2017电子信息工程考研方向:物理电子学程
2017考研专业介绍:物理电子学介绍

2017考研专业介绍:物理电子学介绍物理电子学[077401]开设院校:门类/领域代码:07门类/领域名称:理学一级学科/领域代码:0774一级学科/领域名称:电子科学与技术二级学科代码:077401二级学科名称:物理电子学物理电子学专业介绍物理电子学是物理学和电子学相结合的交叉学科,主要研究粒子物理,等离子体物理,光物理等物理前沿对电子工程和信息科学的概念和方法产生的影响,及由此而形成新的电子学的新领域和新的生长点。
物理电子学同时也针对现代大型科学实验和新兴物理学科发展中提出的在强辐射照、低信噪比、高通道密度等极端条件下,处理小时间尺度信号技术和有关信号采集和信息处理的基础课题研究和应用基础研究。
物理电子学培养目标(1)掌握物理电子学与光电子学科坚实的基础理论和系统的专门知识,了解本学科有关研究领域国内外的学术现状和发展方向。
(2)掌握一门外国语,能熟练地进行专业阅读和初步写作,具备一定的听说及交流能力。
(3)培养严谨求实的科学态度和作风,具有探索创新的科学精神和良好的科研道德,具备独立从事科学工作的能力。
(4)能熟练运用计算机和信息化技术,解决本学科领域的问题并有新的见解。
(5)可胜任本专业或相邻专业的教学、科研和工程技术工作以及相关的科技管理工作。
物理电子学就业前景1、从学科属性看就业前景物理电子学是电子科学与技术的下属二级学科。
电子科学与技术是信息科学与技术的基础。
信息科学是二十一世纪三大科学研究领域之一,其诞生和发展始终与科技前沿和先进生产力密切相关。
本专业培养具备光电子或微电子及物理电子领域内宽厚理论基础、实验能力和专业知识,能在该领域从事新技术、新产品、新材料、新工艺的研究、开发等方面的高级工程技术人才。
毫无疑问,在信息时代和知识经济时代,电子科学与技术专业的地位显著,前景广阔。
2、从现实角度看就业前景物理电子学专业自诞生之日起,就一直是各高校的热门专业,电子科学与技术是现代信息技术的重要支柱学科,是设计各种元器件、集成电路和集成电子系统的技术学科,也是我国正在大力发展并急需人才的重要专业技术领域。
电子信息工程考研方向

电子信息工程考研方向电子信息工程考研方向简介电子信息工程是一门涉及电子技术与信息技术的综合性学科,在当今信息化社会中具有重要的应用价值和发展前景。
电子信息工程考研方向是指在电子信息工程领域进行深入研究的学术方向,培养具备电子信息工程专业知识和研究能力的高级人才。
电子信息工程考研方向的学科特点电子信息工程考研方向在培养学生的专业基础上,注重培养学生的创新能力和研究能力。
学科研究重点涉及电子技术、通信技术、网络技术、嵌入式系统、数字信号处理、图像处理等领域,以解决现实中的实际问题为目标。
电子信息工程考研方向的研究内容电子信息工程考研方向的研究内容包括但不限于以下几个方面:1. 电子技术:研究电子器件、电子元器件、电路设计、电子系统设计等方面的技术和方法,以提高电子设备的性能和可靠性。
2. 通信技术:研究传输信号的技术和方法,包括数字通信、光纤通信、卫星通信等,以实现高速传输和远距离通信。
3. 网络技术:研究计算机网络的设计、构建和管理技术,包括局域网、广域网、互联网等,以实现信息的快速传输和共享。
4. 嵌入式系统:研究在各种设备中应用的嵌入式系统的设计、开发和应用技术,包括嵌入式软件、硬件设计、系统架构等。
5. 数字信号处理:研究数字信号的获取、处理和传输技术,包括音频、视频、图像的处理和压缩技术,以实现信息的高效处理和存储。
6. 图像处理:研究图像的获取、处理和分析技术,包括图像压缩、图像识别、图像增强等,用于图像的快速处理和应用。
电子信息工程考研方向的就业前景电子信息工程考研方向的学生毕业后可以在通信、电子、计算机、互联网等相关领域从事科研、开发、设计、管理等工作。
就业前景广阔,毕业生具备较强的科研和创新能力,能够适应快速发展的电子信息工程领域的需求。
结语电子信息工程考研方向是电子信息工程专业的延伸和深化,旨在培养高级人才解决电子信息工程领域的重大科学和技术问题。
考生在选择该方向时应根据个人兴趣和发展需求,理性选择,并根据对该方向的了解进行充分准备,努力提高自己的综合素质,为未来的职业发展打下坚实的基础。
深圳大学2017年硕士物理电子学招生介绍

Hale Waihona Puke 深圳大学 2017 年硕士物理电子学招生介绍
物理电子学招生专业介绍 专业代码:080901 专业名称:物理电子学(光电子方向) 学制:三年所授学位:工学硕士 培养目标 本专业培养具备光电子、物理电子领域具有扎实理论基础、较强动手能力、牢固专业知识,从事光电 子材料、光电器件、集成光子器件和光电子应用系统以及相关的电子、电子集成系统的设计、制造和相应 的新产品、新技术、新工艺的研究、开发等方面工作的高级工程技术人才。 1、光电子材料与器件: a)半导体照明技术——新型可见光 LED 器件与封装、LED 应用中的光学与热学设计、光源检测方法; b)太阳能电池技术——可见光与紫外光太阳能电池材料与器件、太阳能电池应用; c)集成光子系统——光通信用光电子器件、光电集成器件与系统、光子集成系统封装。 2、超快诊断及显示: a)超快诊断器件技术——特种真空超快光电成像器件研究; b)超快诊断电路技术——高稳定性超快高压低压大电流脉冲产生技术、超快电脉冲的整形技术、精密 同步技术; c)超快诊断集成电路——固态集成超快成像器件研究。 d)纳米光电子技术——石墨烯、二硫化钼等二维材料的生长及其电子结构的研究。 e)先进平板显示——PDP 平板显示、非晶氧化物 TFT 材料与器件、透明导电薄膜; 导师队伍: 正高职称 6 人,副高职称 2 人。团队研究处于国内先进水平。学术带头人与主要学术骨干简介如下: 柴广跃:教授,物理电子学硕士点负责人、中国电工技术学会半导体光源系统专委会副主委,主持过 30 余项国家、省部级半导体光电子领域科研项目,荣获国家发明二等奖等奖项多次、授权专利近 20 项。 目前从事 LED 芯片、封装及照明应用系统、光通信用集成光子系统技术研究。 刘进元:教授,博士生导师,2001 年获国务院颁发的政府特殊津贴。目前从事高时间、空间分辨诊断 技术与器件及超快电子学技术研究。近年来,作为项目负责人主持并完成了 1 项国家 863 项目研究,1 项 国家既然基金项目和多向横向委托课题的研究,发表研究论文 50 余篇。 课程设置: 半导体器件物理、固态照明技术、激光原理及技术、平板显示技术、物理电子学等。 教学资源 本学科依托“光电子器件与系统”省、部重点实验室,国家高技术 863-804 光电诊断技术重点实验室 等科研平台,建有 MOCVD 外延、半导体光电器件、封装、光电检测、聚合物材料、显示等 8 个专业实验室, 以及“深圳大学—欧姆龙传感与控制联合实验室”和“深圳大学—大恒光电联合实验室”2 个校企联合实 验室,建有“深圳市 LED 热管理与故障分析评估中心”等公共研发与服务平台 2 个,正在筹备建立“深圳 大学—Mentor Graphics 半导体照明热管理设计联合实验室”、“深圳大学—Radiant-Zemax 半导体照明光 学设计联合实验室”。 奖助体系 光电工程学院于 2005 年开始设置牛憨笨奖学金,专门奖励从事光电子学和光子学研究的深圳大学优秀 硕士和博士研究生。奖金额度为每年一万五千元,分别奖给优秀硕士研究生 6000 元(3 名),优秀博士研 究生 9000 元(3 名)。此外,还设有其它政府、企业设立的奖学金多项。 培养特色 培养特色:
电子信息工程专业有几个考研方向

电子信息工程专业有几个考研方向很多电子信息工程专业的小伙伴都想通过考研来提高自己的能力,而选择考研方向也是大家所关心的问题,下面是由编辑为大家整理的“电子信息工程专业有几个考研方向”,仅供参考,欢迎大家阅读本文。
电子信息工程专业考研方向电子信息工程专业考研方向1:电子与通信工程专业介绍电子通信工程英文名为Electronics and Communication Engineering,是电子科学与技术和信息技术相结合,构建现代信息社会的工程领域,利用电子科学与技术和信息技术的基本理论解决电子元器件、集成电路、电子控制、仪器仪表、计算机设计与制造及与电子和通信工程相关领域的技术问题,研究电子信息的检测、传输、交换、处理和显示的理论和技术。
电子与通信工程硕士学位授权单位培养从事信号与信息处理、通讯与信息系统、电路与系统、电磁场与微波技术、电子元器件、集成电路等工程技术的高级工程技术人才。
培养目标培养从事通信与信息系统、信号与信息处理、电路与系统、电磁场与微波技术、物理电子与光电子学、微电子学与固体电子学等学科,从事光纤通信、计算机与数据通信、卫星通信、移动通信、多媒体通信、信号与信息处理、通信网设计与管理,集成电路设计与制造、电子元器件、电磁场与微波技术等领域从事管理、研究、设计运营、维修和开发的高级工程技术和管理人才。
电子与通信工程领域工程硕士要求掌握本领域扎实的基础理论和宽广的专业知识以及管理知识,较为熟练地掌握一门外国语,掌握解决工程问题的先进技术方法和现代技术手段,具有创新意识和独立承担工程技术或工程管理等方面的能力。
就业方向学生毕业后可在通信企事业单位从事通信网络的设计和维护工作,并能从事通信系统的建设、监理及通信设备的生产、营销等方面工作。
电子信息工程专业考研方向2:信号与信息处理专业介绍信号与信息处理(学科代码:081002)是一级学科信息与通信工程下设的二级学科。
本学科是以研究信号与信息的处理为主体,包含信息获取、变换、存储、传输、交换、应用等环节中的信号与信息的处理,是信息科学的重要组成部分,其主要理论和方法已广泛应用于信息科学的各个领域。
物理电子学(080901)、微电子学与固体电子学专业(

物理电子学(080901)、微电子学与固体电子学专业(080903)研究生培养方案一、培养目标培养我国社会主义建设事业需要,掌握马克思主义,毛泽东思想和邓小平理论基本原理,坚持四项基本原则,热爱祖国,遵纪守法,品德良好,具备严谨科学态度和优良学风,适应面向二十一世纪的德、智、体全面发展的微电子学与固体电子学专门人才。
1、硕士学位掌握微电子学与固体电子学的基本理论和基本实验技能, 了解本领域的研究动态, 基本上能独立开展与本学科有关的研究和教学工作。
学位论文应具有一定的创新性和应用前景。
2、博士学位博士学位获得者应系统掌握微电子学与固体电子学的基本理论,具有宽广和坚实的专业知识和实验操作技术,了解本学科的发展历史,现状和最新动态,能独立承担与本学科有关的研究课题及教学工作。
学位论文要求具有重要的学术意义,并具有一定的创新性。
论文在深度和广度两方面均需达到相应的要求。
二、招生对象l、硕士研究生:有资格参加全国硕士研究生统一考试合格,再经面试合格者。
2、硕-博士连读:大学本科毕业生,参加全国硕士研究生统一考试,笔试和面试均合格者,入学后前二年完成基础课及学位课程,享受硕士生待遇,在第三学期末进行中期考核,中期考核优秀者经物理系推荐校研究生院批准直接转为博士生并享受博士生待遇,中期考核合格者按硕士生规格培养。
3、研究生:已获硕士学位的在职人员,应届硕士毕业生,经博士生入学考试,笔试和面试均合格者。
三、学习年限普通硕士研究生:三年提前攻博研究生:五年博士研究生:基本学制三年四、研究方向及课程设置方案(一)研究方向:(1)微电子、光电子材料与器件(2)纳米半导体结构与材料(3)纳米电子学与纳米光电子学(4)半导体异质结构物理学(5)宽禁带半导体微电子材料与微波功率器件(6)宽禁带半导体量子点材料与器件(7)硅基半导体发光材料和光电子集成(8)半导体功能薄膜材料的制备与物性(9)微纳电子、光电子材料物理与器件应用(10)半导体低维量子结构物理与器件。
北京航空航天大学2017年物理电子学专业介绍_北航考研网

北京航空航天大学2017年物理电子学专业介绍物理电子学是近代物理学、电子学、光学、光电子学、量子电子学、超导电子学、微波电子学、微波光子学、等离子体电子学及相关技术相结合的交叉学科,是一门用电子学、光电子学方法来研究物理信息的辐射、传输、散射、获取、处理以及显示的科学与技术的学科,主要在电子工程和信息科学技术领域内进行基础和应用研究,研究范围涉及材料、器件以及系统等诸多方面。
本学科为二级学科,其一级学科为电子科学与技术。
近年来信息科学技术的发展和现代物理学、现代材料科学的发展,促进了物理电子学学科的繁荣发展,知识的深度和广度在迅速拓展,使得像物理学、现代光学、信息科学与技术以及生物学、材料科学与技术等传统学科之间的壁垒逐渐消除,不断产生新兴的交叉学科,形成了若干新的科学技术增长点,如光波与光量子技术、微波光子学、信息显示技术与器件、高速光纤通讯与光网络等,成为未来信息科学与技术的重要基石之一。
物理电子学的从业人员逐年增多。
目前,物理电子学学科着重发展先进的电子学、光电子学技术,结合现代光学方法和计算机技术从事现代先进的科学实验、大型科学工程、国防科学与技术、新兴物理学科和材料学科发展中提出的有关信息获取、信息传输、信息处理、信息显示乃至信息应用的基础课题、应用基础课题研究以及工程技术研究。
本学科在20世纪70年代就开始了在光通讯和光电信息处理和光电检测方向的研究工作,所从事的研究主要为结合航空航天及国防需求的国家、军口及各类基金项目,曾获国家、省部级及其它科技进步奖多项,有的很有特色(如声光扩频通讯和航空光纤总线技术),于2003年建设成为博士点和博士后流动站,现已经培养出博士、硕士及博士后数十人。
目前从业教师10人,其中教授5人,副教授3人,讲师2人,8人具有博士学位。
支撑的科研条件除了学院公用的国防科工委航空电子重点实验室外,还有各教研室的红外光电技术实验室、光电信息传输与处理实验室、声光信号处理实验室等。
物理电子学主要学什么

物理电子学主要学什么
物理电子学主要学近代物理学、超导电子学、传统电子学、光电子学、量子电子学。
物理电子学主要研究信息科学技术和光电工程领域,是物理学与电子学相结合的一门学科。
物理电子学的研究方向一、微纳光电子学研究纳米光子学、量子光学、光学超材料、光子晶体等相关领域的理论、实验及其应用。
二、人工光声微结构物理探索和研究光学和声学微结构的新物理、应用和技术,发明光声学的新材料和有关器件,开展声光学、固体力学、流体学等物理研究。
三、信息光电子学主要通过研究量子通信、高速电子通信、光纤通信技术、激光技术、光信息处理等技术来处理光信息和声光信号。
四、信号检测与处理使用信息论、物理学、电子学和计算机
的方法,分析各种信号产生的规律和原因,研究信号的相关性和特点、怎样从特殊的环境中提取有效的信号,探索相关信号检测的方法、理论和技术,并将其应用到各种科技领域中。
五、半导体发光器件及通信技术主要研究LED、LD有源器件以及其在光通信当中的应用,发明半导体发光器件及探究制造半导体发光器件的方法,近几年来,半导体发光器件及通信技术被广泛应用。
六、激光器件与技术研究大功率光纤激光放大、相关光通信、单频光纤激光技术与器件、飞秒光纤激光技术等相关领域。
七、电子材料的物性研究半导体、超导体材料的结构特征、制备和生产技术及其量子效应,设计和研究电子材料及其在电子工程领域中的应用。
电子信息工程专业考研方向

电子信息工程专业考研方向引言电子信息工程专业是一门涉及电子技术和信息科学的学科,主要研究电子器件、电路、通信原理、信号处理等方面的知识。
考研是许多电子信息工程专业毕业生继续深造的重要途径,通过考研能够提升自己的学术水平和专业素养,为未来的职业发展打下坚实的基础。
本文将介绍电子信息工程专业考研的方向和一些建议,希望对即将考研的同学们有所帮助。
电子信息工程专业考研方向通信工程通信工程是电子信息工程专业中最受欢迎的考研方向之一。
通信工程主要研究信号传输、通信网络、无线通信等方面的内容。
随着信息技术的不断发展,通信工程的需求也越来越大。
考研通信工程方向的学生将学习到通信原理、信号处理、通信网络技术等相关知识,并且可以选择深入研究某个特定的方向。
微电子与固体电子学微电子与固体电子学是电子信息工程专业中涉及到半导体器件与技术的重要方向。
考研微电子与固体电子学的学生将学习到半导体器件的理论与设计,包括晶体管、集成电路等内容。
此外,还会学习到半导体器件制造工艺、超大规模集成电路(VLSI)设计等知识,为电子芯片设计与制造领域做好准备。
信号与信息处理信号与信息处理是电子信息工程专业中涉及到信号处理与数字信号处理的方向。
该方向主要研究信号处理的理论与方法,以及信号的传输与处理技术。
考研信号与信息处理方向的学生将学习到数字信号处理、通信系统设计、图像处理等相关知识,并且可以通过研究各种算法和方法来解决实际问题。
考研建议提前准备考研需要提前准备,尤其是对于电子信息工程专业的考研方向,要对所选方向的专业知识有一定的了解。
可以通过查阅教材、参加相关学术讲座或研究小组来积累知识。
制定学习计划制定一个合理的学习计划能够帮助你合理安排时间,有效利用时间进行学习。
根据个人情况和考研方向的难易程度,合理划分每天的学习任务,并且保持持续学习的态度。
多做真题做好准备的关键是多做真题。
通过做真题可以熟悉考试的考点和考题类型,提高解题能力和应试水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为学生引路,为学员服务
第 1 页 共 1 页 2017电子信息工程考研方向:物理电子
学
物理电子学
简介
物理电子学是近代物理学,电子学,光学,光电子学,量子电子学及相关技术与学科的交叉与融合,主要在电子工程和信息科学技术领域进行基础和应用研究.激光的发明标志着电子学的工作频段延伸到了光学频段,产生了光电子学,导波光学与集成光学等新兴学科分支,并已成为电子信息科学发展新技术的基础.近年来本学科发展特别迅速,促进了电子科学与技术其它二级学科以及信息与通信系统,光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如光波与光子技术,信息显示技术与器件,高速光通信系统与网络等,成为二十一世纪信息科学与技术的重要基石之一.
专业研究课题
物理电子学研究粒子物理、等离子体物理、激光等物理前沿对电子工程和信息科学的概念和方法所产生的影响,及由此而形成的电子学的新领域和新生长点。
本学科重研究在强辐照、低信噪比、高通道密度等极端条件下,处理小时间尺度信号的技术,以及这些技术在广泛领域内的应用前景。
以下的研究方向所要解决的问题超越单一学科的研究领域,形成物理电子学的一个独特的部分:
量子通讯理论和实验研究:量子计算机是未来计算机的发展方向,在理论和实验上研究量子通讯技术是实现下一代计算机的基础,对量子计算机的研究有着非常重要的意义。
实时物理信息处理:物理前沿(例如粒子物理)实验的特点之一是信息量大,而有用的信息量同总信息量之比相差10到15个数量级,这已远远超出一般电子技术的极限。
如何根据物理的要求实时处理大量数据,从而得到有用的信息,是实验成功的关键。
这一方向的研究成果,对大系统的集成、实时操作系统应用都有重要的意义
强噪声背景下的随机信息提取技术:在微观尺度上,来自传感器的信号往往低于噪声,同时又具有随机性。
研究在强噪声背景下的随机信号和瞬态物理信息的提取是物理前沿学科提出的要求,也是雷达、声纳等领域的信号处理基础。
非线性电子学:采用电子学实验方法研究非线性现象,用电子学手段产生混沌现象,并研究如何实现混沌同步和混沌通信。
高速信号互连及其物理机制的研究:当数据传输率达到千兆位或更高时,信号在电缆、印刷板等载体上的传输涉及介质损耗、趋肤效应和电场分布等物理机制,只有引入物理学的研究方法,才能解决这些电子工程和信息技术中的问题。
辐照电子学:辐照造成半导体材料的损伤,导致其性能降低甚至失效。
研究辐照对器件性能和寿命的影响,选择耐辐照的材料和解决辐射场的测量,对应用于军事和空间的电子工程、核安全技术、和核医学都有重要的意义。