功放电路集锦

功放电路集锦
功放电路集锦

功放电路集锦

一、双30W功放

图1是2×30W双声道音频功率放大器,其核心器件ICl采用高保真音响功放集成电路STK465,该电路内包含两个性能指标完全相同的功率放大器,分别用作左、右声道的功放,可保证两个声道放大器指标的一致性。电路输入阻抗30k,输入灵敏度150mV,电压增益40dB,频率响应:10Hz~100kHz,谐波失真≤0.08%,电源电压范围±(25~35)V。制作时应注意,正、负电源退耦滤波电容C5、C14的位置应尽量分别靠近sTK465的正、负电源输入端。如电路有自激现象,则增大C5和C14的容量。该功放输出功率适中,制作容易,可用作一般家庭的组合音响、卡拉OK设备或VCD机的声音播放。由于该功放电压增益高达40dB,输入灵敏度高,可省去前置放大器,而直接与卡拉OK机、VCD机等信号源连接。该功放也可用作家庭影院系统的环绕声功放。

二、40W功放

图2为采用高保真音响专用功放集成电路TDAl514构成的40W功率放大器,具有快速切断保护和延时静噪功能。电路输入阻抗20k,输入灵敏度600mV,电压增益30dB,信噪比80dB。制作两套该功放,分别用于左、右声道,即可构成2×40W立体声功率放大器。

三、50W功放

图3是50W高保真功率放大器,采用LM3886音频功放集成电路构成。电路输入阻抗20k,输入灵敏

度1000mV,电压增益26dB,信噪比110dB,输出连续平均功率50W,峰值功率可达135W,总静态电流50mA,电源电压范围±(30~40)V。Ll用φ1.2mm漆包线在10Ω/5W金属膜电阻(R7)上平绕10匝后与该电阻并联即可。LM3886还具有静音功能,其第8脚为静音控制端,当第8脚开路(或接地)时为静音状态;第8脚通过30k电阻接-35V时则无静音。调试时,如发现总静态电流过大,则是电路自激,可适当调节负反馈回路中的C3、R4或移相网络中的C4。

四、60W功放

图4是采用LM3875T构成的60W高保真功率放大器,具有外围电路简单、易于制作的特点。电路输入阻抗≥20k,输入灵敏度1100mV,电压增益26dB,频响范围5Hz~lOOkHz,总失真≤O.05%,信噪比114dB,电源电压范围±(20~40)v。L1绕制方法同图3电路。

五、70W功放

图5为采用STK4040X1构成的音频功率放大器,额定输出功率70W,最大谐波失真O.008%,频响范围20Hz-20kHz(-3dB),电路输入阻抗30k,输入灵敏度1000mV,电压增益27dB。L1可用φ1.2mm 漆包线在φ10mm骨架上平绕15圈后脱胎而成。

六、双70W功放

图6是由一块音响功率集成电路STK4913构成的2×70W双声道高保真功率放大器。STK4913内含两个性能指标完全一样的功率放大器,利用STK4913制作立体声功放,其左、右两声道的一致性很好。电路输入阻抗32k,输入灵敏度600mV。电压增益32dB,频响范围10Hz~100kHz(±3dB),谐波失真<0.02%,电源电压范围±(25-35)V。

七、80W的BTL功放

图7是用两块高保真音响集成电路LMl875构成的BTL功率放大器。BTL功放的最大优点是可在较低的电源电压下,利用输出功率较小的功放集成电路获得较大的输出功率。在功放集成电路、负载阻抗和电源电压相同的的情况下,BTL功放中负载(扬声器)上所获得的输出电压是普通功放的两倍,因此,BTL功放的输出功率是普通功放的4倍(P=U的平方/R)。BTL功放的缺点是需多用一块功放集成电路。图7 BTL 功放电路,输出功率80W,电压增益26dB,输入灵敏度570mV。电路调整方法:(1)测电路静态电流,一般为50~80mA,若过大,则是电路自激,可适当调节移相网络中的电容器(C3、C5)的大小。也可在负反馈电阻(n3、R8)上并一小电容(10~50p),以消除高频自激,该电容越小越好,以免影响电路高频特性。(2)两块LMl875输出端(第4脚)对地交流电压应幅度相等、相位相反,如幅度不等,可适当调节R4阻值。如欲制作立体声BTL功放,再按图7制作另一声道即可。

八、100W功放

图8是由单片音响功放集成电路TDA7294构成的100W功率放大器。TDA7294内部包含前置运放、末级功放、温度保护、短路保护、静音控制等电路。末级采用双极DMOS功率晶体管,具有输出功率大、频带宽、失真小、通用性好等特点。该集成电路还具有完善的防过载、防短路和温度保护电路,在芯片温度过高时,自动切断音频信号,保护芯片不致烧毁。用TDA7294构成的功放电路,具有外围电路简单、易于制作的特点。电路输入阻抗20k,输入灵敏度750mV,电压增益32dB,电源电压范围±(25~40)V,静态电流50mA。当负载阻抗为8Ω时输出功率1OOW;负载阻抗为4Ω时输出功率可达180W。实际制作时,TDA7294应加装足够的散热片。配套电源电路应有足够的容量。如需提高电路电压增益,可适当改变R3与R2的比值,电压增益A=201g(R3/R2)(dB)。但不宜片面追求本级电压增益,过高的电压增益易引起电路自激,解决的办法是提高前置级的电压增益。

九、双100W功放

图9是2×100W双声道功率放大器,该电路采用了一块双声道高保真前置放大集成电路sTK3048A和两块高保真功放集成电路sTK6153及外围元器件组成。sTK3048A内部包含两组独立的前置激励运放,具有极低的失真和足够的推动功率,每组运放的输入端均有正、反向钳位保护二极管。STK6153内部电路采用互补全对称结构,具有高速率、高精度、大功率、低噪声的优良特性。用STK3048A和STK6153组成的2×100W功放,具有动态范围大、瞬态响应快、音质纯净有力、失真和噪音极低、输出内阻更小、功率余量更大的特点。电路输入阻抗50k,输入灵敏度280mV,总电压增益40dB,频率响应10Hz-100kHz,失真≤O.008%,电源电压范围±(30~50)v。VT1、VDl及VT2、VD6分别构成正、负电源有源滤波器。为前置电路STK3048A供电。VD2、VD3和VD4、VD5分别是两块sTK6153的保护二极管。L1(或L2)可用φ1.5mm漆包线在φ10mm骨架上平绕15圈后脱胎而成。sTK3048A和STK6153的外露散热片已与内电路电气绝缘。制作中STK6153应另加足够的散热片,STK3048A不必另加散热片。由于该电路输出功率较大,应注意电源部分要有足够的容量。

十、电子二分频功放

图10是电子二分频功率放大器。众所周知,高保真音箱是由低音和高音扬声器单元组成的(三分频音箱还有中音单元),必须使用分频器,使它们各放其声。传统的分频方法是在功放以后采用LC分频器,由于这种分频器处理的是功放输出的大电流信号,因此体积大、制作成本高、制作和调试困难;分频器插接在功放与扬声器之间,必然带来插入损耗,并且使功放的阻尼特性变差。在功放前采用电子分频器,则完全避免了功放后LC分频器的缺点,具有体积小、成本低、分频点准确、分频曲线理想、制作和调试简便的优点。由于功放输出可以直通扬声器,意味着其效率和阻尼特性都有明显提高。图10电路中,每一声道均采用一块NE5532双运放组成两个巴特沃斯二阶有源滤波器,其中,Icl-1是低通滤波器(LPF),ICl-2是高通滤波器(HPF),分频点为3.7kHz,电压增益A=1.6倍(3.9dB),品质因数Q=0.7,电路输入阻抗10k),输出阻抗

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音频功率放大电路报告

一、设计题目:音频功率放大电路 二、设计的任务和要求 1、主要要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路, 负载为扬声器,阻抗8Ω。 2、性能指标:频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路和程序设计 3.1、方案的确定及论证 1、OTA互补对称功率放大器 OTL 电路通常由两个对称的异型管构成,因此又称为互补对称电路,图 3-1 为单电源 OTL 互补对称功率放大电路。电路中 T1 是推动级(电压放大,也叫激励级),其中Rb1、Rb2是 T1 的基极偏置电阻,Re为 T1发射极电阻,Rb为T1集电极负载电阻,它们共同构成 T1 的稳定静态工作点;T2、T3 组成互补对称功率放大电路的输出级,且 T2、T3工作在乙类状态;C2 为输出耦合电容。功率放大器采用射极输出器,提高了输入电阻和带负载的能力。 性能分析: 乙类互补推挽功放(OTL)的输出功率的计算公式如下: 输出功率:P o =U o I o =U o 2/R L 输出最大功率:P om =U o I o =U o 2/R L =U om 2/2R L =V CC 2/8R L

显然P 与电源电压及负载有关 om 2/8R 当输入功率为8w,阻抗8w时,有Pom=V CC V =8*8*8≈22.6v 则电路所需的电源为22.6v。 CC 2、用集成器件实现 Tda2030简介:TDA2030是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。 电路特点: [1].外接元件非常少。(基本应用电路图3-2) [2].输出功率大,Po=18W(RL=4Ω)。 [3].采用超小型封装(TO-220),可提高组装密度。 [4].开机冲击极小。 [5].内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 [6].TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 图3-2使用单电源供电的tda2030基本应用电路

音频功率放大电路内容(新)

第一章、绪论 功率放大器的作用是给音响放大器的负载(扬声器)提供一定的输出概率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能小,效率尽可能高。功放常见的电路形式有OTL(Output Transformer less)和OCL(Output Capacitor less)电路。有用集成运算放大器和晶体管组成的功放,也有专用集成电路功放。 LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻或电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,工作电压范围宽,4-12V or 5-18V,在6V电源电压下,它的静态功耗仅为24mW, 且外围元件少。 设计功放电路由输入级、中间级和输出级三部分组成的:输入级是由100uF的耦合电容及100 k的电位器组成的,它具有隔直、调节音量及增益的作用; 中间级是由集成运放LM386以及由R1、RV4、C2等组成的可调增益放大电路; 输出级是由低通滤波器及扬声器组成的,其中L1为高频扼流圈; 由于该电路为双声道功率放大器,所以下部分电路与上部分电路完全对称,故电路原理同上。

第二章、系统组成与工作原理 功率放大电路由前置放大器、功率放大器、以及电源部分组成。如图1所示。功率放大器的前臵放大器主要作用是电压放大,这部分包括音调控制,音量控制等电路。功率放大器也叫主放大器,它可以把几十毫伏的信号电压放大到要求的功率。电源部分的作用是把220V交流电变成低压直流电,供给各级放大电路使用。 Lm386原理与说明: LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

LM1875制作功放电路图

LM1875采用TO-220封装结构,形如一只中功率管,体积小巧,外围电路简单,且输出功率较大。该集成电路内部设有过载过热及感性负载反向电势安全工作保护。 LM1875主要参数: 电压范围:16~60V 静态电流:50MmA 输出功率:25W 谐波失真:<0.02%,当f=1kHz,RL=8Ω,P0=20W时 额定增益:26dB,当f=1kHz时 工作电压:±25V 转换速率:18V/μS 电路原理: LM1875功放板由一个高低音分别控制的衰减式音调控制电路和LM1875放大电路以及电源供电电路三大部分组成,音调部分采用的是高低音分别控制的衰减式音调电路,其中的R02,R03,C02,C01,W02组成低音控制电路;C03,C04,W03组成高音控制电路;R04为隔离电阻,W01为音量控制器,调节放大器的音量大小,C05为隔直电容,防止后级的LM1875直流电位对前级音调电路的影响。放大电路主要采用LM1875,由1875,R08,R09,C066等组成,电路的放大倍数由R08与R09的比值决定,C06用于稳定LM1875的第4脚直流零电位的漂移,但是对音质有一定的影响,C07,R10的作用是防止放大器产生低频自激。本放大器的负载阻抗为4→16Ω。 为了保证功放板的音质,电源变压器的输出功率不得低于80W,输出电压为2*25V,滤波电容采用2个2200UF/25V电解电容并联,正负电源共用4个2200UF/25V的电容,两个104的独石电容是高频滤波电容,有利于放大器的音质。 装配与调试: 工具准备:20W电烙铁一把,万用电表一个,尖嘴钳一把,螺丝刀一把,焊锡丝和松香水若干。 准备焊接:焊接时先焊接跳线,再焊接电阻,再焊电容,再焊整流管,再焊电位器,最后焊LM1875,焊接LM1875前须先把LM1875用螺丝固定在散热片上,否则在最后装散热片时螺丝很难打进去。LM1875与散热片接触的部分必须涂少量的散热脂,以利散热。焊接时必须注意焊接质量,对于初学者,可先在废旧的电路板上多练习几次,然后再正式焊接。 调试:本功放板调试特别简单,电路板焊好电子元件后,要仔细检查电路板有无焊错的地方,特别要注意有极性的电子零件,如电解电容,桥式整流堆,一旦焊反即有烧毁元器件之险,请特别注意。接上变压器,放大器的输出端先不接扬声器,而是接万用电表,最好是数显的,万用表置于DC*2V档。功放板上电注意观察万用电表的读数,在正常情况下,读数应在30mV以内,否则应立即断电检查电路板。若电表的读数在正常的范围内,则表明该功放板功能基本正常,最后接上音箱,输入音乐信号,上电试机,旋转音量电位器,音量大小应该有变化,旋转高低音旋钮,音箱的音调有变化。 值得一试的实验:将C6短路,用万用表测LM1875输出端的直流电位,看是否是在30MV以内,然后接上音箱试两小时,用万用表测LM1875输出端

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

TDA2030音频功率放大电路

TDA2030音频功率放大电路 TDA2030 是德律风根生产的音频功放电路,采用V 型5 脚单列直插式塑料封装结构。如图1 所示,按引脚的形状引可分为H 型和V 型。该集成 电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功 率大、失真小等特点。并具有内部保护电路。意大利SGS 公司、美国RCA 公司、日本日立公司、NEC 公司等均有同类产品生产,虽然其内部电路略有差异,但引出脚位置及功能均相同,可以互换。电路特点:[1].外接元件非常少。 [2].输出功率大,Po=18W(RL=4Ω)。[3].采用超小型封装(TO-220),可提高组装密度。[4].开机冲击极小。[5].内含各种保护电路,因此工作安全可*。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 注意事项:TDA2030 具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V 的话,那么在5 脚与电源之间必须插入LC 滤波器,以保证5 脚上的脉冲串维持在规定的幅度内。热保护:限热保护有以下优点,能够容易承受输出的过载(甚至是长时间的),或者环境温度超过时均起保护作用。与普通电路相比较,散热片可以有更小的安全系数。万一结温超过时,也不会对器件 有所损害,如果发生这种情况,Po=(当然还有Ptot)和Io 就被减少。印刷电路板设计时必须较好的考虑地线与输出的去耦,因为这些线路有大的电流通过。装配时散热片与之间不需要绝缘,引线长度应尽可能短,焊接温度不得超过260℃,12 秒。虽然TDA2030 所需的元件很少,但所选的元件必须是品质有保障的元件。 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

各种进口功放电路图

ONKYO 安桥A-VR400功放后级电路图 ONKYO 安桥A-VR410功放后级电路图 此电路X 2 Q6∞ 2SA1015 K511 330 II C513 IOMP R501 2K2 Ilf ------------ ?H C654 IUIE R?0 H M T C501 IOUF R503 411 470 GIn) ------ R661 IOCe 丄 0501 29^878 _ ? Q507~X? γ+L 29J2259 J TC5O3 I I 丄330? U Q509 k T 297184! ?Γ I \ 2931815 C513 X515 270 OUT

此电路× 5 RS19 R621 82 C5001 刚1 4TuF C 70 +44. 2 V 2.2 R6 C519 104 R63, 龙 9 Q525 2SAt^l Q521 C1845 Q523 2335198 0517 C34I? LAJJ L501 S 5 丄C53 丁 223 R541 2.2 K569 22 -CZ}-? R567 22 R623 82 过浹保护 ± l ^C51FL VT 0607 AM9 1501 Q5O3 ± R513 T ? 「r J .C 1845 X 2 刁 [C=I 丄 C5O3 〕 跑5 I IOi RS07 JR509 T IK 上 C5O5 丄<∏ 47 [220UF RSli RSoI C50I 470 4?UF L IN *→=>i ∣ R501 270 Q5O5 Cl$45 0529 C1740 IoOK X673 C52J 2K IOl R539 2.2 R652 33K ?来自萨道 ^f ?r' RM7 ×2 中点检测 L Our R¢63 D511 R62? 82 R631 I8K Q515 C2229 R625 68 t ,C526 L -IlftIF R592 Lc? -44.2 V ONKYO 安桥TX-DS575功放后级电路图 SSXe 270 Q5003 2X1Π5 Tr ≡ 47 45002 2SC!775 516 U S5311 C501 1 :CC 2 2X174O×2 C5012 ICtf KOS 10 470 Q5013 ΠD2061 K∞4 22K C5018 41tf R5013 刚6 KU1024 2X5203 IBeeM R5016 2TK —?>- 站019 ι∞ I 此电路X5绍 Q5001 2SC1775 R501 5 Wo5 M ITAI Tt C5003 IOI ?5OI2 IOK R5020 !8K RMo7 47 ≡DB ∏ QSOO8 ITC32D^/ DMM R (7 K¢30 ∞19 C5023, ICtf ? I B5026 470 ÷71V Q601? 2sc2ωi ≡35 331 ≡≡ 胃f 中龍护 ■ T zzh TT T onT KMO 8.2 T czh TV UJJ L5001 86038 10×2 C5OI4 473 -TlV ONKYO 安桥TX-DS777功放后级 电路

音频功率放大器

河南城建学院 《电子线路设计》课程设计说明书 设计题目:音频功率放大器 专业:计算机科学与技术 指导教师:杜小杰 班级:0814141 学号:081414109 姓名:罗含霜 同组人:娄莉娟 计算机科学与工程学院 2016 年6月6日

前言 在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。 THD+N性能指标 THD+N表示失真+噪声,因此THD+N自然越小越好。但这个指标是在一定条件下测试的。同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。 这里指的条件是,一定的工作电压VCC(或VDD)、一定的负载电阻RL、一定的输入频率FIN(一般常用1KHZ)、一定的输出功率Po下进行测试。若改变了其中的条件,其THD+N值是不同的。例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32Ω、Po=25mW条件下测试,其TDH+N=0.003%,若将RL改成16欧,使Po 增加到50mW,VDD及FIN不变,所测的TDH+N=0.005%。 一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般与为10-4;输出功率在1~2W,其THD+N 更大些,一般为0.1~0.5%.THD+N这一指标大小音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。 这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。若FIN改成20Hz-20kHz,,其他条件不变,其THD+N变为小于0.5%。 过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。这话的意思指的是输出的峰峰值没有“削顶”现象出现,即Vout(P-P)=Vcc-(上压差+下压差)这种说法是不科学的。即使不产生削顶,它也有一定的失真。较科学的说法是THD+N在某一指标下可输出的功率是多少。

音频功率放大器的设计与实现汇总

模拟电子电路实验课程设计 ——音频功率放大器的设计与实现 一、设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8 。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 二、设计要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出; (5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 根据以上设计要求编写设计报告,写出设计的全过程,附上有关资料和图纸。设计报告格式请参见附录一。 三、实验原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于

对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1.前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要求是要有足够宽的频带,以保证音频信号进行不失真的放大。 常用的前置放大器按结构划分有五种类型: (1)单管前置放大器 (2)双管阻容耦合前置放大器

音频放大电路的组成及原理

第二章高保真电路的组成及基本原理 2.1电路整体方案的确定 音频功率放大器的基本功能是把前级送来的声频信号不失真地加以放大,输出足够的功率去驱动负载(扬声器)发出优美的声音。放大器一般包括前置放大和功率放大两部分,前者以放大信号振幅为目的,因而又称电压放大器;后者的任务是放大信号功率,使其足以推动扬声器系统。 功率放大电路是一种能量转换电路,要求在失真许可的范围内,高效地为负载提供尽可能大的功率,功放管的工作电流、电压的变化范围很大,那么三极管常常是工作在大信号状态下或接近极限运用状态,有甲类、乙类、甲乙类等各种工作方式。为了提高效率,将放大电路做成推挽式电路,功放管的工作状态设置为甲乙类,以减小交越失真。常见的音频功放电路在连接形式上主要有双电源互补推挽功率放大器OCL(无输出电容)、单电源互补推挽功率放大器OTL(无输出变压器)、平衡(桥式)无变压器功率放大器BTL等。由于功放管承受大电流、高电压,因此功放管的保护问题和散热问题也必须要重视。 OCL电路由于性能比较好,所以广泛地应用在高保真扩音设备中。本课题输出级选用OCL功率放大器,偏置电路选用甲乙类功放电路。为了使电路简单,信号失真小,本电路选用反馈型音调控制电路。为了不影响音调控制电路,要求前置输入阻抗比较高,输出阻抗低,本级电路选用场效应管共源放大器和源级跟随器组成。 高保真音频放大器组成框图 2.2 OCL功率放大器的原理 OCL功率放大器电路通常可分成:功率输出级、推动级和输入级三部分。根据给定技术指标,选择下图所示电路 功率输出级是由四个三极管组成的复合管准互补对称电路,可以得到较大的输出功率。再用一些电阻来减小复合管的穿透电流,增加电路的稳定性。前置电路用NPN型三极管组成恒压电路,保证功率输出管有合适的初始电流,以克服交越失真。 推动级采用普通共射放大电路。 输入级部分由三极管组成差动放大电路,减小电路直流漂移。 2.3音调控制电路的原理 常用的音调控制电路有三种:一种是衰减式RC音调控制电路,其调节范围

简易音频功率放大器

闽南师范大学《模拟电子技术》课程设计 设计题目:简易音频功率放大器 姓名:庄伟彬 学号:1205000425 系别:物理与信息工程学院 专业电气工程及其自动化 年级:12级 指导教师:周锦荣老师 2014年 5月 1 日

目录 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10 四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12 3.实验结果分析及与理论对比┄┄┄┄┄ 15 五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15 1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16

摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。 关键词:LM358;LM386;音频放大 一系统设计 1 设计任务 利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。 2 设计要求 设计一个简易的音频功率放大器,要求如下: (1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调; (2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成; (3)要求输入音频信号在10mV/1kHz时,输出功率1 (负载:8Ω),输出音频信号无 Po W 明显失真,输出功率大小可调; (4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供; (5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试; (6)完成课程设计报告撰写。

音频功率放大电路设计(附仿真)

南昌大学实验报告 学生姓名: 学号: 专业班级: 实验类型:□验证□综合□设计□创新 实验日期: 实验成绩: 音频功率放大电路设计 一、设计任务 设计一小功率音频放大电路并进行仿真。 二、设计要求 已知条件:电源9±V 或12±V ;输入音频电压峰值为5mV ;8Ω/0.5W 扬声器;集成运算放大器(TL084);三极管(9012、9013);二极管(IN4148);电阻、电容若干 基本性能指标:P o ≥200mW (输出信号基本不失真);负载阻抗R L =8Ω;截 止频率f L =300Hz ,f H =3400Hz 扩展性能指标:P o ≥1W (功率管自选) 三、设计方案 音频功率放大电路基本组成框图如下: 音频功放组成框图 由于话筒的输出信号一般只有5mV 左右,通过话音放大器不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗;滤波器用来滤除语音频带以外的干扰信号;功率放大器在输出信号失真尽可能小的前提下,给负载R L (扬声器)提 供一定的输出功率。 应根据设计要求,合理分配各级电路的增益,功率计算应采用有效值。基于 运放TL084构建话音放大器与宽带滤波器,频率要求详见基本性能指标。功率放大器可采用使用最广泛的 OTL (Output Transformerless )功率放大电路和OCL (Output Capacitorless )功率放大电路,两者均采用甲乙类互补对称电路,这种功放电路在具有较高效率的同时,又兼顾交越失真小,输出波形好,在实际电路中得到了广泛的应用。

对于负载来说,OTL电路和OCL电路都是射极跟随器,且为双向跟随,它们利用射极跟随器的优点——低输出阻抗,提高了功放电路的带负载能力,这也正是输出级所必需的。由于射极跟随器的电压增益接近且小于1,所以,在OTL电路和OCL电路的输入端必须设有推动级,且为甲类工作状态,要求其能够送出完整的输出电压;又因为射极跟随器的电流增益很大,所以,它的功率增益也很大,这就同时要求推动级能够送出一定的电流。推动级可以采用晶体管共射电路,也可以采用集成运算放大电路,请自行查阅相关资料。 在Multisim软件仿真时,用峰值电压为5mV的正弦波信号代替话筒输出的语音信号;用性能相当的三极管替代9012和9013;用8 电阻替代扬声器。由于三极管(9012、9013)最大功率为500mW,要特别注意工作中三极管的功耗,过大会烧毁三极管,最好不超过400mW。如制作实物,因扬声器呈感性,易引起高频自激,在扬声器旁并入一容性网络(几十欧姆电阻串联100nF电容)可使等效负载呈阻性,改善负载为扬声器时的高频特性。 四、电路仿真与分析 黄色为输入信号,蓝色为输出信号。输出信号峰峰值放大,且波形基本不失真。 输出阻抗用8Ω电阻替代,输出功率为236mW>200mW

简易音频功放电路原理图分析

简易音频功放电路原理图分析 简易音频功放电路原理图电路原理:两路声音信号(R和L)加到芯片TDA2822M的输入端6和7脚,经过放大后经C2和C3加到两个扬声器上,5和8脚是内部放大器的反向输入端,接上两个电容后使电路只对交流信号进行放大。R1和R2是为了在输入端没信号时将6和7脚电压拉低,减小无信号时的噪声。C2和C3滤去直流分量并且匹配阻抗。 元件选择:两个扬声器选用8欧、0.5w到1w的扬声器,其他元件无特殊要求。 电路调试:该电路使用TDA2822M功放集成电路,TDA 的好处就是外围元件少,使得电路大大简化,该电路连接无误后,加上电后几乎不用调试就可以使用。 TDA2822的简要参数: 电源电压:1.8V到15V 静态电流:9mA 输出功率:最大1W

电子制作是非常注重实践的,有些初学者总是问我该 看哪些书的时候,我总是感觉很诧异。从来没有谁是看书把电子制作看会的,看书只是对电子制作的一个辅助。 电子制作要以实践为主,只有不断的实践也就是做东西才能提高能力并且巩固所学的知识。 所以,我建议初学者最好从简单的制作开始,也许刚开始你做的东西没什么用。但第一次的成功是一个很好的开始,它会激励你不断走下去。在玩了电子制作一段时间后,你会可能你没怎么系统的学习过书本的知识,但你的能力会有很大的提高。 还有就是要脚踏实地,工程实践就是这样,好高骛远是没有用的。刚开始就想做很高级的东西,到头来你会发现你什么也不会,你的设想也就停留在设想的阶段。工程界没有天才,只有脚踏实地的实干家。

当然,我这也不是说不需要看书,借鉴别人的经验也是很重要的。在学习电子制作的过程中我比较倾向于实践和理论学习循环学习的方法,也就是先做东西,碰到了什么问题就去查找相应的资料,然后再回过头来实践,这样一来,你每做出来一个东西也就掌握了与之相关的各种理论知识。 当你掌握了一定的电子制作的技术以后,今后学单片机什么的会比别人快很多。

相关文档
最新文档