一个简单功放设计制作与电路图分析
音频功率放大器设计详解

音频功率放大器设计一、设计任务设计一个实用的音频功率放大器。
在输入正弦波幅度≤5mV,负载电阻等于8Ω的条件下,音频功率放大器满足如下要求:1、最大输出不失真功率P OM≥8W。
2、功率放大器的频带宽度BW≥50Hz~15KHz。
3、在最大输出功率下非线性失真系数≤3%。
4、输入阻抗R i≥100kΩ。
5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz处有±12dB的调节范围。
二、设计方案分析根据设计课题的要求,该音频功率放大器可由图所示框图实现。
下面主要介绍各部分电路的特点及要求。
图1 音频功率放大器组成框图1、前置放大器音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。
声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。
一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。
所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。
另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。
对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。
对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。
前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。
用8550和8050制作的晶体管小功放电路图

用8550和8050制作的晶体管小功放电路图
这里介绍一个设计小巧、线路简单但性能不错的三管音频放大器。
其电路见附图。
也许你在一些袖珍晶体管收音机可以看到一些与此类似的电路。
原理分析:
电路如图所示,输入极(9014)的基极工作电压等于两输出极三极管的中点电压,一般为电源电压的一半,这个电压的稳定由输出三极管的基极的两个二极管控制。
3.3欧姆电阻串联在输出三极管的发射极上,以稳定偏流。
以减小环境温度、不同器件(如二极管、输出三极管)参数区别对电路的影响。
当偏流增加时,输出三极管发射极与基极间电压会减小,以减小偏流。
此电路输入阻抗为500欧姆,在使用8欧姆扬声器时,电压增益为5。
电路在不失真输出50mW的功率时,扬声器上有约2V左右的电压摆动。
增加电源电压可提高输出功率,但此时应注意输出晶体管散热问题。
在9V电源电压时,电路耗电约30mA。
制作时要注意两个输出功率管放大倍数应接近。
其它器件参数可以参考图示选择。
此电路适合于制作成耳机放大器或其它小功率放大器用。
由于它是一个很典型的功放电路,所以非常适合初学者学习功放电路原理之余,动手实践制作时的参考电路。
一个LM386简单功放电路图

一个LM386简单功放电路图(2010-04-27 22:29:37)分类:无线电_电子_音响_HiFi标签:ita. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容.b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了.把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧.c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行.......d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声道和一个地,现在将这两个都悬浮起来接到功放上,两边没有共地,电脑主板上情况有复杂,所有有点噼噼啪啪的声音也正常,于是用了一个104的电容将电脑地和功放地一共起来,问题解决!效果很好,于是图就定成这样:3.建议以我使用的LM386-N1为标准的建议a. 供电,除非你保证你的供电是标准的12V,要不你就用9V.毕竟极限电压就在15V上b.两个LM386一定要是同一批次出来的,这样对称性比较好,你要是用不同厂家的386来做BTL,哪就等着听嗡嗡声吧c.LM386的增益其实可以通过在1,8两脚之间加电容来调的,如果是不接东西386的增益是最大的.所以用BTL电路没事也就别调什么放大倍数了吧d.LM386-N1的输出功率不大,所以输入的幅度不要搞得太狠,虽然在我的电脑上把声音开到最大还没烧片子,但是也热得可以,所以还是适可而止吧(具体参数我也没测试)e.如果声音比较大还是建议吧C1用到330uF以上.算算价格:LM386一片1块一共两块,电解电容3毛,瓷片电容5分,弄上一小块万用板也就2块不到,一共算4块钱吧,如果想低音听得爽些,花点血本买个带橡皮圈的内磁喇叭吧也就8块左右.一个单声道功放12块搞定,立体声就是24块.效果绝对不差。
功放原理分析图解

功放原理分析图解一、功放原理概述功放是指电子设备中的一种电路,用于将输入的低功率信号放大到更高功率的信号。
它在音频、射频和其他领域中被广泛应用。
二、基本功放原理基本的功放原理是通过操纵电源电压或电流来控制输出信号的幅度。
通常,功放电路由放大器和输出级组成。
1. 放大器放大器是功放电路的核心组件,负责将输入信号放大到更大的幅度。
常见的放大器类型包括放大电压或放大电流的负载放大器、差动放大器和集成电路放大器。
2. 输出级输出级是功放电路中的最后一级,它负责将放大的信号传递到负载(如扬声器或天线)上。
常见的输出级包括晶体管输出级、管式输出级和功率集成电路输出级。
三、功放工作原理功放的工作原理可以分为两个阶段:放大阶段和输出阶段。
1. 放大阶段在放大阶段,输入信号经过放大器放大。
放大器将输入信号的幅度放大到更大的幅度,但保持输入信号的波形形状不变。
2. 输出阶段在输出阶段,放大的信号经过输出级传递到负载上。
输出级将放大信号的功率提高,以满足负载的要求。
输出级通常使用功率放大器来实现。
四、不同类型的功放原理根据放大器的工作方式和放大介质的不同,功放可以分为几种不同的类型,如AB类、A类、D类和甲类。
1. AB类功放AB类功放是一种常见的功放类型。
它使用两个放大器管(PNP和NPN型)交替工作,以实现高效率和低失真的放大。
它适用于音频和射频应用。
2. A类功放A类功放是一种线性放大器,它在整个输入信号周期内都有信号输出。
该功放类型具有较低的功率效率,但提供高质量的音频放大。
3. D类功放D类功放是一种调制类功放,它使用脉冲宽度调制(PWM)技术来实现信号放大。
D类功放具有高功率效率和低功率损耗,适用于电池供电系统和音频应用。
4. 甲类功放甲类功放是一种效率低但音质高的功放类型。
它提供高保真度的音频放大,适用于专业音频系统和高保真音响。
五、总结功放是将低功率信号放大为高功率信号的电子设备。
它由放大器和输出级组成,通过调整电源电压或电流来控制输出信号的幅度。
TDA2822M制作简单的立体声功放电路集

TDA2822M制作简单的⽴体声功放电路集USB供电电脑⾳箱电路这是USB供电的电脑⾳箱的电路原理图,它⼴泛应⽤于电脑多媒体⾳箱。
在电路的单chipbased设计,低压电器电源,电脑USB电源的兼容性,简单的散热,价格 这是USB供电的电脑⾳箱的电路原理图,它⼴泛应⽤于电脑多媒体⾳箱。
在电路的单chipbased设计,低压电器电源,电脑USB电源的兼容性,简单的散热,价格低廉,⼤的灵活性和⼴泛的温度公差。
在电路的核⼼是集成电路TDA2822M。
实际上,这个IC是在单⽚式8⽆铅微型DIP(双列直插式封装)。
它被设计为双电池供电的声⾳播放器的⾳频功率放⼤器使⽤。
TDA2822M的特点是⾮常低的静态电流,低交越失真,直流电源电压下降到1.8伏,最⼩输出功率约450毫⽡/通道,5V直流电源输⼊4欧姆扬声器。
⼀个理想的功放基本上可以作为⼀个电路,它可以提供到外部负载,⽽⽆需产⽣⼤量的信号失真和⾳频功率,⽽⽆需耗费极端静态电流。
该电路由5V直流电源从计算机的USB端⼝索取。
当打开电源开关S1“上的⽴场,5V电源延长对电路和电源指⽰灯红⾊的LED1⽴即亮起。
电阻R1实际上是⼀个电流浪涌限制器和电容C1和C4作为缓冲区的⼯作。
电路的⼯作如何? 电路的操作⾮常简单。
从电脑⾳频端⼝或⽿机端⼝,⾳频信号反馈对放⼤电路通过R2和C2(左声道),R3和C3(forright通道)。
作为potensiometer VR1的左(L)通道的⾳量控制器,⽽potensiometer的VR2⽤于控制权的⾳量(R)频道。
TDA2822M 7脚接收左声道声⾳信号和引脚6接收右声道信号,通过VR1和VR2相应。
驱动左,右扬声器放⼤信号可以在引脚1和IC1的3脚得到相应。
元件R5和C8,R6和C10组成的经典Zobel⽹络。
构建⼀个中等⼤⼩的电路,通⽤PCB和括在⼀个适当的情况下。
这真的是建议利⽤TDA2822M集成电路插座。
外部连接应该要适当屏蔽电线的⼯作改进的结果⼆:焊接后的图⽚TDA2822,放⼤电路笔者购买DM500机已有两、三个年头了,也经常刷各种版本的系统.但该机⾳量⼩的⽑病却始终⽆法根治。
用LM3886制作了一款功放电路

用LM3886制作了一款功放电路,在用学校DVD机试听时,总感到声音效果不如人意,响度也达不到标称功率效果。
虽经多次调整电路参数(包括提升了电源电压),但收效甚微。
后来看到有关刊物介绍LM3886放大倍数偏小,需要有足够幅度的激励信号,才能收到较好的效果。
为此,笔者选用“运放之星”NE5532制作了一款前置放大电路加在功放输入端,再次试听,音效、响度明显得到了改善。
现将制作的前放电路介绍如下:图1为前放电路的直流伺服电源电路,给前放电路提供稳定的±12V电源。
稳压电路采用三端集成稳压块,并且使用一片NE5532构成伺服电路,实现对输出电压的实时跟踪与调整。
图2为前置放大电路,电路采用了“运放之星”NE5532构成同相比例运算放大电路,其放大倍数为5倍左右(主要由R9、R7、R10、R8决定),C15、C16在电路中具有提升高音频信号的作用。
J1接环变的双12V输出端,J2为信号输入端,J3为信号输出端(接功放输入端)。
图3为印刷电路板图,图4为元件布置图。
具体安装时,可将此电路板安装在功放箱中靠近背面的附近。
通孔,并经过J2(双信号插座)接音源。
本电路也适用于其他音源幅值较小的组合系统作为功放的前置放户外演出和歌舞厅所使用的专业音响,多数为进口设备,应该说可靠性较高。
主要问题是操作者专业素质不齐,真正配备合格调音师的单位很少。
本文针对中、小型歌舞厅音响设备操作要点进行解说,可做为制订操作规程的参考。
另外,在中小型歌舞厅由于话筒声反馈造成的自激啸叫现象,是常见的令使用者头疼的问题,因为经常出现啸叫会令宾客扫兴,音响效果无从谈起,严重者会造成设备损坏。
所以,自激啸叫现象是歌舞厅音响使用中的一个重要问题,下面分别叙述。
一、音响设备开、关机顺序应按由前到后顺序开机,即由音源设备(CD机、LD机、DVD机、录音机、录像机)、音频处理设备(压限器、激励器、效果器、分频器、均衡器等)到音频功率放大器到电视机、投影机、监视器。
LM1875制作功放电路图

LM1875采与TO220启拆结构,形如一只中功率管,体积小巧,中围电路简朴,且输出功率较大.该集成电路里面设有过载过热及感性背载反背电势仄安处事呵护. 之阳早格格创做LM1875主要参数:电压范畴:16~60V固态电流:50MmA输出功率:25W谐波得真:<0.02%,当f=1kHz,RL=8Ω,P0=20W 时额定删益:26dB,当f=1kHz时处事电压:±25V变换速率:18V/μS电路本理:LM1875功搁板由一个下矮音分别统造的衰减式音调统造电路战LM1875搁大电路以及电源供电电路三大部分组成,音调部分采与的是下矮音分别统造的衰减式音调电路,其中的R02,R03,C02,C01,W02组成矮音统造电路;C03,C04,W03组成下音统造电路;R04为断绝电阻,W01为音量统造器,安排搁大器的音量大小,C05为隔曲电容,预防后级的LM1875曲流电位对付前级音调电路的效率.搁大电路主要采与LM1875,由1875,R08,R09,C066等组成,电路的搁大倍数由R08与R09的比值决断,C06用于宁静LM1875的第4足曲流整电位的漂移,然而是对付音量有一定的效率,C07,R10的效率是预防搁大器爆收矮频自激.本搁大器的背载阻抗为4→16Ω.为了包管功搁板的音量,电源变压器的输出功率不得矮于80W,输出电压为2*25V,滤波电容采与2个2200UF/25V 电解电容并联,正背电源共用4个2200UF/25V的电容,二个104的独石电容是下频滤波电容,有好处搁大器的音量.拆置与调试:工具准备:20W电烙铁一把,万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝战紧香火若搞.准备焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,末尾焊LM1875,焊接LM1875前须先把LM1875用螺丝牢固正在集热片上,可则正在末尾拆集热片时螺丝很易挨进去.LM1875与集热片交战的部分必须涂少量的集热脂,以利集热.焊接时必须注意焊接品量,对付于初教者,可先正在兴旧的电路板上多训练频频,而后再正式焊接.调试:本功搁板调试特天简朴,电路板焊佳电子元件后,要小心查看电路板有无焊错的场合,特天要注意有极性的电子整件,如电解电容,桥式整流堆,一朝焊反即有兴弃元器件之险,请特天注意.接上变压器,搁大器的输出端先不接扬声器,而是接万用电表,最佳是数隐的,万用表置于DC*2V档.功搁板上电注意瞅察万用电表的读数,正在仄常情况下,读数应正在30mV以内,可则应坐时断电查看电路板.若电表的读数正在仄常的范畴内,则标明该功搁板功能基础仄常,末尾接上音箱,输进音乐旗号,上电试机,转动音量电位器,音量大小该当有变更,转动下矮音旋钮,音箱的音调有变更.值得一试的真验:将C6短路,用万用表测LM1875输出端的曲流电位,瞅是可是正在30MV以内,而后接上音箱试二小时,用万用表测LM1875输出端LM1875是好国国家半导体公司(NS)推出的下保真集成电路.其劣良的本能战诱人的音色已被稠密收烧友所担当,正在九十年代曾风靡一时.LM1875采与TO220启拆结构,形如一只中功率管,体积小巧,中围电路简朴,且输出功率较大.该集成电路里面设有过载过热及感性背载反背电势仄安处事呵护,是中下等声响的理念采用之一.LM1875主要参数:电压范畴:16~60V固态电流:50MmA输出功率:25W谐波得真:〈0.02%,当f=1kHz,RL=8Ω,P0=20W时额定删益:26dB,当f=1kHz时处事电压:±25V变换速率:18V/μS电路本理:XDA02功搁板由一个下矮音分别统造的衰减式音调统造电路战LM1875搁大电路以及电源供电电路三大部分组成,音调部分采与的是下矮音分别统造的衰减式音调电路,其中的R02,R03,C02,C01,W02组成矮音统造电路;C03,C04,W03组成下音统造电路;R04为断绝电阻,W01为音量统造器,安排搁大器的音量大小,C05为隔曲电容,预防后级的LM1875曲流电位对付前级音调电路的效率.搁大电路主要采与LM187 5,由1875,R08,R09,C066等组成,电路的搁大倍数由R08与R 09的比值决断,C06用于宁静LM1875的第4足曲流整电位的漂移,然而是对付音量有一定的效率,C07,R10的效率是预防搁大器爆收矮频自激.本搁大器的背载阻抗为4→16Ω.XDA02功搁板的电源电路如下图所示,为了包管功搁板的音量,电源变压器的输出功率不得矮于80W,输出电压为2*25V,滤波电容采与2个4700UF/25V电解电容并联,正背电源共用4个4700UF/25V的电容,二个104的独石电容是下频滤波电容,有好处搁大器的音量.拆置与调试:工具准备:20W电烙铁一把,最佳是可调温的,若需要的话可与站少通联;万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝战紧香火若搞.准备焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,末尾焊LM1875,焊接LM1875前须先把LM1875用螺丝牢固正在集热片上,可则正在末尾拆集热片时螺丝很易挨进去.LM1875与集热片交战的部分必须涂少量的集热脂,以利集热.焊接时必须注意焊接品量,对付于初教者,可先正在兴旧的电路板上多训练频频,而后再正式焊接.调试:本功搁板调试特天简朴,电路板焊佳电子元件后,要小心查看电路板有无焊错的场合,特天要注意有极性的电子整件,如电解电容,桥式整流堆,一朝焊反即有兴弃元器件之险,请特天注意.接上变压器,搁大器的输出端先不接扬声器,而是接万用电表,最佳是数隐的,万用表置于DC*2V档.功搁板上电注意瞅察万用电表的读数,正在仄常情况下,读数应正在30 mV以内,可则应坐时断电查看电路板.若电表的读数正在仄常的范畴内,则标明该功搁板功能基础仄常,末尾接上音箱,输进音乐旗号,上电试机,转动音量电位器,音量大小该当有变更,转动下矮音旋钮,音箱的音调有变更.值得一试的真验:将C6短路,用万用表测LM1875输出端的曲流电位,瞅是可是正在30MV以内,而后接上音箱试二小时,用万用表测LM1875输出端的曲流电位,瞅曲流电位是可正在30MV以内,如果是的话,则C6那个电容不妨省掉,那样的话,此搁大板便成一个杂曲流功搁了电路曲流化并改为电流反馈后,频响拓宽,矮音力度明隐巩固,下频剖析力减少,中音量感巩固,音量较尺度电路普及很多,使进暂听不厌、用此功搁与新德克6800杂甲类功搁对付比试听,推惠威天鹅 M1.2音箱,15仄圆米房间,约有10W安排输出,音色极为靠近新德克机,声音力空、剖析力与之八二半斤.LMl875下音细致一面,新德克6800人声薄度强——面,二者不共之小,出乎意料.然而LMl875曲流化电流背反馈电路的缺累也使人感触若有所得:功率偏偏小,固态时有可闻的接流声,真测LMl8 75固态时输出端有几到十几mV的电压.曲流化电流背反馈BTL电路睹图2,与消尺度BTL电路中的C12、C22,使电路曲流化;电阻R16与R26是与样电阻,电流反馈旗号经R15、 R16、R25、R26分别加进搁大器A1、A2的反相输进端,R13、R14、R15、R16的阻值决断搁大器删益的大小.用图2电路真验,不管何如通断电源与输进旗号,输出端末究不曲流输出,而且不固态输出噪音,启机时喇叭中惟有沉微“叭”音,闭机时扬声器中绝无噪音可闻.通过真验可知,此种输进电路处事格中宁静,纵然正在启大音量或者固态时将输进端子拔掉再插上,电路也不会自激.电容C11对付音量效率很大,去掉此电容后,少远赶快一明,中下音变得浑澈细致,矮音富裕弹性战力度.曲流化电流背反馈BTL电路继启了曲流化电流背反馈O CL电路音量的便宜,得真进一步减小,输出功率删大到本去的3倍,达到了60瓦以上,克服了其启闭机扬声器中有冲打声战固态时有接流声的缺面,是LM1875的理念劣化电路.。
20W单端纯甲类功放

20W单端纯甲类功放20W单端纯甲类功放电路图,电路十分简单,所用元件很少。
符合“简洁至上”的原则,用料普通,易于仿制。
最近,好友赠送一幅20W单端纯甲类功放电路图,电路十分简单,所用元件很少。
符合“简洁至上”的原则,用料普通,易于仿制,看到好多的发烧友对单端纯甲类功放感兴趣,不敢独享,特撰写此文,与广大的音响发烧友交流。
原理图如下所示:电路原理和设计思路,整机电路可以分为四部分:输入级:核心电路由两只BC559组成的差分放大电路,22K对地电阻为三极管的偏置电阻,它的大小同时决定了整个功放的输入电阻。
8.2K电阻是差分对管的公共发射极电阻,决定了差分电路的共模抑制比和本级的静态工作电流。
经过输入级放大的电流在流经1K可调电阻时产生的电压信号,直接输送到下一级。
1UF电容是整机的输入电容,其容量的大小和制造材料对音质的影响很大。
根据理论计算,1UF的电容与输入电阻22K 组成了一个高通滤波电路,它的低端转折频率可以用下式计算:f=1000/(2*3.14*22*1)=7.2HZ。
(在过去将放大器的低端频响定位在20HZ时,还是可接受以的。
现在数码音源大行其道的今天,看来还是高了一些,低端转折频率定在1HZ以下还是可以接受的。
)由于该电容的重要性,一定要选择品质优良的进口音频专用耦合电容,在产的电容中,新德克的品牌还是值得信任的,经过笔者和朋友的试用,效果令满意,只是体积稍大了些,在设计电路板时要考虑是否能安装得下。
8.2K电阻决定了输入级的晶体管静态工作电流,可以由下式进行估算(两管值):VCC/8.2K=20/8.2=2.4MA。
由于输入级的晶体管静态工作电流对音质有较大的影响,可以调整该电阻的大小来满足自己的要求。
(晶体管静态工作电流小,信噪比高,但是音质发干,低音单薄。
如果电流大一些,音质温暖,低音厚实,但是晶体管特有的高频噪声和反映在音频内的电流声也会增加,使信噪比下降。
本机取2.4MA还是比较合适的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客
默认分类 2009-11-09 19:01 阅读32 评论0
字号:大中小
一个简单功放设计制作与电路图分析|电路图
电子资料 2009-11-06 11:15
功放电路图
一个简单功放设计制作与电路图分析
我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程.
1.设计
我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了
2.调试
a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平
比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被
调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了
.把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧.
c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行.......
d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声
道和一个地,现在将这两个都悬浮起来接到功放上,两边没有共地,电脑主板上情况有复杂,所有有点噼噼啪啪的声音也正常,于是用了一个104的电容将电脑地和功放地一共起来,问题解决!效果很好,于是图就定成这样:
3.建议
以我使用的LM386-N1为标准的建议
a. 供电,除非你保证你的供电是标准的12V,要不你就用9V.毕竟极限电压就在15V上
b.两个LM386一定要是同一批次出来的,这样对称性比较好,你要是用不同厂家的386来做BTL,哪就等着听嗡嗡声吧
c.LM386的增益其实可以通过在1,8两脚之间加电容来调的,如果是不接东西386的增益是最大的.所以用BTL电路没
事也就别调什么放大倍数了吧
d.LM386-N1的输出功率不大,所以输入的幅度不要搞得太狠,虽然在我的电脑上把声音开到最大还没烧片子,但是也热
得可以,所以还是适可而止吧(具体参数我也没测试)
e.如果声音比较大还是建议吧C1用到330uF以上.
算算价格:LM386一片1块一共两块,电解电容3毛,瓷片电容5分,弄上一小块万用板也就2块不到,一共算4块钱吧,如果想低音听得爽些,花点血本买个带橡皮圈的内磁喇叭吧也就8块左右.一个单声道功放12块搞定,立体声就是24块.
效果绝对不差.不过主要目的还是自己玩,你说呢?现在给个全图吧,晚上用手机拍的,效果不太好.....。