一元一次方程应用举例大全

合集下载

一元一次方程解决问题

一元一次方程解决问题

一元一次方程解决问题
一元一次方程可以解决许多实际问题,以下是一些例子:
1.工程问题:已知工作效率和工作时间,求工作总量。

例如:一个工人完成一项工作需要6小时,他的工作效率为每小时完成10个项目,问他一共能完成多少项目?
2.行程问题:已知速度和时间,求路程。

例如:一个人骑自行车每小时行驶15公里,他骑行3小时,问他骑行的总路程是多少?
3.分配问题:已知总量和份数,求每份的量。

例如:有24个苹果,要分给3个孩子,每人分几个?
4.盈亏问题:已知投入和利润,求收益。

例如:一个商店购进一批商品,每个进价为10元,售价为15元,售出40个商品,问他能赚多少钱?
5.积分表问题:已知积分表中的数据,求某个特定的积分值。

6.电话计费问题:已知通话时间和通话费用,求每个月的电话费用。

7.数字问题:已知数字的倍数或比例,求这个数字本身。

用一元一次方程解决问题

用一元一次方程解决问题

用一元一次方程解决问题一元一次方程,也称为一次方程,是指只有一个未知数的一次方程,其一般形式为ax + b = 0,其中a和b为已知常数,x为未知数。

一元一次方程是数学中最简单的方程之一,解决问题时常常用到它。

本文将以实际问题为例,详细介绍如何运用一元一次方程解决问题。

1. 商场促销问题假设某商场进行了一次促销活动,某商品原价为x元,根据促销活动的规定,打折后的价格为原价的80%,并且还额外返还20元的现金。

我们要求找出该商品的原价。

解题步骤:设原价为x元,则打折后的价格为0.8x元,根据题意可知:0.8x + 20 = x通过移项和合并同类项,得到:0.8x - x = -20-0.2x = -20将方程两边同时除以-0.2,得到:x = 100因此,该商品的原价为100元。

2. 速度问题假设小明骑自行车从家出发去公司,全程10公里,骑行时速为x km/h。

如果小明增加速度2 km/h,那么他将提前20分钟到达公司。

我们要求求解小明的骑行时速。

解题步骤:设小明的骑行时速为x km/h,则他骑行的时间为10/x小时。

根据题意可知:10/(x+2) = 10/x - 20/60通过通分和移项,得到:10x = (x+2)(10 - 20/60)10x = (x+2)(9)通过分配律展开右侧,得到:10x = 9x + 18将方程两边同时减去9x,得到:x = 18因此,小明的骑行时速为18 km/h。

3. 年龄问题假设小明今年的年龄为x岁,他的父亲今年年龄是他两倍,母亲今年年龄是他的1.5倍。

如果小明再过10年,他的年龄将是父亲年龄的一半,我们要求求解小明的年龄。

解题步骤:设小明今年的年龄为x岁,则父亲今年的年龄为2x岁,母亲今年的年龄为1.5x岁。

根据题意可知:x + 10 = 1/2 * (2x + 10)通过移项和合并同类项,得到:x + 10 = x + 5将方程左侧的x和右侧的x同时消去,得到:10 = 5由于等式无解,说明题目中存在矛盾条件,该问题无解。

20道一元一次方程带解答过程

20道一元一次方程带解答过程

20道一元一次方程带解答过程一元一次方程是初中数学中的基础知识点,也是解决实际问题的常用方法。

下面我将为大家列举20道一元一次方程,并给出相应的解答过程。

1. 问题:某台机器每小时能生产200个产品,已知生产x小时,共生产了600个产品。

求x的值。

解答过程:设生产x小时后共产生y个产品,则由题意得到方程200x = 600,解方程得到x = 3。

2. 问题:某商品原价为100元,现在降价30%,求降价后的价格。

解答过程:设降价后价格为x元,由题意得到方程0.7 * 100 = x,解方程得到x = 70。

3. 问题:一辆汽车以每小时60公里的速度行驶,已知行驶x小时,共行驶了180公里。

求x的值。

解答过程:设行驶x小时后共行驶y公里,则由题意得到方程60x = 180,解方程得到x = 3。

4. 问题:小明和小红一起做作业,小红比小明多做了5道题,已知小明做了x道题,求小红做了几道题。

解答过程:设小红做了y道题,则由题意得到方程x + 5 = y,解方程得到y = x + 5。

5. 问题:某公司的年销售额为100万,已知今年比去年增长了20%,求去年的销售额。

解答过程:设去年的销售额为x万,则由题意得到方程x * 1.2 = 100,解方程得到x = 83.33。

6. 问题:一根绳子长15米,被剪成两段,第一段比第二段长7米,求第一段的长度。

解答过程:设第一段绳子的长度为x米,则由题意得到方程x = x + 7,解方程得到x = 7.5。

7. 问题:小明买了一件衣服,原价为200元,打了8折后购买,求小明购买这件衣服所花的钱。

解答过程:设小明购买这件衣服所花的钱为x元,则由题意得到方程0.8 * 200 = x,解方程得到x = 160。

8. 问题:甲乙两个人一起工作,已知甲一小时能生产2个产品,乙一小时能生产3个产品,他们一起工作x小时,共生产了15个产品。

求x的值。

解答过程:设他们一起工作x小时后共生产y个产品,则由题意得到方程2x + 3x = 15,解方程得到x = 3。

一元一次方程应用题8种类型例题

一元一次方程应用题8种类型例题

一元一次方程应用题8种类型例题
类型一:物品价格
1.某商店连续3天在降价促销,第一天一种水果的价格为x元,第二
天降价10%,第三天再降价20%,最终第三天的价格为16元,求第一天水
果的原价。

类型二:工作效率
2.甲工人单独工作需要5小时完成某项工作,乙工人单独工作需要7
小时完成同样的工作,如果两人一起工作,需要2.5小时完成,请问他们一起
工作的效率是单独工作的几倍?
类型三:平均分配
3.分别有甲、乙两个人一起捕鱼,如果甲一个人用4小时捕到12条鱼,乙一个人用3小时捕到9条鱼,现在如果两人分配捕到的鱼,每个人平均分
得多少条鱼?
类型四:钱币问题
4.小明有一些1元、2元、5元三种面值的硬币共30枚,共计80元,且5元硬币的数量是1元硬币数量的两倍,求1元硬币的数量。

类型五:行程问题
5.一辆自行车骑行4小时可以到达甲地,同样的路程乘汽车只需要1
小时,如果自行车的速度是每小时10公里,汽车的速度是每小时40公里,
问这段路程的长度是多少?
类型六:温度问题
6.有一加热器每小时的加热量是50瓦,现在将加热时间缩短为原来的
2/3,加热器每小时的加热量增加到了75瓦,求原来的加热器每小时的加热
时间。

类型七:混合物问题
7.有两桶水,一桶水中含有60升的纯净水,另一桶水中含有40升的
纯净水,现从第一桶水中取出x升加入到第二桶水中,使得第二桶水中纯净
水的含量降低为50%,求x值。

类型八:年龄问题
8.某家庭中父亲现在年龄是儿子的7/5倍,2年前父亲的年龄是儿子
的5/3倍,求现在儿子的年龄。

以上是一元一次方程应用题8种类型例题,希望对您有所帮助。

一元一次方程组的应用

一元一次方程组的应用

一元一次方程组的应用一元一次方程组是指由一元一次方程构成的方程组,其中每个方程都只含有一个未知数,并且未知数的最高次数为1。

在实际生活中,一元一次方程组的应用非常广泛,例如用于解决线性问题、经济学中的供求关系等。

本文将讨论一元一次方程组在实际问题中的应用。

一、商品购买问题假设小明去超市购买苹果和香蕉,已知苹果和香蕉的价格分别为x元/斤和y元/斤。

小明购买了a斤苹果和b斤香蕉,总共支付了m元。

根据此情况可以建立一个一元一次方程组,求解出苹果和香蕉的价格。

设方程组如下:方程一:a*x + b*y = m方程二:x = 2y其中方程一表示购买苹果和香蕉总花费为m元,方程二表示苹果的价格是香蕉价格的两倍。

通过求解这个一元一次方程组,可以得到苹果和香蕉的具体价格,从而可以帮助小明合理购买商品。

二、投资问题假设小王要进行投资,已知他现在手中有a万元的资金。

小王将资金分为x万元用于购买货币基金,y万元用于购买股票基金,并且规定货币基金的年收益率为2%,股票基金的年收益率为5%。

小王希望将投资一年后的总资金增加到m万元。

根据此情况可以建立一个一元一次方程组,求解出小王应该分别投入多少资金到货币基金和股票基金。

设方程组如下:方程一:2%x + 5%y = m - a方程二:x + y = a其中方程一表示投资一年后总资金增加到m万元,方程二表示小王手中资金的总额为a万元。

通过求解这个一元一次方程组,可以得到小王应该分别投入多少资金到货币基金和股票基金,从而帮助他做出明智的投资决策。

三、消费者满意度调查问题假设一家公司进行了一次消费者满意度调查,调查的问题是对该公司的产品进行评价,用评分1-5分来表示,分数越高表示满意度越高。

假设共有n位消费者参与调查,调查结果列成一个n行1列的向量y,其中y(i)表示第i位消费者给出的评分。

另外,公司还针对每一位消费者进行了星级评价,用星号表示,星号的数量代表了消费者的评分等级。

一元一次方程组的应用

一元一次方程组的应用

一元一次方程组的应用在数学学科中,一元一次方程组是初等代数中的一个重要概念。

它由一组一元一次方程组成,其中每个方程中只有一个未知数以一次次数出现。

这个概念在实际生活中有着丰富的应用,涉及到各种问题的求解和分析。

本文将介绍一元一次方程组的应用,并且给出其中一些典型例子。

1. 问题一:商场购物小明去商场购物,他买了若干件衣服和若干双鞋子。

已知衣服的单价为x元,鞋子的单价为y元,小明一共花费了z元。

根据这些已知条件,我们可以建立以下一元一次方程组:x + y = z该方程组描述了小明购物的情况,未知数x和y分别表示衣服和鞋子的件数。

通过解这个方程组,我们可以确定小明购买衣服和鞋子的数量。

2. 问题二:公交车票价一辆公交车上有成人和学生两类乘客,已知公交车售卖的成人票价为x元,学生票价为y元。

今天,该公交车一共售出了a张成人票和b 张学生票,总共收入了c元。

我们可以建立以下一元一次方程组来描述这个问题:ax + by = c通过解这个方程组,我们可以得到成人和学生乘客的数量以及售票价。

3. 问题三:比例分配甲乙两人合资开办一家公司,甲出资x万元,乙出资y万元,总共出资z万元。

根据出资的比例,我们可以得到以下一元一次方程组:x + y = z通过解这个方程组,我们可以计算出甲和乙实际出资的金额。

4. 问题四:工程问题某工程队参与了两个工程项目,第一个工程项目共花费了x小时,工程队的小时工资为y元;第二个工程项目共花费了a小时,工程队的小时工资为b元。

总共工作了c小时,一共支付了d元。

我们可以建立以下一元一次方程组:xy + ab = cxd + ab = c通过解这个方程组,我们可以确定在两个工程项目中工程队的工作时间以及工资的具体数值。

5. 问题五:容器混合有两个容器,第一个容器中装有纯净水,第二个容器中装有含有某种溶液的水。

现需要从这两个容器中分别取出x升和y升水,混合后得到z升新液体。

已知第一个容器中纯净水的体积比例为a,第二个容器中溶液的体积比例为b。

一元一次方程应用题20道题

一元一次方程应用题20道题

20道一元一次方程的应用题:1. 小明买了3本书和2支笔,总共花费了35元。

如果每本书比每支笔贵5元,求每本书和每支笔的价格。

2. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,问多少小时后到达乙地?3. 某商店进行打折活动,一件衣服原价200元,打8折后售价是多少元?4. 小华每天早上跑步,速度为每小时8公里,他跑了30分钟后,求他跑了多少公里?5. 一辆自行车行驶1000米,速度为每小时15公里,求行驶这段路程需要多少分钟?6. 小李的年龄比小王大3岁,今年他们的年龄之和为35岁,求小李和小王的年龄。

7. 一辆汽车加满油可以行驶600公里,现剩余油量可以行驶200公里,求汽车已经行驶了多少公里?8. 某商品进价50元,售价为80元,求该商品的利润率。

9. 一家工厂生产一批产品,原计划每天生产100个,实际每天生产120个,提前5天完成任务。

求原计划需要多少天完成?10. 一辆火车从A地出发,以每小时80公里的速度行驶,3小时后到达B地,求A、B两地之间的距离。

11. 小红有10个苹果,小明有15个苹果,他们把苹果合在一起平均分给5个人,求每个人分到多少个苹果?12. 一辆公交车每站停靠时间为2分钟,行驶全程共需60分钟,如果不计停靠时间,求公交车的平均速度。

13. 某学生语文、数学两门课的平均成绩为85分,已知数学成绩比语文成绩高10分,求该学生的语文和数学成绩。

14. 一家电器店购进一批电视机,每台进价3000元,售价为4000元,求每台电视机的利润。

15. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,距离目的地还有100公里,求汽车离出发地的距离。

16. 某商品原价100元,连续两次打折后售价为80元,求平均每次打折的折扣率。

17. 小刚每天跑步锻炼,第一天跑了3公里,之后每天比前一天多跑0.5公里,求第五天小刚跑了多少公里?18. 一辆自行车行驶在平直的公路上,速度为每小时15公里,行驶了20分钟后,求自行车行驶的距离。

一元一次方程在实际问题中的应用

一元一次方程在实际问题中的应用

一元一次方程在实际问题中的应用一元一次方程(或简称一次方程)是数学中一种基础的代数方程,它可以用来解决实际中的各种问题。

一次方程通常具有以下形式:ax + b = 0,其中 a 和 b 是已知的常数,x 是未知数。

在这篇文章中,我们将探讨一元一次方程在实际问题中的应用,并说明其重要性。

一元一次方程在日常生活中的应用非常广泛。

无论是在物理学、经济学还是工程学等领域,一次方程都扮演着至关重要的角色。

我们将通过几个实际问题的案例来说明这一点。

案例一:购买水果假设你在一个农贸市场上购买水果,卖家告诉你说:“每个苹果2元,你需要支付总共10元。

”现在我们可以使用一元一次方程来计算出你购买了多少个苹果。

设你购买了x 个苹果,则根据题目中的条件,我们可以得到以下方程:2x = 10。

通过解这个方程,我们可以得出 x = 5。

因此,你购买了5个苹果。

案例二:汽车行驶假设你的汽车每小时行驶50千米,并且你准备开车行驶200千米。

我们可以使用一元一次方程来计算行驶所需的时间。

设行驶时间为 t,根据速度与时间的关系,我们可以得到方程:50t = 200。

通过解这个方程,我们可以得出 t = 4。

因此,你需要4小时才能行驶200千米。

通过以上两个案例,我们可以看到一元一次方程在实际问题解决中的应用。

它们可以帮助我们解决各种数值问题,并提供了一种有效的数学工具。

除了以上案例,一元一次方程还可以用于解决更复杂的实际问题。

例如,在生产过程中的生产成本和产量之间可能存在着一定的关系。

我们可以通过建立一次方程,来计算出某个产量所对应的生产成本。

这对于企业的成本控制和效益评估非常重要。

此外,一次方程还可以用于解决金融领域的问题。

比如,在债务还款中,我们可以通过建立一次方程,来计算出每月应该还款的金额,以便合理安排个人财务。

总结起来,一元一次方程在解决实际问题中起着重要的作用。

它们帮助我们在数学上建立模型,计算未知数的值,解决各种数值问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题分类练习一:盈不足问题例1.有一个班的同学去某游乐园划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐 9人。

这个班共有多少名学生?跟踪练习:1、一批学生乘汽车去观看“2008北京奥运会”如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和学生各有多少?(6分)2、某中学组织七年级师生春游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租1辆,并且剩余15个座位.(1)求参加春游的人数?(2)已知45座客车的日租金为每辆250元,60座客车的日租金为每辆300元,问:租用哪种车更合算?3、几个老头去赶集,半路买了一些梨,一人一个多一个,一人两个少俩梨,请问君子知道否,多少老头多少梨?(是有两种方法求解)二、鸡兔同笼问题:引例:在同一笼子里放着数只鸡和数只兔子,它们共有34只,并且它们共有100条腿,那么鸡和兔子各有多少只?例1、商店出售茶壶每只28元,茶杯每只4元,并规定:买一只茶壶赠送一只茶杯,某同学共买了茶壶和茶杯30只,花了280元,他各买了多少只?例2、王大伯承包了25亩土地,今年春天改种茄子和西红柿,用去资金44000元,茄子每亩用去1700元,西红柿每亩用去1800元。

茄子每亩获利2400元,西红柿每亩获利2600元,问王大伯一共获利多少万元?跟踪练习:1、某停车场收费标准如下:中型汽车的停车费为6元/辆,小型汽车停车费为4元/辆,现在停车场有50辆中小型汽车,这些车共缴费230元,问:中小型汽车各多少辆?三、方案设计问题:例1、某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠。

”乙旅行社说:“教师在内全部按票价的6折优惠。

”若全部票价是240元。

(1)如果有10名学生,应参加哪个旅行社,并说出理由。

(2)当学生人数是多少时,两家旅行社收费一样多?例2、某同学在A、B两家超市发现他看中的英语学习机的单价相同,书包单价也相同,英语学习机和书包单价之和是452元,且英语学习机的单价比书包单价的4倍少8元.(1)求该同学看中的英语学习机和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打7.5折销售;超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的英语学习机、书包,那么在哪一家购买更省钱?跟踪练习:1、下面的两种移动电话计费方式表,考虑下列问题。

方式一方式二月租费50元/月10元/月本地通话费0.30元/分0.5元/分(1)一个月本地通话时间150分,计算按两种移动电话计费方式各需要交费多少元?(2)你如何选择计费方式?为什么?(分类讨论)2、某单位计划“五一”组织员工到某地旅游,A、B两旅行社的服务质量相同,且组织到该地旅游的价格都是每人300元。

该单位在联系时,A旅行社表示可给予每位旅客七五折优惠,B旅行社表示可免去一位旅客的费用,其余八折优惠。

(1)、当该单位旅游人数多少时,支付给A、B两旅行社的总费用相同。

(2)、若该单位共有30人参加此次旅游,应选择哪家旅行社,使总费用更少?3、某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元。

当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行。

受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕。

为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成。

如果你是公司经理,你会选择哪一种方案,说说理由。

4.某商店积压了100件某种商品,为使这批货物尽快脱手, 该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理:第1次降价30%,第2 次又降价30%,第3次再降价30%,3次降价处理销售结果如下表:降价次数一二三销售件数10 40 一抢而光问:(1)第3次降价后的价格占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部倍完,哪一种方案更盈利?四、商品销售问题1、填空:①安踏运动鞋打八折后是220元,则原价是元②进价为90元的篮球,卖了120元,利润是元利润率是元③某商场将进价为1980元的电视按标价的八折出售仍获利10%,则该商品的标价为元④某商品提价25%后与恢复到原价,则应降价________.例1、某商店将某种超级VCD按进价提高35%定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台超级VCD仍获利208元.(1)求每台VCD的进价;(2)另有一家商店出售同类产品,按进价提高40%,然后打出“八折酬宾”的广告,若你想买此种产品,将选择哪家商店?例2、某商场因换季,将一品牌服装打折销售,每件服装如果按标价的六折出售将亏10元,而按标价的七五折出售将赚50元,问: (1)每件服装的标价是多少元? (2)每件服装的成本是多少元? (3)为保证不亏本,最多能打几折?跟踪练习1、某商品的销售价每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍获利10%,此商品的进价是多少元?25,另一件亏2、某商店在某一时间内以每件60元的价格卖出两件衣服,其中一件盈利%25,问:卖这两件衣服总的是盈利还是亏损,或是不亏不损?损%3、小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装.为了缓解资金的压力,小张决定打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)请你算一算每件服装标价多少元?每件服装成本是多少元?(2)为了尽快减少库存,又要保证不亏本,请你告诉小张最多能打几折?五、行程问题:例1、一辆慢车速度为48千米/时,一辆快车速度为55千米/时,慢车在前,快车在后,两车间距离为21千米,快车追上慢车需要多少小时?例2. A、B两地相距1.8㎞,甲、乙两人从A、B两地同时出发相向而行,甲骑自行车的速度为12㎞/h ,乙步行,经过6分钟两人相遇,求乙的速度。

例3、一轮船航行于两个码头之间,逆水需10小时,顺水需6小时。

已知水流速度为3千米/时,求该船在静水中的速度和两码头间的距离。

例4、一船从甲码头到乙码头顺流行驶,用了4小时;从乙码头返回甲码头逆流行驶,用了5 小时.已知穿在净水的速度是13千米/小时,求水流的速度.跟踪练习:1、一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问至少多少分钟后他们相遇?(2)甲、乙两人同时同地同向出发,问至少多少分钟后他们相遇?2、一架飞机在两城之间飞行,风速为24千米 /小时,顺风飞行需2小时50分,逆风飞行需要3小时。

求两城之间的距离。

3. 甲、乙两地相距240千米,从甲站开出来一列慢车,速度为每小时80千米;从乙站开出一列快车,速度为每小时120千米。

问:如果两车同向开出,同向而行(快车在后),那么经过多长时间快车可以追上慢车?六、工程问题:1.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

2.一项工作甲独做a天完成,乙独做b天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。

例1:某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?例2 :整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?跟踪练习:1、一件工作,甲单独做20小时完成,乙单独做12小时完成,现在由甲单独做4小时,剩余的部分由甲、乙合作,需要几小时完成?2、一个道路工程,甲队单独施工9天完成,乙队单独做24天完成。

现在甲乙两队共同施工3天,因甲另有任务,剩下的工程有乙队完成,问乙队还需几天才能完成?3、某单位开展植树活动,由一个人植树要80小时完成,现由一部分人先植树5小时,由于单位有紧急事情,在增加2人,且必须在4小时之内完成植树任务,这些人的工作效率相同,应先安排多少人植树?七、调配与分段问题:例1、某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?例2. 甲乙两运输队,甲队原有32人,乙队原有28人,若从乙队调走一些人到甲队,•那么甲队人数恰好是乙队人数的2倍,问从乙队调走了多少人到甲队?例3.用水量收费不超过10m3 0.5元/m310m3以上每增加1m3 1.00元/m3小明家9月份缴水费20元,他家9月实际用水多少m3?练习.1某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?2、 为节约能源,某物业公司按以下规定收取每月电费: 用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。

若某用户四月份的电费平均每度0.5元,该用户四月份用电多少度?应交电费多少元?十、数字与年龄问题:1、某月份的月历,用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是 。

2、在一张某月的月历上,任意圈出竖列上的连续三个数的和不可能...是( ) A. 57 B. 46C. 39D. 24例1、 一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到 的新的两位数字比原来的两位数大18,求原来的两位数?例2、今年哥俩的岁数加起来是55岁。

曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁?1、将连续的奇数1,3,5,7,9…,排成如右图的数表: 问:(1)十字框中的五个数的和与15有什么关系?(2)设中间的数为a,用代数式表示十字框中的五个数之和;(3)将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)若将十字框上下左右平移,可框住另外的五个数,这五个数的和能等于415吗?若能,请求出这五个数;若不能,请说明理由. 十字框中的五个数的和能等于2007吗?若能,请写出这五个数;若不能,说明理由.2. 现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,多少年后父亲的年龄是儿子年龄的3倍?。

相关文档
最新文档