的应用
医疗领域的需求
生物医用材料满足了医疗领域对安全、耐用、可降 解等特性的需求。
生物医用材料课件
生物医用材料是用于医疗及医学研究的特殊材料。本课件将带您了解生物医 用材料的概述、分类和应用领域,以及未来发展趋势。
材料概述
1 什么是生物医用材料
2 生物医用材料的分类
生物医用材料是指用于医疗目的的材料,如医疗 器械、植入材料等。
生物医用材料可分为可降解和不可降解两类,根 据其在人体内的降解速度和能力。
生物医用材料的未来趋势
1 新材料的研发与应用
不断研发新的生物医用材料,应用于更广泛的医疗领域。
2
生物医用材料的优势和局限性
生物医用材料具有生物相容性好、可塑性高等优势, 但也存在降解速度难以控制等局限性。
生物医用材料的研发与评价
1
生物相容性测试
通过体外和体内实验对材料进行生物相容性
材料性能评估
ห้องสมุดไป่ตู้
2
评估。
对材料的力学性能、生物活性等进行评估。
3
临床试验
将材料应用于临床实践中,评估其安全性和 有效性。

《生物医用材料》课件

《生物医用材料》课件

案例二
总结词
药物载体的新选择
详细描述
可降解高分子材料具有良好的生物相容性和可降解性,是 药物载体的理想选择。这种材料可以在体内降解,减少了 对身体的副作用和不良反应。
总结词
材料的合成与改性
详细描述
为了提高可降解高分子材料的载药量、稳定性和靶向性, 需要进行合成和改性研究。通过化学修饰和共聚等手段, 可以改善材料的性能,提高药物的包覆率和释放效果。
系统生物学与生物医用材料
结合系统生物学的研究方法,深入探究生物医用材料与人体组织之间 的相互作用机制,为新材料的研发和应用提供理论支持。
05
案例分析
案例一
总结词
骨修复领域的创新应用
详细描述
生物活性玻璃陶瓷材料是一种新型的骨修复材料,具有良 好的生物相容性和骨传导性。它在骨修复领域的应用已经 得到了广泛认可,能够有效地促进骨组织的再生和修复。
某些生物医用材料具有诱导骨形成的特性,可通 过体内外实验验证其诱导骨生成的潜力。
生长因子活性
某些生物医用材料能够吸附和释放生长因子,促 进组织再生,可通过实验验证其生长因子活性。
抗菌性能
某些生物医用材料具有抗菌性能,可抑制微生物 的生长,可通过实验验证其抗菌效果。
体内植入实验
短期植入
功能评价
将生物医用材料植入动物体内,观察 短期内的组织反应和材料性能变化。
总结词
应用范围与限制
详细描述
可降解高分子材料在药物载体领域的应用已经得到了广泛 的研究和探索。然而,其应用仍受到一些限制,如材料的 降解速度和药物的释放速度需要精确控制,同时也需要进 一步研究其长期稳定性和安全性。
案例三
总结词
癌症治疗的新突破

生物医用材料简介

生物医用材料简介
Beta受体激动剂是一种‫ܪ‬Beta受体激动剂是一种药物,通过激活Beta受体而发挥作用。魔breadcrBeta受体激动剂在临床上主 要用于治疗支气管哮喘、慢性阻塞性肺疾病等焊wek呼吸系统疾病。通过激动Beta受体黄体酮,可以奥特很多时候改善患者 的呼吸功能 gruppo,缓解症状,提高生活质量。
生物医用材料简介
汇报人: 2024-01-09
目录
• 生物医用材料的定义与分类 • 生物医用材料的特性与要求 • 生物医用材料的应用领域 • 生物医用材料的发展趋势与挑
战 • 生物医用材料的未来展望
01
生物医用材料的定义与分类
定义
01
生物医用材料是指用于诊断、治 疗、修复或替换人体组织、器官 或增进其功能的非金属、非陶瓷 类无机非金属材料。
药物缓释技术
利用生物医用材料制备的药物缓释剂 ,可在一定时间内持续释放药物,减 少服药次数和剂量。
组织工程
人工器官
利用生物医用材料和细胞工程技术, 可以构建人工器官,以替代病变或损 伤的器官。
组织修复
生物医用材料可以用于修复和再生人 体组织,如皮肤、骨骼、肌肉等。Βιβλιοθήκη 再生医学干细胞培养
生物医用材料可以作为干细胞培养的支架,促进干细胞增殖和分化,实现受损组织的再生修复。
总结词
生物活性是指生物医用材料能够与人体细胞或组织发生相互作用,促进细胞生长 、分化、修复等功能的能力。
详细描述
具有生物活性的材料能够与人体细胞或组织形成紧密的结合,增强材料与人体之 间的相互作用,促进组织再生和功能恢复。生物活性可以通过材料的表面改性、 生长因子加载等方式实现。
安全性
总结词
安全性是指生物医用材料在使用过程中对人体的无害性,以 及在生产、储存、运输等环节中的安全性。

生物医用材料

生物医用材料

生物医用材料生物医用材料导论一、生物医用材料定义广义的生物材料:一是指用于生物体内的材料,达到治疗康复的目的,例如隐形眼镜、人工髋关节;二是指来源于生物体,可能用于或不再用于生物体内(这种不是本课程研究对象),例如动物皮革用于服装。

我们给生物医用材料明确的定义:对生物系统的疾病进行诊断、治疗、外科修复、理疗康复、替换生物体组织或器官(人工器官),增进或恢复其功能,而对人体组织不会产生不良影响的材料。

生物医用材料本身并不必须是药物,而是通过与生物机体直接结合和相互作用来进行治疗。

生物医用材料是一种植入躯体活系统内或与活系统相接触而设计的人工材料。

二、生物医用材料学科的研究内容1.各种器官的作用;2.生物医用材料的性能;3.组织器官与材料之间的相互作用。

专题一、生物医用材料的生物相容性及其生物学评价第一节、生物相容性概念和原理生物相容性,是生物医用材料与人体之间相互作用产生各种复杂的生物、物理、化学反应的一种概念。

生物医用材料必须对人体无毒、无致敏、无刺激、无遗传毒性、无致癌性,对人体组织、血液、免疫等系统不产生不良反应。

因此,材料的生物相容性优劣是生物医用材料研究设计中首先考虑的重要问题。

生物医用材料与组织、细胞、血液接触时,会产生各种反应,(包括宿主反应(即机体生物学反应)和材料反应)。

材料与机体之间存在反应,会使各自的功能和性质受到影响,不仅使生物材料变形变性,还会对机体将造成各种危害。

下图列出相互影响产生的后果。

多数医用材料很难保持植入时的形状、物理化学性能。

引起生物医用材料变化的因素有:(1)生理活动中骨路、关节、肌肉的力学性动态运动;(2)细胞生物电、磁场和电解、氧化作用;(3)新陈代谢过程中生物化学和酶催化反应;(4)细胞粘附吞噬作用;(5)体液中各种酶、细胞因子、蛋白质、氨基酸、多肽、自由基对材料的生物降解作用。

生物医用材料及装置植入人体后,引起三种生物学反应:组织反应、血液反应和免疫反应。

生物医用材料

生物医用材料

生物医用材料
生物医用材料是指用于医疗治疗和修复组织的材料,包括生物材料和医用材料
两大类。

生物医用材料具有良好的生物相容性和生物活性,能够与人体组织相互作用,并且在医疗治疗和组织修复中发挥重要作用。

生物医用材料的种类繁多,常见的包括生物陶瓷、生物金属、生物高分子材料等。

这些材料在医疗治疗和组织修复中扮演着重要角色,例如生物陶瓷可用于骨修复和关节置换,生物金属可用于植入体内支撑和修复骨折,生物高分子材料可用于软组织修复和再生。

生物医用材料的研究和应用对于医疗领域具有重要意义。

通过不断创新和研发,可以开发出更加安全、有效的生物医用材料,为医疗治疗和组织修复提供更好的支持和帮助。

同时,生物医用材料的研究也为医学科研提供了新的方向和机遇,推动了医学科学的发展和进步。

在生物医用材料的研究和应用过程中,需要充分考虑材料的生物相容性、力学
性能、耐久性等因素。

只有在充分了解材料的特性和作用机制的基础上,才能更好地应用于医疗治疗和组织修复中,确保治疗效果和患者安全。

总的来说,生物医用材料是医疗治疗和组织修复中不可或缺的重要组成部分,
其研究和应用对于医学领域具有重要意义。

随着科学技术的不断进步和创新,相信生物医用材料将会在医疗领域发挥越来越重要的作用,为人类健康事业做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011–2012学年第2学期生物医用材料期末论文题目:壳聚糖生物材料的研究进展姓名:***学号: **************专业: 09材料科学与工程学院:材料与化工学院任课教师:曹阳王江唐敏完成日期: 2012年6月7日壳聚糖生物材料的研究进展黄清优(海南大学材料科学与工程专业海口570228)摘要:壳聚糖作为一种新型天然生物材料,越来越成为国内外研究热点。

本文对近年来壳聚糖改性方面的研究进展及其在生物医学方面的应用进行了综述,并对壳聚糖的发展趋势进行了展望。

关键词:壳聚糖;化学改性;应用;生物材料The Research Progress of Chitosan BiomaterialQingyou Huang(Department of Material Science and Engineering Hainan University Haikou 570228) Abstract: Chitosan, as a kind of novel natural biomaterials, increasingly becomes a research pot at home and abroad. This paper summarized the progress in chemical modification of chitosan,and application of it in biomedical fields recently. At last, the developing trend of chitosan was predicted.Keywords: chitosan; chemical modification; application; biomaterial1前言壳聚糖是一种新型的天然生物医用材料。

虾、蟹类作为壳聚糖的原料,在我国具有分布量大,资源丰富的特点,从环保、经济可持续发展的角度来考虑,壳聚糖作为一种天然的材料,不仅无毒、无污染,而且还具有很好的生物降解性和相容性。

因此非常有必要加大对壳聚糖的研究,以开发更多的产品[1,2]。

由于壳聚糖安全性良好,且具有可降性和组织相容性,在医药领域具有很高的应用价值。

但壳聚糖存在水溶性、稳定性、力学性能差等缺点,在一定程度上使其应用受到很大限制。

对壳聚糖进行化学改性,可改善其物理、化学性质,拓宽了壳聚糖及其衍生物的应用领域,是近几年壳聚糖研究的热点之一。

文章综述了近几年壳聚糖化学改性方面的研究进展,及其在生物医用方面的应用[2,3]。

2结构性质2.1结构壳聚糖是甲壳质的脱乙酰化产物。

甲壳质是N-乙酰基-D-葡萄糖胺通过β-1,4糖苷键相连的直链状氨基多糖,其化学名为聚(1,4)–2-乙酰氨基-2-脱氧-β-D-葡萄糖,也称为聚(N-乙酰基-D-葡糖胺),甲壳质在碱性条件下水解,脱去部分乙酰基后就转变成壳聚糖,其化学名为:聚(1,4)-2-氨基-2-脱氧-β-D-葡萄糖。

甲壳质和壳聚糖并非单一的化学实体,来源和制造过程不同,它们的成分就会发生改变。

当N-乙酰氨基-D-葡糖胺单元的含量超过50%时,该高分子聚合物就是甲壳质,反之,当N-氨基-D-葡糖胺单元的含量超过50%时即为壳聚糖[4,5]。

下图是壳聚糖的结构式:图 1 壳聚糖的结构式2.2理化性质壳聚糖是甲壳质最主要的衍生物,不同程度的的脱乙酰作用可以获得不同脱乙酰度的壳聚糖,纯净壳聚糖为白色或灰白色,半透明的片状固体,CTS经过脱乙酰后的CTS成白色或米黄色,溶解性能大大改善,可溶于烯酸水溶液,具有良好的生物相容性、可生物降解性以及无毒、无副作用。

CTS分子内含有-OH 和-NH2活性基团,易与多种有机物发生反应。

对甲壳素和CTS的化学改性可以提高其溶解性,开发更加高级的新用途,这是其研究中最为活跃的课题[3,6]。

KATO[7]等发现壳聚糖的氨基与芳香醛或脂肪醛反应生成西佛碱(Schiff's base)。

因此,可用具有双官能团的醛或酸酐与壳聚糖交联,交联产物不易溶解,溶胀也小,性质较稳定。

2.3生物活性目前已有大量研究证明,壳聚糖具有广谱抗菌性,且抗菌性受本身相对分子量大小、脱乙酰度及溶液pH值影响。

相对分子量越小、脱乙酰度越高、溶液pH 值越小,其抗菌活性越强。

同时壳聚糖可吸附带负电的脂肪酸,并与之形成复合盐,减少胆固醇的吸收同时增加其排泄,从而达到降血脂的效果,壳聚糖的降血脂作用还与其相对分子量、黏性及表面活性相关,是多种机制共同作用的结果。

不仅如此,壳聚糖在抗凝血、降血糖及增强机体免疫的功能也已得到证实[8]。

3改性研究进展3.1酰化改性壳聚糖通过与酰氯或酸酐反应,在大分子链上导入不同分子量的脂肪族或芳香族酰基。

酰化反应可在羟基(O-酰化)或氨基(N-酰化)上进行。

酰化壳聚糖及其衍生物中的酰基破坏了壳聚糖及其衍生物大分子间的氢键,改变了它们的晶态结构,提高了壳聚糖材料的溶解性。

韦萍[9]等制备了丁酰化壳聚糖膜,并应用于兔眼滤过性手术,发现丁酰化壳聚糖膜能下调兔眼滤过性手术后PCNA在成纤维细胞中的表达,能有效抑制纤维组织增生、抗组织瘢痕形成。

梁升[10]等在离子液体水溶液中,制备了水溶性N-乙酰化壳聚糖,并对产物的吸湿保湿性能进行研究,表明产物具有良好的吸湿保温性能。

3.2羧甲基化改性壳聚糖上的羟基或氨基,在不同的反应条件下与氯代烷酸或乙醛酸进行反应,得到相应的羧基化壳聚糖衍生物。

壳聚糖分子链上引入羧甲基,可制得溶解性和与金属离子螯合性更好的羧甲基壳聚糖,克服了壳聚糖只能在弱酸性条件下使用的缺陷,使其应用范围大大拓宽。

李扬等[11]检测所制备的左氧氟沙星羧甲基壳聚糖微球在人工消化液中和大鼠体内结肠靶向释药的性能。

表明其在体外、体内实验中的释放符合结肠靶向释药的特点向释药的性能。

李志峰等[12]探讨所制备的聚乳酸-O-羧甲基壳聚糖纳米粒子(PLA-O-CMC NPs)对肝细胞生长因子(HGF)的载药能力及其体外释药行为。

实验表明该载药纳米粒子体外HGF的累积释放量在前24h内逐步上升,并有明显的突释现象,释放出的药物量占释放总量的36.7%,载HGF的PLA-O-CMC NPs在体外能够迅速释放HGF,达到有效药物浓度,并能够在较长时间内维持一定的有效药物浓度,是一种良好的HGF载体。

3.3季铵盐化改性壳聚糖中引入位阻大、水合能力强的季铵盐基团,能大大削弱壳聚糖分子间的氢键,增大壳聚糖衍生物的水溶性。

水溶性的质子化壳聚糖可以使细胞膜短暂开放,促进基因的跨膜转运,这使得季铵化壳聚糖可作为潜在的基因载体。

张灿等[13]以壳聚糖为原料,先制备了N-季铵化壳聚糖,然后在其2位-NH2上和乳糖酸或乳糖反应,用KBH4还原,制备了半乳糖化季铵壳聚糖衍生物,其有望成为潜在的肝靶向基因载体。

雷万学等[14]以硝酸铈铵作引发剂,用甲基丙烯酰氧乙基-十六烷基-二甲基溴化铵为活性单体,所制备的壳聚糖季铵盐衍生物对大肠杆菌、金黄色葡萄球菌以及白色念珠菌在振荡作用15min后,平均杀菌率分别为99.99%、99.99%和99.96%。

3.4其他改性壳聚糖分子结构中含大量游离的氨基和羟基,除了能发生酰化、羧甲基化、季铵盐化改性外,还能对其进行烷基化,酯化,醚化,交联反应等改性[15]。

白欣等[16]制备了巯基烷基化壳聚糖载基因纳米粒,用透射电镜对其的形态和粒径进行观察和表征,其粒径在390nm左右,有望成为一种有价值的新型基因载体。

峻峰等[17]制备了香草醛交联的壳聚糖载药微球,其表面致密且球形度好,微球粒径在5~15μm之间,相关测试表明该载药微球缓释效果较好,前12h在pH=7.4和pH=5.7的PBS中释药速度大致相当,12h以后在pH=5.7的PBS中的载药微球释药速度略快,到72h时药物累积释放量达到80%以上。

赵婷等[18]使用制备的冠醚交联壳聚糖做吸附剂和保护剂,在水介质中用水合肼还原硝酸银制备纳米银。

实验表明:40℃时,水合肼与硝酸银(浓度均为0.1mol/L)摩尔比为6∶1,CTSG用量为0.4g时得到粒径为30~40nm的纳米银颗粒。

保持水合肼和硝酸银的摩尔比6∶1不变,纳米银粒径随水合肼和硝酸银浓度的增加而增大,当硝酸银浓度≤0.25mol/L时,改变银离子浓度对粒径影响不大,且稳定在50nm左右;而银颗粒则随水合肼浓度的减小规律递减。

4在生物医学上的应用4.1药物载体由于壳聚糖及其衍生物安全性良好,且具有可降解性和组织相容性,因此在药物传递系统中也得到广泛应用。

1)抗癌药物的载体壳聚糖本身具有抗癌性,是一种抗癌药物的理想载体。

目前,以壳聚糖为载体,已制备出阿霉素、丝裂霉素、顺铂、紫杉醇、喜树碱等药物的缓释微囊和纳米微球,研究表明这些缓释微囊和微球,能够有效地提高抗癌药物的生物利用度,并降低药物自身的毒副作用[19-21]。

HWANG等[22]研究的多西紫杉醇-乙二醇壳聚糖纳米微球抗肿瘤活性表明,载药纳米微球对A549肺癌细胞的小鼠的抗癌活性远高于游离多西紫杉醇组,且载药纳米微球组小鼠的存活时间大于45d,而游离药物组为35d。

王宏昌等[23]对制备的壳聚糖-甲基斑蝥素偶联复合物,用H22肝癌细胞小鼠荷瘤模型做了初步的体内抗肿瘤实验,发现壳聚糖作为去甲基斑蝥素的给药载体能够起到减少剂量,增加疗效的作用,并将对其他的偶联产物的体内抗肿瘤疗效做进一步研究,发现其有望成为新的抗癌制剂。

2)其他药物载体近年来,随着药剂学的飞速发展,壳聚糖为载体的药物的种类越来越多。

胰岛素是治疗Ⅰ型糖尿病的常用药物,在胃肠环境下很易降解,将其微囊化可有效保持其稳定性且方便患者服药。

杨利芳等[24]采用静电液滴工艺制备了胰岛素海藻酸钠-壳聚糖微囊,以四氧嘧啶为诱导剂建立糖尿病小鼠模型,对载药微囊的口服药效学进行评价,结果表明,以该微囊为基础的口服胰岛素制剂生物利用度高且缓释效果明显,胰岛素的相对活性保持很高。

王珊等[25]在pH7.4,温度为37℃的模拟人体肠胃缓冲溶液(NaH2PO4/NaOH)中研究了壳聚糖微球对环丙沙星的释药性能,实验表明,空心结构的壳聚糖微球对环丙沙星的载药性随初始浓度、pH、温度、微球颗粒的大小和时间的不同而不同,且吸附法比包埋法更有利于壳聚糖微球的载药,但不同的包药效率,在人工肠胃中释放性能基本相同。

4.2基因载体壳聚糖纳米粒作为天然聚阳离子,近年来正在被深入研究用作基因载体。

相对于病毒载体而言,壳聚糖载体具有无毒、无抗载体免疫反应,有良好的生物相容性及可降解性等生物学特性,日益受到广泛的关注[26,27]。

从1995年首次认为壳聚糖有用于基因治疗载体的可能性。

目前已有相关报道以壳聚糖纳米粒作为载体成功地将质粒转染到人肝癌细胞、结肠腺癌细胞、HEK293细胞、HeLa细胞、鼠巨噬细胞等[26]。

相关文档
最新文档