1 一般二次同余式
《初等数论(闵嗣鹤、严士健)》第三版习题解答

第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(21)n n n n n n n ++=+++-(1)(2)(1)(1)n n n n n n =+++-+ 又(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证:,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。
信息安全数学基础(第四章)

4.2 模为奇素数的平方剩余与平方非剩余
一、奇素数模 p 的平方(非)剩余判别条件
定理4.2.1 (欧拉判别条件) p是奇素数,若(a, p)1, 则
p1
(i) a是模p的平方剩余a 2 1 (modp);
p1
(ii)a是模p的平方非剩余a 2 1 (modp);
且若a是模p的平方剩余,则同余式
x2 a (modp), (a,p)1
ax2
bxc 0
(mod
p1 1
)
有解.
ax2
bxc 0
(mod
pk k
)
因 此 只 需 讨 论 素 数 模 p 的 同 余 式 :
a x 2 b x c0(m o dp ), a 0(m o dp )(2 )
将 同 余 式 (2)两 端 同 乘 以 4a,得 4a2x24abx4ac0(m odp)
41一般二次同余式42模为奇数的平方剩余与平方非剩余43勒让得符号44二次互反律的证明45雅可比符号46模p平方根
4.1 一般二次同余式
二 次 同 余 式 的 一 般 形 式 是 a x 2 b x c0(m o d m ), a 0(m o d m )(1 )
设m=
p1 1
p2 2
pk k
,
则(1)有解
练习:在与模31互素的剩余中,指出平方剩余。 求 出 1 9 , 2 3 的 平 方 剩 余 和 平 方 非 剩 余 。
提 示 : p 为 奇 素 数 , 应 用 定 理 4 . 2 . 2 的 结 论 .
4.3 勒让得符号
定义4.3.1
设p是素数,勒让得符号
ap定义如下:
1, 若a是模p 的平方剩余;
二次同余式的解法

二次同余式的解法(原创实用版)目录1.二次同余式的概念和基本形式2.解二次同余式的常用方法3.实际例子与解题过程4.二次同余式在数学和计算机科学中的应用正文一、二次同余式的概念和基本形式二次同余式是指包含两个未知数的同余方程组,它的一般形式为:ax + by ≡ c (mod m)dx + ey ≡ f (mod m)其中,a、b、c、d、e、f 都是整数,m 是一个正整数,且 a、d 不为零。
二、解二次同余式的常用方法解二次同余式的常用方法有代入法、消元法和矩阵法。
1.代入法:先解出一个未知数,然后将其代入另一个方程,从而得到一个一元一次方程,最后解出另一个未知数。
2.消元法:通过加减消元,将二次同余式化为两个一元一次方程,然后解出未知数。
3.矩阵法:将二次同余式转化为线性方程组,然后用矩阵的方法求解。
三、实际例子与解题过程例如,解以下二次同余式:2x + 3y ≡ 1 (mod 5)x + 4y ≡ 2 (mod 5)我们可以使用消元法,首先将第二个方程的系数乘以 2,然后将两个方程相减,得到:x + y ≡ 0 (mod 5)解得 x = 5k, y = 5l,其中 k、l 是整数。
将 x、y 的解代入原方程,得到:2(5k) + 3(5l) ≡ 1 (mod 5)k + 2l ≡ 1 (mod 5)k = 5m + 1, l = n,其中 m、n 是整数。
因此,解为 x = 5(5m + 1), y = 5n。
四、二次同余式在数学和计算机科学中的应用二次同余式在密码学、计算机图形学和数论等领域都有广泛应用。
例如,在密码学中,二次同余式常用于求解加密和解密过程中的密钥;在计算机图形学中,二次同余式可以用于求解图形的交点;在数论中,二次同余式可以用于求解素数等。
总结:二次同余式是数学中的一个基本问题,解法有多种,包括代入法、消元法和矩阵法。
数论01二次同余式与平方剩余

2019/10/24
数论
三 模为奇素数的平方剩余
与平方非剩余
定理2 若p是素
再根据 1.4 定理 2,我们有
数,如果p| ab, 则有p| a 或 p| b
p1
p1
p | a 2 1或 p | a 2 1
因此,结论(i)告诉我们: a 是模 p 的 平方非剩余的充分必要条件是
p1
a 2 1(mod p)
第四章 二次同余式与平方剩余
一 二次同余式的概念 二 二次同余式的应用 三 模为奇素数的平方剩余与平方
非剩余
2019/10/24
数论
一 二次同余式的概念
二次同余式的一般形式是ax2 bx c 0(mod m)(1)
其中 a 0(mod m).
因为正整数
m
有素因数分解式
m
p1 1
2019/10/24
数论
二 二次同余式的应用
x=2, y2 =5 (mod 7), 无解, x=3, y2 =4 (mod 7), y=2,5(mod 7), x=4, y2 =0 (mod 7), y=0(mod 7), x=5, y2 =6 (mod 7), 无解, x=6, y2 =0 (mod 7), y=0(mod 7).
反过来,若(2)成立,则同样根据 3.4 定 理 5,我们有同余式 x2 ≡a (mod p) 有解,
即 a 是模 p 平方剩余.
(ii)因为 p 是奇素数,(a, p)=1,根据 2.4 定
理 1(欧拉定理),我们有表达式
p1
p1
(a 2 1)(a 2 1) a p1 1 0(mod p)
2019/10/24
数论
第四章 二次剩余

4.1 二次同余式与平方剩余
二次同余式的一般形式是:
ax2+bx+c ≡0 (mod m)
(1)
其中 a ≡ 0 (mod m) ,
设 m 有素因数分解:
m
p1 1
p2 2 …
pk k
定理2.1.11和定理2.1.12(定理3.3.1),二次同余式
ax2+bx+c ≡0 (mod m)
(2) n1=0 , 计算 a1=a0≡137, b2≡b12 ≡ 1552 ≡190 (mod 227)
(3) n2=0, 计算 a2=a1≡137, b3≡b22 ≡ 190 2 ≡7 (mod 227)运用模重复平方法Fra bibliotek依次计算如下:
(4) n3=0 , 计算 a 3=a2≡137, b4≡b32 ≡72 ≡49 (mod 227)
例5 求解同余式:x2 ≡ 46(mod 105) 。
由中国剩余定理解这些同余式组: 令 m1 =3, m2 =5, m3 =7, m = m1 ·m2 ·m3 =105 M1 = m2 ·m3 =35, M2 = m1 ·m3 =21 , M3 = m1 ·m2 =15 分别求解同余式 35M1≡1 (mod 3),21M2≡1 (mod 5) , 15M2≡1 (mod 7) 得 M1 ≡ 2 (mod 3),M2 ≡ 1 (mod 5),M3 ≡ 1 (mod 7)
x ≡1(mod 3) x ≡1(mod 5) x ≡2(mod 7)
x ≡1(mod 3) x ≡ 1(mod 5) x ≡-2 (mod 7)
x ≡1(mod 3) x ≡ - 1(mod 5) x ≡2(mod 7)
x ≡1(mod 3) x ≡ - 1(mod 5) x ≡ - 2(mod 7)
第二章同余与同余式

mod13). 所以 ,结论得证。
i 0
n
同余的算术应用2 ——弃九法
*证明了“弃九法”(弃九验算法):把一个数的各 位数字相加,直到和是一个一位数(和是9,要减去 9得0),这个数就叫做原来数的弃九数.且一个数
假设p是合数, 令 p=ab, a≠p.
由题设条件知, p|((p-1)!+l). 又因 a|p, 则有 a|((p-1)!+1). 但由于 a≤p-1可得 a|(p-1)!, 从而 a|(((p-1)!+1)-(p-1)!), 即a|l, 因而p只有因子1和p, 即p为素数.
同余关系及其在计算机领域的应用
可见S中ห้องสมุดไป่ตู้数可分成(p-3)/2对, 每一对数a和b, 满
足 abl(mod p), 故得2·3…(p-2) (mod p), 即可得
(p-1)! -1 (mod p).
定理 (威尔逊定理) p为素数 iff (p-l)!-1(mod p).
充分性: 若(p-1)! = -l (mod p), 则 p为素数.
如果等号两边的九余数不相等,那么这个算式肯 定不正确; 如果等号两边的九余数相等,那么还不能确定算 式是否正确,因为九余数只有0,1,2,…,8九种 情况,不同的数可能有相同的九余数。所以用弃九 法检验运算的正确性,只是一种粗略的检验。
弃九法
例2 求证 1997×57≠113828. 证明 由于19971+9+9+78 (mod 9) 57 5+7 3(mod 9) 113828 l+1+3+8+2+8 5(mod 9)
数论部分定义定理

定义 4 设 x 是一个实数,我们称 x 的整数部分为小于或等于 x 的最大整数,记 成[x].这时,我们有
定理 10(欧几里得除法) 设 a,b 是两个整数,其中 b .则对任意的整数 c, 存在惟一的整数 q,r 使得
1.2 整数的表示
定理 1 设 b 是大于 1 正整数.则每个正整数 n 可惟一地表示成
被
是 a 被 b 除的最小正余数.
引理 2 设 a,b 是两个正整数,则
和
定理 10 设 a,b 是两个正整数,则正整数 b 互素.
除的最小正余数是
,其中 r
的最大公因数是
.
和
互素的充要条件是 a 和
1.4 整除的进一步性质及最小公倍数
定理 1 设 a,b,c 是三个整数,且 b 0,c 0,如果(a,c)=1,则
有惟一解
.
定义 2 设 m 是一个正整数,a 是一个整数.如果存在整数 a’使得
aa’ 1(modm)
成立,则 a 叫做模 m 可逆元.
定理 3 设 m 是一个正整数,a 是满足(a,m)|b 的整数.则一次同余式
的全部解为
t=0,1,…,(a,m)-1.
定理 4 设 m 是一个正整数.则整数 a 是模 m 简化剩余的充要条件是整数 a 是模 m 逆元.
(i)d|a,d|b; (ii)若 e|a,e|b,则 e|d. 定理 8 设 a,b 是任意两个不全为零的整数, (i)若 m 是任一正整数,则(am,bm)=(a,b)m;
(ii)若非零整数 d 满足 d|a,d|b,则
.特别地,
定理 9 设
是 n 个整 a,b 是两个正整数.则
定理 1 设
是三个整数.若 c|b,b|a,则 c|a.
数论01二次同余式与平方剩余

平方非剩余
如果一个数$a$模$p$同余于$x^2$模$p$ ,则称$a$为$x^2$的平方非剩余。
判定法则
判定法则一
费马小定理,若$p$是质数,且$(a, p)=1$,则有$a^{p-1} equiv 1 pmod{p}$。
判定法则二
二次互反律,设$p, q$是两个不同的奇素数,且$(p, q)=1$,则有$(p equiv q pmod{4}) Leftrightarrow (q equiv p pmod{4})$。
03
具体的证明过程需要用到一些较为复杂的数学符号 和逻辑推导,这里不再赘述。
应用案例
01
02
03
在密码学中,二次同余 式与平方剩余的概念被 广泛应用于一些加密算 法的设计,如 RSA 算法
。
在数论研究中,这些概 念也是重要的工具,可 以帮助我们解决一些数
论中的难题。
在实际生活中,这些概 念在金融、物流等领域 也有一定的应用,例如 在电子支付和电子签名 的安全性验证等方面。
解释
这是一个关于 (x) 的二次方程,但它 的解必须满足同余条件,即解必须是 模 (m) 的同余类。
性质
性质1
如果 (a, b, c, m) 满足二次同余式的定义,那么对于任意整数 (x),如果 (x^2 + bx + c equiv 0 (mod m)) 成立 ,那么 (ax^2 + bx + c equiv 0 (mod m)) 也一定成立。
THANKS
感谢观看
应用实例
在密码学中的应用
平方剩余在密码学中有重要的应用,例如RSA公钥密码算法中就使用了平方剩余的性质 。
在数论中的应用
平方剩余是数论中的一个重要概念,它在证明费马大定理、哥德巴赫猜想等数学问题中 发挥了重要作用。