高二下数学暑假作业答案(Word版)
参考高二数学暑假作业答案

参考高二数学暑假作业答案自己整理的参考高二数学暑假作业答案相关文档,希望能对大家有所帮助,谢谢阅读![一]1?1变化率和导数1.1.1变化率1 . D2 . D3 . C4-3t-65 .x 26.3?317.(1)0?1(2)0?21(3)2?18.11m/s,10?1m/s 9.25 3t 10.128 a 64 a2 t 11 . f(x)-f(0)x=1x(x0),-1-x(x0)1?1?2导数的概念1 . D2 . C3 . C4-15 . x0,x;x06.67.a=18.a=2 9.-410.(1)2t-6(2)初速度为v0=-6,初位置为x0=1(3)运动开始3秒,在原点向左变化8m (4)x=1,v=611.水面上升速度为0?16m/min,表明 v= h75 15 h ( h) 23,那么 v t= h t 75 15 h ( h) 23,即limt0vt=limt0ht75 15h(h)23=limt0ht25,那就是v’(t)=25h’(t),那么h’(t)=1254=0?16(米/分钟)1?1?三阶导数的几何意义(一)1.C2切线的斜率。
B3。
B4。
f (x)在x0,y-f(x0)=f’(x0)(x-x0)5.36.1357.割线的斜率是3?31,正切的斜率为38.k=-1,x y 2=09.2x-y 4=010.k=14,切点坐标为12,1211.有两个交点,交点的坐标是(1,1),(-2,-8)1?1?3阶导数的几何意义(2)1.C2 a3 . B4 . y=x15。
16.37.y=4x-18.1039.1910.a=3,b=-11,c=9。
提示:首先找出a、b、c之间的关系,即c=3 2a。
B=-3a-2,然后求点(2,-1)处的斜率,得到k=a-2=1,即a=3 11.(1)y=-13x-229(2)125121?导数2的计算1?2?1几种常用函数的导数1.C2。
高二数学暑假作业答案

高二数学暑假作业答案高二数学暑假作业答案导读:高中的数学就不会像之前的那么简单了。
下面是应届毕业生店铺为大家搜集整理出来的有关于高二数学暑假作业答案,想了解更多相关资讯请继续关注考试网!第一部分选择题 ( 共50分 )一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 下列说法正确的是A. B. C. D.(2)直线的斜率是3,且过点A(1,-2),则直线的方程是A. B.C. D.(3)不等式的解集为A. B.C. D.(4)已知平面向量,,且,则的值为A.-3B.-1C.1D.3(5)若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是A. B. C. D.(6)已知函数的定义域为A. B.C . D.(7)已知函数则该函数的图象A.关于点对称B.关于直线对称C.关于点对称D.关于直线对称(8)设用二分法求方程在区间(1,2)上近似解的过程中,计算得到,则方程的根落在区间A.(1,1.25)B. (1.25,1.5)C.(1.5, 1.75)D. (1.75,2)(9)完成一项装修工程,木工和瓦工的比例为2∶3,请木工需付日工资每人50元,请瓦工需付日工资每人40元,现有日工资预算2 000元,设每天请木工x人、瓦工y人,则每天请木、瓦工人数的约束条件是A. B.C. D.(10)已知两个不相等的`实数a、b满足以下关系式:则连接、两点的直线与圆心在原点的单位圆的位置关系是A.相离B.相交C.相切D.不能确定第二部分非选择题 ( 共100分 )二、填空题:(本大题共4小题,每小题5分,共20分。
把答案填在题中相应的横线上。
)11. 的内角的对边分别为,若, ,则等于12. 设,则13.若为两条不同的直线,为两个不同的平面,则以下命题正确的是 (填写序号)①若,则 ;②若,则 ;③若,则 ;④若,则14. 若则的最小值是_______________.三、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分12分)已知 , , , .(Ⅰ) 求的值;(Ⅱ) 求的值.16. (本小题满分12分)已知几何体A-BCDE如图所示,其中四边形BCDE为矩形,且BC=2,CD= ,△ABC是边长为2的等边三角形,平面ABC⊥平面BCDE.(1)若F为AC的中点,求证:AE∥平面BDF;(2)求此几何体A-BCDE的体积.17.(本小题满分14分)已知圆经过两点,,且圆心在直线上,直线的方程为 .(1)求圆的方程;(2)证明:直线与恒相交;(3)求直线被圆截得的最短弦长.18. (本小题满分14分)记等差数列{ }的前n项和为,已知, .(Ⅰ)求数列{ }的通项公式;(Ⅱ)令,求数列{ }的前项和 .19.(本题满分14分)设函数的定义域是,对任意正实数恒有,且当时,,(1)求的值;(2)求证:在上是增函数;(3)运用图像法求方程的根的个数.下载全文。
高中二年级数学暑假作业答案参考

【导语】⾼⼆⼀年,强⼈将浮出⽔⾯,鸟⼈将沉⼊海底。
⾼⼆重点解决三个问题:⼀,吃透课本;⼆,找寻适合⾃⼰的学习⽅法;三,总结⾃⼰考试技巧,形成习惯。
为了帮助你的学习更上⼀层楼,⾼⼆频道为你准备了《⾼中⼆年级数学暑假作业答案参考》希望可以帮到你! 【⼀】 1?1变化率与导数 1.1.1变化率问题1.D2.D3.C4.-3Δt-65.Δx+26.3?31 7.(1)0?1(2)0?21(3)2?18.11m/s,10?1m/s9.25+3Δt10.128a+64a2t11.f(Δx)-f(0)Δx=1+Δx(Δx>0), -1-Δx(Δx<0) 1?1?2导数的概念1.D2.C3.C4.-15.x0,Δx;x06.67.a=18.a=2 9.-4 10.(1)2t-6(2)初速度为v0=-6,初始位置为x0=1(3)在开始运动后3s,在原点向左8m处改变(4)x=1,v=6 11.⽔⾯上升的速度为0?16m/min.提⽰:Δv=Δh75+15Δh+(Δh)23, 则ΔvΔt=ΔhΔt×75+15Δh+(Δh)23,即limΔt→0ΔvΔt=limΔt→0ΔhΔt×75+15Δh+(Δh)23=limΔt→0ΔhΔt×25, 即v′(t)=25h′(t),所以h′(t)=125×4=0?16(m/min) 1?1?3导数的⼏何意义(⼀)1.C2.B3.B4.f(x)在x0处切线的斜率,y-f(x0)=f′(x0)(x-x0)5.36.135°7.割线的斜率为3?31,切线的斜率为38.k=-1,x+y+2=0 9.2x-y+4=010.k=14,切点坐标为12,12 11.有两个交点,交点坐标为(1,1),(-2,-8) 1?1?3导数的⼏何意义(⼆)1.C2.A3.B4.y=x+15.±16.37.y=4x-18.1039.19 10.a=3,b=-11,c=9.提⽰:先求出a,b,c三者之间的关系,即c=3+2a, b=-3a-2,再求在点(2,-1)处的斜率,得k=a-2=1,即a=3 11.(1)y=-13x-229(2)12512 1?2导数的计算 1?2?1⼏个常⽤函数的导数1.C2.D3.C4.12,05.45°6.S=πr2 7.(1)y=x-14(2)y=-x-148.x0=-3366 9.y=12x+12,y=16x+32.提⽰:注意点P(3,2)不在曲线上10.证明略,⾯积为常数2 11.提⽰:由图可知,点P在x轴下⽅的图象上,所以y=-2x,则y′=-1x,令y′=-12,得x=4,故P(4,-4) 1?2?2基本初等函数的导数公式及导数的运算法则(⼀)1.A2.A3.C4.35.2lg2+2lge6.100! 7.(1)1cos2x(2)2(1-x)2(3)2excosx8.x0=0或x0=2±2 9.(1)π4,π2(2)y=x-11 10.k=2或k=-14.提⽰:设切点为P(x0,x30-3x20+2x0),则斜率为k=3x20-6x0+2,切线⽅程为y-(x30-3x20+2x0)=(3x20-6x0+2)(x-x0),因切线过原点,整理后常数项为零,即2x30-3x20=0,得x0=0或x0=32,代⼊k=3x20-6x0+2,得k=2,或k=-14 11.提⽰:设C1的切点为P(x1,x21+2x1),则切线⽅程为:y=(2x1+2)x-x21;设C2的切点为Q(x2-x22+a),则切线⽅程为:y=-2x2x+x22+a.⼜因为l是过点P,Q的公切线,所以x1+1=-x2, -x21=x22+a,消去x2得⽅程2x21+2x1+1+a=0,因为C1和C2有且仅有⼀条公切线,所以有Δ=0,解得a=-12,此时切线⽅程为y=x-14 2基本初等函数的导数公式及导数的运算法则(⼆)1.D2.A3.C4.50x(2+5x)9-(2+5x)10x25.336.97.a=1 8.y=2x-4,或y=2x+69.π6 10.y′=x2+6x+62x(x+2)(x+3).提⽰:y=lnx(x+2)x+3=12[lnx+ln(x+2)-ln(x+3)] 11.a=2,b=-5,c=2,d=-12 1?3导数在研究函数中的应⽤ 1?3?1函数的单调性与导数1.A2.B3.C4.33,+∞5.单调递减6.①②③ 7.函数在(1,+∞),(-∞,-1)上单调递增,在(-1,0),(0,1)上单调递减 8.在区间(6,+∞),(-∞,-2)上单调递增,在(-2,6)上单调递减9.a≤-3 10.a<0,递增区间为:--13a,-13a,递减区间为:-∞,--13a,-13a,+∞ 11.f′(x)=x2+2ax-3a2,当a<0时,f(x)的递减区间是(a,-3a);当a=0时,f(x)不存在递减区间;当a>0时,f(x)的递减区间是(-3a,a) 1?3?2函数的极值与导数1.B2.B3.A4.55.06.4e27.⽆极值 8.极⼤值为f-13=a+527,极⼩值为f(1)=a-1 9.(1)f(x)=13x3+12x2-2x(2)递增区间:(-∞,-2),(1,+∞),递减区间:(-2,1) 10.a=0,b=-3,c=2 11.依题意有1+a+b+c=-2, 3+2a+b=0,解得a=c, b=-2c-3,从⽽f′(x)=3x2+2cx-(2c+3)=(3x+2c+3)·(x-1).令f′(x)=0,得x=1或x=-2c+33 ①若-2c+33<1,即c>-3,f(x)的单调区间为-∞,-2c+33,[1,+∞);单调减区间为-2c+33,1 ②若-2c+33>1,即c 1?3?3函数的(⼩)值与导数1.B2.C3.A4.x>sinx5.06.[-4,-3]7.最⼩值为-2,值为1 8.a=-29.(1)a=2,b=-12,c=0(2)值是f(3)=18,最⼩值是f(2)=-82 10.值为ln2-14,最⼩值为0 11.(1)h(t)=-t3+t-1(2)m>1.提⽰:令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,则当t∈(0,2)时,函数g(t)<0恒成⽴,即函数g(t)的值⼩于0即可 1?4⽣活中的优化问题举例(⼀)1.B2.C3.D4.32m,16m5.40km/h6.1760元7.115元 8.当q=84时,利润9.2 10.(1)y=kx-12+2000(x-9)(14≤x≤18)(2)当商品价格降低到每件18元时,收益 11.供⽔站建在A,D之间距甲⼚20km处,可使铺设⽔管的费⽤最省 1?4⽣活中的优化问题举例(⼆)1.D2.B3.D4.边长为S的正⽅形5.36.10,196007.2ab 8.4cm 9.当弯成圆的⼀段长为x=100ππ+4cm时,⾯积之和最⼩. 提⽰:设弯成圆的⼀段长为x,另⼀段长为100-x,正⽅形与圆的⾯积之和为S,则S=πx2π2+100-x42(0 10.h=S43,b=2S42711.33a 【⼆】 1.已知集合,,则(C) A.B.C.D. 2.设是定义在上的奇函数,当时,,则(A) A.B.C.1D.3 3.已知向量满⾜,则(D) A.0B.1C.2D. 4.设是等⽐数列,则“”是“数列是递增数列”的(B)A.充分⽽不必要条件B.必要⽽不充分条件C.充分必要条件D.既不充分也不必要条件 5.设m,n是两条不同的直线,、、是三个不同的平⾯,给出下列命题,正确的是(B)A.若,,则B.若,,则C.若,,则D.若,,,则[来 6.函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到⼀个偶函数的图象,则φ的⼀个可能的值为(A) A.B.C.D. 7.已知的内⾓A,B,C所对的边分别为a,b,c,若的可能取值为(D) A.B.C.D. 8.设函数,则的值为(A) A.B.2014C.2013D.0 9.已知F是双曲线的左焦点,A为右顶点,上下虚轴端点B、C,若FB交CA于D,且,则此双曲线的离⼼率为(B) A.B.C.D. 【三】 ⼀、填空题(本⼤题共14⼩题,每⼩题5分,共70分) 1.命题:“若a2+b2=0(a,b∈R),则a=b=0”的逆否命题是____________. 解析“且”的否定为“或”,因此逆否命题为若a≠0或b≠0,则a2+b2≠0. 答案若a≠0或b≠0(a,b∈R),则a2+b2≠0 2.命题“ax2-2ax-3>0不成⽴”是真命题,则实数a的取值范围是____________. 解析ax2-2ax-3≤0恒成⽴, 当a=0时,-3≤0成⽴; 当a≠0时,a<0Δ=4a2+12a≤0, 解得-3≤a<0. 故-3≤a≤0. 答案[-3,0] 3.给出下列命题: (1)命题:“若b2-4ac<0,则⽅程ax2+bx+c=0(a≠0)⽆实根”的否命题; (2)命题“△ABC中,AB=BC=CA,那么△ABC为等边三⾓形”的逆命题; (3)命题“若a>b>0,则3a>3b>0”的逆否命题; (4)“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题. 其中真命题的个数为____________. 解析易知(1)(2)(3)正确;(4)mx2-2(m+1)x+(m-3)>0的解集为R⇒m>0Δ<0⇒m∈∅,故(4) 错误. 答案3 4.如果命题“⾮p或⾮q”是假命题,则在下列各结论中,正确的有____________(填序号). ①命题“p且q”是真命题②命题“p且q”是假命题③命题“p或q”是真命题④ 命题“p或q”是假命题 解析∵“⾮p或⾮q”是假命题,∴⾮p和⾮q都是假命题,∴p和q都是真命题,故 “p且q”和“p或q”都是真命题. 答案①③ 5.在△ABC中,“sin2A=sin2B”是“A=B”的__________条件. 解析由sin2A=sin2B,得:A=B或A+B=π2, ∴sin2A=sin2B⇒/A=B,⽽A=B,可得sin2A=sin2B. 答案必要不充分 6.设有四个命题: ①两条直线⽆公共点,是这两条直线为异⾯直线的充分⽽不必要条件; ②⼀条直线垂直于⼀个平⾯内⽆数条直线是这条直线垂直于这个平⾯的充要条件; ③空间⼀个⾓的两边分别垂直于另⼀个⾓的两边是这两个⾓相等或互补的充要条件; ④a,b是平⾯α外的两条直线,且a∥α,则a∥b是b∥α的必要⽽不充分条件; 其中真命题的个数是______. 解析两条直线⽆公共点,是这两条直线为异⾯直线的必要⽽不充分条件,①错;⼀条 直线垂直于⼀个平⾯内⽆数条直线不能得出这条直线垂直于这个平⾯,②错;空间两个 ⾓相等或互补,它们的边可以什么关系也没有,③错;a,b是平⾯α外的两条直线,且 a∥α,则a∥b是b∥α的充分⽽不必要条件,④错. 答案0 7.条件甲:1+sinθ=12,条件⼄:sinθ2+cosθ2=12,则甲是⼄的____________条件. 解析因为1+sinθ=sin2θ2+cos2θ2+2sinθ2cosθ2=|sinθ2+cosθ2|,所以甲 是⼄的必要不充分条件. 答案必要不充分 8.下列四种说法中,错误的个数是______. ①命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”; ②“命题p∨q为真”是“命题p∧q为真”的必要不充分条件; ③“若am2 ④若实数x,y∈[0,1],则满⾜:x2+y2>1的概率为π4. 解析③与④错,③中m=0时不成⽴,④的概率应为1-π4. 答案2 9.已知命题p:关于x的⽅程x2-ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数.若p或q是真命题,p 且q是假命题,则实数a的取值范围是____________. 解析命题p等价于Δ=a2-16≥0,∴a≤-4或a≥4;命题q等价于-a4≤3,∴a≥- 12.p或q是真命题,p且q是假命题,则命题p和q⼀真⼀假.∴实数a的取值范围为(- 4,4)∪(-∞,-12). 答案(-4,4)∪(-∞,-12) 10.若命题p:不等式ax+b>0的解集为{x|x>-ba},命题q:关于x的不等式(x-a)(x-b)<0的解集为{x|a 解析命题p为假命题,命题q为假命题,故只有“⾮p”是真命题. 答案⾮p 11.设函数f(x)=x|x|+bx+c,给出下列四个命题: ①c=0时,f(x)是奇函数;②b=0,c>0时,⽅程f(x)=0只有⼀个实根;③f(x)的图象关 于(0,c)对称;④⽅程f(x)=0⾄多两个实根.其中正确的命题有______(填序号). 解析当c=0时,f(x)是奇函数,①正确;b=0,c>0时,g(x)=x|x|为单调函数,所以⽅ 程f(x)=0只有⼀个实根,②正确;f(x)+f(-x)=2c,所以f(x)的图象关于(0,c)对称,③ 正确;⽅程f(x)=0可能有⼀个、两个、三个、四个实根,④错误. 答案①②③ 12.已知命题p:函数f(x)=(12)x-log13x在区间(0,13)内存在零点,命题q:存在负数x使得(12)x>(13)x,给出下列四个命题①p或q,②p且q,③p的否定,④q的否定,真命题的个数是______. 解析y=log13x在x∈(0,13)为减函数,且log13x>1,y=(12)x在x∈(0,13)为减函数,且 (12)x<1,所以f(x)=(12)x-log13x在x∈(0,13)恒有f(x)<0,即f(x)在x∈(0,13)不存在零点, 命题p错误.当x<0时,(12)x 的否定”是对的. 答案2 13.设p:4x+3y-12>03-x≥0x+3y≤12,(x,y∈R),q:x2+y2>r2(x,y∈R,r>0),若⾮q是⾮p的充分不必要条件,那么p是q______条件,r的取值范围是______. 解析由⾮q是⾮p的充分不必要条件可知,p是q的充分不必要条件;由题意得p对 应的平⾯区域应包含于q对应的平⾯区域,即p表⽰的区域内的所有的点在圆x2+y2= r2(x,y∈R,r>0)外,结合图形可知r的取值范围是(0,125]. 答案充分不必要(0,125] 14.若⾮空集合A、B、C满⾜A∪B=C,且B不是A的⼦集,则下列说法中正确的是______(填序号). ①“x∈C”是“x∈A”的充分条件但不是必要条件 ②“x∈C”是“x∈A”的必要条件但不是充分条件 ③“x∈C”是“x∈A”的充要条件 ④“x∈C”既不是“x∈A”的充分条件也不是“x∈A”的必要条件 解析由题意知,A、B、C的关系⽤图来表⽰.若x∈C,不⼀定有x∈A,⽽x∈A,则 必有x∈C,因此“x∈C”是“x∈A”的必要条件但不是充分条件. 答案② ⼆、解答题(本⼤题共6⼩题,共90分) 15.(14分)已知p:x2-4ax+3a2<0(a<0),q:x2-x-6≤0或x2+2x-8>0.⾮p是⾮q的必要不充分条件,求实数a的取值范围. 解由p:x2-4ax+3a2<0(a<0)得:3a 由q:x2-x-6≤0或x2+2x-8>0得x≥-2或x 因为⾮p是⾮q的必要不充分条件,所以等价于q是p的必要不充分条件,即集合A是 集合B的真⼦集,故a≤-4a<0或3a≥-2a<0,所以a≤-4或-23≤a<0. 16.(14分)设函数f(x)=x2-1,已知对∀x∈[32,+∞),不等式f(xm)-4m2f(x)≤f(x-1)+4f(m)恒成⽴,求实数m的取值范围. 解依据题意得x2m2-1-4m2(x2-1)≤(x-1)2-1+4(m2-1)对∀x∈[32,+∞)恒成⽴, 即1m2-4m2≤-3x2-2x+1对∀x∈[32,+∞)恒成⽴. 因为当x=32时函数y=-3x2-2x+1取得最⼩值-53, 所以1m2-4m2≤-53,即(3m2+1)(4m2-3)≥0,解得m≤-32或m≥32. 17.(14分)已知命题p:⽅程a2x2+ax-2=0在[-1,1]上有解;命题q:只有⼀个实数x满⾜不等式x2+2ax+2a≤0;若命题“p或q”是真命题,⽽命题“p且q”是假命题,且綈q是真命题,求a的取值范围. 解对于命题p:由a2x2+ax-2=0在[-1,1]上有解, 当a=0时,不符合题意; 当a≠0时,⽅程可化为:(ax+2)(ax-1)=0, 解得:x=-2a或x=1a, 因为x∈[-1,1],∴-1≤-2a≤1或-1≤1a≤1, 解得:a≥1或a≤-1, 对于命题q:由只有⼀个实数x满⾜不等式x2+2ax+2a≤0, 得抛物线y=x2+2ax+2a与x轴只有⼀个交点, 所以Δ=4a2-8a=0,∴a=0或2, ⼜因命题“p或q”是真命题,⽽命题“p且q”是假命题,且綈p是真命题, 则命题p是真命题,命题q是假命题,所以a的取值范围为(-∞,-1]∪[1,2)∪(2, +∞). 18.(16分)设命题p:实数x满⾜x2-4ax+3a2<0,其中a>0,命题q:实数x满⾜x2-x-6≤0,x2+2x-8>0. (1)若a=1,且p∧q为真,求实数x的取值范围; (2)若p是q的必要不充分条件,求实数a的取值范围. 解(1)由x2-4ax+3a2<0得(x-3a)(x-a)<0, ⼜a>0,所以a 当a=1时,1 由x2-x-6≤0x2+2x-8>0,得2 若p∧q为真,则p真且q真,所以实数x的取值范围是{x|2 (2)设A={x|x2-4ax+3a2<0,a>0}, B={x|x2-x-6≤0x2+2x-8>0}, 则B?A,⼜A={x|a≤x≤3a},B={x|2 则0 所以实数a的取值范围是{a|1 19.(16分)已知m∈R,命题p:对∀x∈[0,8],不等式log13(x+1)≥m2-3m恒成⽴;命题q:对∀x∈(0,23π),不等式1+sin2x-cos2x≤2mcos(x-π4)恒成⽴. (1)若p为真命题,求m的取值范围; (2)若p且q为假,p或q为真,求m的取值范围. 解(1)令f(x)=log13(x+1),则f(x)在(-1,+∞)上为减函数, 因为x∈[0,8],所以当x=8时,f(x)min=f(8)=-2. 不等式log13(x+1)≥m2-3m恒成⽴,等价于-2≥m2-3m,解得1≤m≤2. (2)不等式1+sin2x-cos2x≤2mcos(x-π4), 即2sinx(sinx+cosx)≤2m(sinx+cosx), 所以m≥2sinx, 因为x∈(0,23π)⇒0 若p且q为假,p或q为真,则p与q有且只有⼀个为真. 若p为真,q为假,那么1≤m≤2,m<2,则1≤m<2; 若p为假,q为真,那么m<1或m>2,m≥2,则m>2. 综上所述,1≤m<2或m>2,即m的取值范围是[1,2)∪(2,+∞). 20.(16分)已知关于x的绝对值⽅程|x2+ax+b|=2,其中a,b∈R. (1)当a,b满⾜什么条件时,⽅程的解集M中恰有3个元素? (2)试求以⽅程解集M中的元素为边长的三⾓形,恰好为直⾓三⾓形的充要条件. 解(1)原⽅程等价于x2+ax+b=2,① 或x2+ax+b=-2,② 由于Δ1=a2-4b+8>a2-4b-8=Δ2, ∴Δ2=0时,原⽅程的解集M中恰有3个元素,即a2-4b=8; (2)必要性:由(1)知⽅程②的根x=-a2,⽅程①的根x1=-a2-2,x2=-a2+2, 如果它们恰为直⾓三⾓形的三边,即(-a2)2+(-a2-2)2=(-a2+2)2, 解得a=-16,b=62. 充分性:如果a=-16,b=62,可得解集M为{6,8,10},以6,8,10为边长的三⾓ 形恰为直⾓三⾓形. ∴a=-16,b=62为所求的充要条件.。
xx高二数学下学期文科暑假作业及答案

xx高二数学下学期文科暑假作业及答案1. 设全集 ( )A. B. C. D.2.复数 ( 为虚数单位)在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.假设P是的充分不必要条件,那么 p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4. 假设抛物线的焦点与双曲线的右焦点重合,那么的值为( )A. B. C. D.5. 一个三棱锥的三视图如下图,其中正视图和侧视图是全等的等腰三角形,那么此三棱锥外接球的外表积为( )A. B. C.4 D.6. 设,那么( )A.a>b>cB.a>c>bC.b>c>aD.c>a>b7.直线上存在点满足 ,那么实数的取值范围为( )A.(- , )B.[- , ]C.(- , )D.[- , ]8. 将函数的图象上所有点的纵坐标不变,横坐标变为原来的,再将所得图象向右平移得到函数g(x),那么函数g(x)的解析式为( )A. B. C. D.9.双曲线 (a>0,b>0的左、右焦点分别为F1、F2,以F1F2为直径的圆被直线截得的弦长为 a,那么双曲线的离心率为( )A.3B.2C.D.10.要设计一个隧道,在隧道内设双行线公路,其截面由一个长方形和抛物线构成(如下图)。
假设车道总宽度AB为6m,通行车辆(设为平顶)限高3.5m,且车辆顶部与隧道顶部在竖直方向上的高度之差至少要0.5m,那么隧道的拱宽CD至少应设计为(准确0.1m)( )A.8.9mB.8.5mC.8.2 m D .7.9m11. 向量满足,那么向量与夹角的余弦值为 .12. 假设某程序框图如下图,那么该程序运行后输出的值为.13.在样本频率分布直方图中,样本容量为,共有个小长方形,假设中间一个小长方形的面积等于其他个小长方形面积和的,那么中间一组的频数为 .14.假设“ ”是“ ”的充分但不必要条件,那么实数a的取值范围是 ?15. 设是的三边中垂线的交点, 分别为角对应的边, 那么的范围是16.集合 .对于中的任意两个元素,定义A与B之间的间隔为现有以下命题:①假设 ;②假设 ;③假设 =p(p是常数),那么d(A,B)不大于2p;④假设,那么有xx个不同的实数满足 .其中的真命题有 (写出所有真命题的序号)17.(本小题总分值10分)为了了解《中华人民共和国道路交通平安法》在学生中的普及情况,调查部门对某校5名学生进展问卷调查,5人得分情况如下:5,6,7,8,9。
2021年高二数学暑期作业(套卷)(4) Word版含答案

2021年高二数学暑期作业(套卷)(4) Word版含答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答.题卡相应位置上........1.设集合则▲.2.某学校共有师生2 400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是____▲____.3.计算复数=▲(为虚数单位).4. 连续抛掷一个骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)两次,则出现向上点数之和大于9的概率是▲.Array 5.若,则的最小值是___▲______.6.已知直线平面,直线平面,给出下列命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是▲.7.已知满足约束条件,则的最大值为▲.8.程序框图如图(右)所示,其输出结果是____▲____.9.已知条件p:,条件q:,若p是q的充分不必要条件,则实数的取值范围是____▲____.10.若正四棱锥的底面边长为,体积为,则它的侧面积为▲.11.已知抛物线的焦点恰好是双曲线的右焦点,则双曲线的渐近线方程为▲. 12.已知函数的图像的对称中心为,函数的图像的对称中心为,函数的图像的对称中心为,……,由此推测函数的图像的对称中心为▲.13.在△ABC中,角A,B,C的对边分别是a,b,c.已知a=2,3b sin C-5c sin B cos A=0,则△ABC面积的最大值是▲.14.已知是锐角的外接圆圆心,,,则▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指....定区域...内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)如图,斜三棱柱中,侧面是菱形,与交于点,E是AB的中点.(I)求证:平面;(II)若,求证:.16.(本小题满分14分)已知函数的最小正周期为.(I)求.(II)在图中给定的平面直角坐标系中,画出函数在区间上的图象,并根据图象写出其在上的单调递减区间.EOC1 A1B1CBA17. (本小题满分14分)光在某处的照度与光的强度成正比,与光源距离的平方成反比,假设比例系数都为1。
高中暑假作业:高二数学暑假作业答案解析.doc

高中暑假作业:高二数学暑假作业答案解析为大家整理的高中暑假作业:高二数学暑假作业答案解析文章,供大家学习参考!更多最新信息请点击高二考试网一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则( C )A. B. C. D.2. 设是定义在上的奇函数,当时,,则( A )A. B. C.1 D.33. 已知向量满足,则( D )A.0B.1C.2D.4.设是等比数列,则“ ”是“数列是递增数列”的( B )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. 设m,n是两条不同的直线,、、是三个不同的平面,给出下列命题,正确的是( B )A.若,,则B.若,,则C.若,,则D.若,,,则[来6. 函数y=sin(2x+φ)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则φ的一个可能的值为(A)A. B. C. D.7.已知的内角A,B,C所对的边分别为a,b,c,若的可能取值为( D )A. B. C. D.8.设函数,则的值为( A )A. B.2014 C.2013 D.09.已知F是双曲线的左焦点,A为右顶点,上下虚轴端点B、C,若FB交CA于D,且,则此双曲线的离心率为( B )A . B. C. D.10.球O为边长为2的正方体ABCD-A1B1C1D1的内切球,P为球O的球面上动点,M为B1C1中点,,则点P的轨迹周长为( D )A . B. C. D.二、填空题(本大题共6小题,每小题3分,共18分).当平面上动点到定点的距离满足时,则的取值范围是▲ .16.如图,在扇形OAB中,,C为弧AB上的一个动点.若,则的取值范围是▲ .三、解答题(本大题共5小题,共52分,解答应写出文字说明、证明过程或演算过程)17. (本题满分10分)在中,角所对的边为,且满足(Ⅰ)求角的值;(Ⅱ)若且,求的取值范围.18.(本题满分10分)已知数列的首项,.(Ⅰ)求证:数列为等比数列;(Ⅱ)若,求的正整数.19.(本题满分10分)如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,.(Ⅰ)求证平面;(Ⅱ)求平面与平面所成锐二面角的余弦值.四边形为直角梯形,四边形为矩形,,,又,平面,,又平面平面,为平面与平面所成锐二面角的平面角.,.即平面与平面所成锐二面角的余弦值为.(法二)(Ⅰ) 四边形为直角梯形,四边形为矩形,,,又平面平面,且,取,得.平面,平面一个法向量为,设平面与平面所成锐二面角的大小为,则.因此,平面与平面所成锐二面角的余弦值为.20.(本题满分10分)已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.(Ⅰ)求椭圆的方程;(Ⅱ)若点的坐标为,不过原点的直线与椭圆相交于不同两点,设线段的中点为,且三点共线.设点到直线的距离为,求的取值范围.解:(Ⅰ)由已知得,且,解得,又所以椭圆的方程为(Ⅱ) 当直线与轴垂直时,由椭圆的对称性可知:点在轴上,且原点不重合,显然三点不共线,不符合题设条件.所以可设直线的方程为,由消去并整理得:……①则,即,设,且,则点,因为三点共线,则,即,而,所以此时方程①为,且因为所以21. (本题满分12分)已知是不全为的实数,函数,,方程有实根,且的实数根都是的根,反之,的实数根都是的根.(Ⅰ)求的值;(Ⅱ)若,求的取值范围.解(Ⅰ)设是的根,那么,则是的根,则即,所以.(Ⅱ) ,所以,即的根为0和-1,①当时,则这时的根为一切实数,而,所以符合要求.当时,因为=0的根不可能为0和,所以必无实数根,②当时,= = ,即函数在,恒成立,又,所以,即所以;③当时,= = ,即函数在,恒成立,又,所以,,而,舍去综上,所以.。
高二下数学暑假作业答案

高二下数学暑假作业答案【一】1、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。
若B(3,2),则最小值是2、过抛物线y2=2px(p>0)的焦点F,做倾斜角为的直线与抛物线交于两点,若线段AB的长为8,则p=3、将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则n=_________4、在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是_______【二】1.(本题满分12分)有6名同学站成一排,求:(1)甲不站排头也不站排尾有多少种不同的排法:(2)甲不站排头,且乙不站排尾有多少种不同的排法:(3)甲、乙、丙不相邻有多少种不同的排法.2.(12分)甲、乙两人参加一次英语口语考试,已知在编号为1~10的10道试题中,甲能答对编号为1~6的6道题,乙能答对编号为3~10的8道题,规定每位考生都从备选题中抽出3道试题实行测试,至少答对2道才算合格,(1)求甲答对试题数的概率分布及数学期望;(2)求甲、乙两人至少有一人考试合格的概率.【三】1.直线与圆的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值依次为()A.2、4、4;B.-2、4、4;C.2、-4、4;D.2、-4、-43圆心在轴上,半径为1,且过点(1,2)的圆的方程为()4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()5.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()A.相切B.相交C.相离D.相切或相交。
高二数学下册暑假作业及答案

高二数学下册暑假作业及答案【导语】着眼于眼前,不要沉迷于玩乐,不要沉迷于学习进步没有别*的痛苦中,进步是一个由量变到质变的过程,只有足够的量变才会有质变,沉迷于痛苦不会改变什么。
无忧考网高二频道为你整理了《高二数学下册暑假作业及答案》,希望对你有所帮助!【一】1.(09年重庆高考)直线与圆的位置关系为()A.相切B.相交但直线不过圆心C.直线过圆心D.相离2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值依次为()A.2、4、4;B.-2、4、4;C.2、-4、4;D.2、-4、-43(2011年重庆高考)圆心在轴上,半径为1,且过点(1,2)的圆的方程为()A.B.C.D.4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()A.B.4C.D.25.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()A.相切B.相交C.相离D.相切或相交6、圆关于直线对称的圆的方程是().A.B.C.D.7、两圆x2+y2-4x+6y=0和x2+y2-6x=0的连心线方程为().A.x+y+3=0B.2x-y-5=0C.3x-y-9=0D.4x-3y+7=08.过点的直线中,被截得最长弦所在的直线方程为()A.B.C.D.9.(2011年四川高考)圆的圆心坐标是10.圆和的公共弦所在直线方程为____.11.(2011年天津高考)已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆的方程为.12(2010山东高考)已知圆过点,且圆心在轴的正半轴上,直线被该圆所截得的弦长为,则圆的标准方程为____________ 13.求过点P(6,-4)且被圆截得长为的弦所在的直线方程.14、已知圆C的方程为x2+y2=4.(1)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=23,求直线l的方程;(2)圆C上一动点M(x0,y0),ON→=(0,y0),若向量OQ→=OM→+ON→,求动点Q的轨迹方程"人"的结构就是相互支撑,"众"人的事业需要每个人的参与。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下数学暑假作业答案
(2021最新版)
作者:______
编写日期:2021年__月__日
【一】
1、已知点P是抛物线y2=4x上的动点,那么点P到点A(-1,1)的距离与点P到直线x=-1距离之和最小值是。
若B(3,2),则最小值是
2、过抛物线y2=2px(p>0)的焦点F,做倾斜角为的直线与抛物线交于两点,若线段AB的长为8,则p=
3、将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则n=_________
4、在抛物线y=x2+ax-5(a≠0)上取横坐标为x1=-4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是_______
【二】
1.(本题满分12分)有6名同学站成一排,求:
(1)甲不站排头也不站排尾有多少种不同的排法:
(2)甲不站排头,且乙不站排尾有多少种不同的排法:
(3)甲、乙、丙不相邻有多少种不同的排法.
2.(12分)甲、乙两人参加一次英语口语考试,已知在编号为1~10的10道试题中,甲能答对编号为1~6的6道题,乙能答对编号为3~10的8道题,规定每位考生都从备选题中抽出3道试题进行测试,至少答对2道才算合格,
(1)求甲答对试题数的概率分布及数学期望;
(2)求甲、乙两人至少有一人考试合格的概率.
【三】
1.直线与圆的位置关系为()
A.相切
B.相交但直线不过圆心
C.直线过圆心
D.相离
2.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值依次为()
A.2、4、4;
B.-2、4、4;
C.2、-4、4;
D.2、-4、-4
3圆心在轴上,半径为1,且过点(1,2)的圆的方程为()
4.直线3x-4y-4=0被圆(x-3)2+y2=9截得的弦长为()
5.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是()
A.相切
B.相交
C.相离
D.相切或相交。