2020届山西省太原市高考数学三模试卷(理科)(有答案)

合集下载

山西省太原市第三十六中学2020年高三数学理模拟试卷含解析

山西省太原市第三十六中学2020年高三数学理模拟试卷含解析

山西省太原市第三十六中学2020年高三数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 正方体中,、分别是棱和上的点,,,那么正方体的过、、的截面图形是A.三角形B.四边形C.五边形D.六边形参考答案:C2. 如图,动点在正方体的对角线上.过点作垂直于平面的直线,与正方体表面相交于.设,,则函数的图象大致是参考答案:B3. 假设在5秒内的任何时刻,两条不相关的短信机会均等地进人同一部手机,若这两条短信进人手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为()A. B. C. D.参考答案:D略4. 展开式中的常数项为()A.-8 B.-12 C.-20 D.20参考答案:C试题分析:∵,∴,令,即,∴常数项为.考点:二项式定理.5. 已知函数f(x)=﹣,若对任意的x1,x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f (x2)|](x1﹣x2)>0,则实数a的取值范围为()A.[﹣,] B.[﹣,] C.[﹣,] D.[﹣e2,e2]参考答案:B【考点】6B:利用导数研究函数的单调性.【分析】由题意可知函数y=丨f(x)丨单调递增,分类讨论,根据函数的性质及对勾函数的性质,即可求得实数a的取值范围.【解答】解:由任意的x1,x2∈[1,2],且x1<x2,由[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则函数y=丨f(x)丨单调递增,当a≥0,f(x)在[1,2]上是增函数,则f(1)≥0,解得:0≤a≤,当a<0时,丨f(x)丨=f(x),令=﹣,解得:x=ln,由对勾函数的单调递增区间为[ln,+∞),故ln≤1,解得:﹣≤a<0,综上可知:a的取值范围为[﹣,],故选B.【点评】本题考查函数的综合应用,考查对数函数的运算,对勾函数的性质,考查分类讨论思想,属于中档题.6. 设表示两条直线,表示两个平面,则下列命题是真命题的是()A.若,∥,则∥B.若C.若∥,,则D.若参考答案:D略7. 在如图所示的正方形中随机投掷10000个点,则落入阴影外部(曲线C为正态分布的密度曲线)的点的个数的估计值为()A.3413 B.1193 C.2718 D.6587附:若,则,参考答案:D【知识点】正态分布几何概型【试题解析】由题知:阴影的面积为所以落入阴影的点的个数为:个,所以落入阴影外部的点的个数的估计值为:10000-3413=6587个。

【附28套精选模拟试卷】山西省太原市2020届高三第三次模拟考试数学(理)试卷(含答案)

【附28套精选模拟试卷】山西省太原市2020届高三第三次模拟考试数学(理)试卷(含答案)

山西省太原市2020届高三第三次模拟考试数学(理)试卷(含答案)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,复数z满足2ziz=+,则复数z在复平面内对应的点的坐标是()A.11(,)22- B.(1,1)- C.11(,)22- D.(1,1)-2.已知全集U R=,集合{|(2)0}A x x x=+<,{|||1}B x x=≤,则下图阴影部分表示的集合是()A.(2,1)- B.[1,0][1,2)-U C.(2,1)[0,1]--U D.[0,1] 3.已知随机变量X服从正态分布(3,1)N,且(4)0.1587P X≥=,则(24)P X<<=()A.0.6826 B.0.3413 C.0.4603 D.0.92074.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式11111+++L中“…”即代表无限次重复,但原式却是个定值,它可以通过方程11xx+=求得512x=.3232++L()A.3 B.1312C.6 D.225.执行下面的程序框图,如果输入的3a=,则输出的n=()A .2B .3 C.4 D .56.在ABC ∆中,3AB =,2AC =,60BAC ∠=︒,点P 是ABC ∆内一点(含边界),若23AP AB AC λ=+u u u r u u u ru u u r,则||AP uuu r 的取值范围为( )A.21033[2,]+ B .8[2,]3 C.213[0,]3 D .213[2,]3 7.已知某产品的广告费用x (单位:万元)与销售额y (单位:万元)具有线性关系关系,其统计数据如下表:x3 4 5 6 y25304045由上表可得线性回归方程^^^y b x a =+,据此模型预报广告费用为8万元时的销售额是( ) A .59.5 B .52.5 C .56 D .63.5附:121^1221()())=()(n ni ii nii iii nii x y nx yb xx x y y n x x x ====-⋅---=-∑∑∑∑;^^a yb x =-8.某几何体的三视图如图所示,则该几何体中最长的棱长为( )A .33.2621 D .259.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32xy =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A.2n n S T = B .21n n T b =+ C. n n T a > D .1n n T b +<10.已知函数()f x 是偶函数,(1)f x +是奇函数,且对于任意1x ,2[0,1]x ∈,且12x x ≠,都有1212()[()()]0x x f x f x --<,设82()11a f =,50()9b f =-,24()7c f =,则下列结论正确的是( )A .a b c >>B .b a c >> C.b c a >> D .c a b >>11.已知实数x ,y 满足条件480,2360,20,x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩若222x y m +≥恒成立,则实数m 的最大值为( )A .5B .43D .8312.已知点P 在抛物线2y x =上,点Q 在圆221()(4)12x y ++-=上,则||PQ 的最小值为( ) A.12- B.12-C.1 D1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数: 7327 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281 根据以上数据估计该运动员射击4次至少击中3次的概率为 .14.21sin )x dx -⎰= .15.在ABC ∆中,2AB =,3AC =,90BAC ∠=︒,点D 在AB 上,点E 在CD 上,且ACB DE DEB ∠=∠=∠,则DC = .16.已知过点(2,0)A -的直线与2x =相交于点C ,过点(2,0)B 的直线与2x =-相交于点D ,若直线CD 与圆224x y +=相切,则直线AC 与BD 的交点M 的轨迹方程为 .三、解答题:本大题共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知(3,cos )33x x m =,(cos ,cos )33x xn =()f x m n =⋅. (1)若函数()f x 的最小正周期和单调递增区间;(2)若a ,b ,c 分别是ABC ∆分内角A ,B ,C 所对的边,且2a =,(2)cos cos a b C c B -=,3()2f A =,求c . 18.购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人将所抽样本中周平均购次数不小于4次的市民称为购迷,且已知其中有5名市民的年龄超过40岁.(1)根据已知条件完成下面的22⨯列联表,能否在犯错误的概率不超过0.10的前提下认为购迷与年龄不超过40岁有关?购迷 非购迷 合计 年龄不超过40岁 年龄超过40岁合计(2)若从购迷中任意选取2名,求其中年龄丑啊过40岁的市民人数ξ的分布列与期望.附:22()()()()()n ad bc k a b c d a c b d -=++++;20()P K k ≥0.15 0.10 0.05 0.01 0k2.0722.7063.8416.63519.如图,在三棱柱111ABC A B C -中,侧面11ACC A ⊥底面ABC ,160A AC ∠=︒,124AC AA ==,点D ,E 分别是1AA ,BC 的中点.(1)证明://DE 平面11A B C ;(2)若2AB =,60BAC ∠=︒,求直线DE 与平面11ABB A 所成角的正弦值. 20. 已知动点C 到点(1,0)F 的距离比到直线2x =-的距离小1,动点C 的轨迹为E . (1)求曲线E 的方程;(2)若直线:(0)l y kx m km =+<与曲线E 相交于A ,B 两个不同点,且5OA OB ⋅=u u u r u u u r,证明:直线l 经过一个定点.21. 已知函数2()21f x x x =-+,()2ln(1)g x a x =-()a R ∈.(1)求函数()()()h x f x g x =-的极值;(2)当0a >时,若存在实数k ,m 使得不等式()()g x kx m f x ≤+≤恒成立,求实数a 的取值范围.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请在答题卡上把所选题目对应题号后的方框涂黑. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为22cos ,2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(1)求曲线1C 普通方程和2C 的直角坐标方程;(2)已知曲线3C 的极坐标方程为(0,)R θααπρ=<<∈,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且A ,B 均异于原点O ,且||42AB =α的值. 23. 选修4-5:不等式选讲. 已知函数1()2||||f x x a x a=++-(0)a ≠.(1)当1a =时,解不等式()4f x <; (2)求函数()()()g x f x f x =+-的最小值.数学(理) 参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1-5BCAAC 6-10DABDB 11、12:DA二、填空题(本大题共4小题,每小题5分,共20分)13.0.4 14.2π15.13416.221(0)4x y y +=≠ 三、解答题(本大题共70分)17.解:(1)Q 2()cos cos 333x x xf x m n =⋅=+,212(cos 1)323x x =++=21sin()362x π++, ∴()f x 的最小正周期为3π,令2222362x k k πππππ-+≤+≤+,k Z ∈,则332k x k ππππ-+≤≤+, ∴()f x 的单调递增区间为[3,3]2k k ππππ-++()k Z ∈;(2)Q (2)cos cos a b C c B -=,∴2sin cos A C =sin cos cos sin sin B C B C A +=,Q 0A π<<,∴sin 0A >,∴1cos 2C =,∴3C π=,∴213()sin()3622A f A π=++=,∴2sin()136A π+=,∴22362A k πππ+=+,k Z ∈,∴2A π=,∴sin 2sin 3c a C π===18.解:(1)由题意可得列联表如下:假设购迷与年龄不超过40岁没有关系,则2100(2030455)65352575k ⨯⨯-⨯=≈⨯⨯⨯ 3.297 2.706>. 所以可以在犯错误的概率不超过0.10的前提下认为购迷与年龄不超过40岁有关;(2)由频率分布直方图可知,购迷共有25名,由题意得年龄超过40的市民人数ξ的所有取值为0,1,2,22022519(0)30C P C ξ===,112052251(1)3C C P C ξ===,252251(2)30C P C ξ===,∴ξ的分布列为∴012303305E ξ=⨯+⨯+⨯=.19.解:(1)证明:取AC 的中点F ,连接DF ,EF ,Q E 是BC 的中点,∴//EF AB , Q 111ABC A B C -是三棱柱,∴11//AB A B ,∴11//EF A B ,∴//EF 平面11A B C ,Q D 是1AA 的中点,∴1//DF A C ,∴//DF 平面11A B C , ∴平面//DEF 平面11A B C , ∴//DE 平面11A B C ;(2)过点1A 作1A O AC ⊥,垂足为O ,连接OB ,Q 侧面1ACC A ⊥底面ABC ,∴1A O ⊥平面ABC , ∴1A O OB ⊥,1A O OC ⊥,Q 160A AC ∠=︒,12AA =,∴1OA =,13OA =, Q 2AB =,60OAB ∠=︒,由余弦定理得, 2222cos 3OB OA AB OA AB BAC =+-⋅∠=,∴3OB =,90AOB ∠=︒,∴OB AC ⊥,分别以OB ,OC ,1OA 为x 轴,y 轴,z 轴,建立如图的空间直角坐标系O xyz -, 由题设可得(0,1,0)A -,(0,3,0)C ,(3,0,0)B ,1(0,0,3)A ,13(0,,)22D -,33(,,0)22E , 设111(,,)m x y z =u r是平面11ABB A 的一个法向量,则10,0,m AB n AA ⎧⋅=⎪⎨⋅=⎪⎩u r u u u rr u u u r∴111130,30,x y y z ⎧+=⎪⎨+=⎪⎩令11z =,∴(1,3,1)m =-u r , Q 33(,2,)22DE =-u u u r ,∴cos ,m DE <>=u r u u u r 2330||||m DE m DE ⋅-=u r u u u ru r u u u r ,∴直线DE 与平面11ABB A 所成角的正弦值为2330.20.解:(1)由题意可得动点C 到点(1,0)F 的距离等于到直线1x =-的距离,∴曲线E 是以点(1,0)为焦点,直线1x =-为准线的抛物线,设其方程为22(0)y px p =>,∴12p=,∴2p =, ∴动点C 的轨迹E 的方程为24y x =;(2)设1122(,),(,)A x y B x y ,由2,4y kx m y x=+⎧⎨=⎩得222(24)0k x km x m +-+=, ∴12242kmx x k-+=,2122m x x k ⋅=. Q 5OA OB ⋅=u u u r u u u r ,∴1212x x y y +=221212(1)()=k x x km x x m ++++2245m km k +=,∴22450m km k +-=,∴m k =或5m k =-.Q 0km <,m k =舍去,∴5m k =-,满足16(1)0km ∆=->, ∴直线l 的方程为(5)y k x =-, ∴直线l 必经过定点(5,0).21. 解:(1)由题意得2()(1)2ln(1)h x x a x =---,1x >,∴22[(1)]'()1x a h x x --=-,①当0a ≤时,则'()0h x >,此时()h x 无极值;②当0a >时,令'()0h x <,则11x <<'()0h x >,则1x >+∴()h x 在(1,1上递减,在(1)+∞上递增;∴()h x 有极小值(1(1ln )h a a +=-,无极大值;(2)当0a >时,有(1)知,()h x 在(1,1+上递减,在(1)+∞上递增,且有极小值(1(1ln )h a a +=-,①当a e >时,(1(1ln )0h a a +=-<,∴(1(1f g <+, 此时,不存在实数k ,m ,使得不等式()()g x kx m f x ≤+≤恒成立;②当0a e <≤时,(1(1ln )0h a a +=-≥,2()21f x x x =-+在1x =+)y a =-,令()())]u x f x a =--,1x >,则2()[(10u x x =-≥,∴)()a f x -≤,令())()v x a g x =--=)2ln(1)a a x ---,1x >,则(1'()1x v x x -+=-,令'()0v x <,则11x <<+'()0v x >,则1x >+∴()(1v x v ≥+=(1ln )0a a -≥,∴())g x a ≤-,∴())()g x a f x ≤-≤,当k =m a =-时,不等式()()g x kx m f x ≤+≤恒成立,∴0a e <≤符合题意;由①,②得实数a 的取值范围为(0,]e .22.解:(1)由22cos ,2sin x y ϕϕ=+⎧⎨=⎩消去参数ϕ可得1C 普通方程为22(2)4x y -+=,.Q 4sin ρθ=,∴24sin ρρθ=,由cos sin x y ρθρθ=⎧⎨=⎩,得曲线2C 的直角坐标方程为22(2)4x y +-=; (2)由(1)得曲线1C :22(2)4x y -+=,其极坐标方程为4cos ρθ=,由题意设1(,)A a ρ,2(,)B a ρ,则12||||4|sin cos |AB ρραα=-=-sin()|4πα=-=∴sin()14πα-=±,∴42k ππαπ-=+()k Z ∈,Q 0απ<<,∴34πα=.23. 解:(1)Q 1a =,∴原不等式为2|1||1|4x x ++-<,∴12214x x x <-⎧⎨---+<⎩,或11,2214,x x x -≤≤⎧⎨+-+<⎩或1,2214,x x x >⎧⎨++-<⎩ ∴513x -<<-或11x -≤<或∅,∴原不等式的解集为5(,1)3-.(2)由题意得()()()g x f x f x =+-=112(||||)(||||)x a x a x x a a++-+++- 222|2|4||||||a a a a ≥+=+42≥, 高考模拟数学试卷说明:一、本试卷共4页,包括三道大题,24道小题,共150分.其中(1)〜(21)小题为必做题,(22)〜(24)小题为选做题.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.三、做选择题时,每小题选出答案后,用2B 铅第把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案. 四、考试结束后,将本试卷与原答题卡_并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项符合题目要求. (1) 复数=(A) 1+2i (B) 1-2i (C) 2-i (D) 2+i (2) 在的展开式中,常数项为(A) 36 (B) -36 (C) 84 (D) -84 (3) 已知命题则为(A) (B)(C)(D)(4) 函数的图象可以由函数的图象(A)向左平移个单位得到(B)向右平移-个单位得到 (C)向左平移.个单位得到(D)向右平移个单位得到(5) 已知,则=(A) 3 (B) 4 (C) 3.5 (D) 4.5(6) 等比数列{a n}的公比,则=(A) 64 (B) 31 (C) 32 (D) 63(7) 己知某几何体的三视图如图所示,则其表面积为(A)(B)(C) 2(D) 8(8) 算法如图,若输入m=210,n = 119,则输出的n为(A) 2(B) 3(C) 7(D) 11(9) 在中,,则=(A) 10 (B) -10 (C),4 (D) 4(10) 点A、B、C、D均在同一球面上,其中是正三角形,AD平面ABC,AD=2AB=6,则该球的体积为(A) (B) (C) (D)(11) 抛物线的焦点为F,点A、B、C在此抛物线上,点A坐标为(1, 2).若点F恰为的重心,则直线BC的方程为(A) x+y=0 (B) 2x+y-1=0(C) x-y=0 (D) 2x-y-1=0(12) 定义在R上的奇函数满足,当时,.又,则集合等于(A) (B)(C) (D)二、填空题:本大题共4小题,每小题5分,共20分.(13) 设变量x、y满足约束条件则的最大值为_______.(14) 函数的值域是______.(15) 在数列中,,则数列的通项=______.(16) 的一个顶点P(7,12)在双曲线上,另外两顶点F1、F2为该双曲线的左、右焦点,则的内心坐标为______.三、解答题:本大-共6小题,共70分.解答应写出文字说明、证明过程或演算步驟.(17) (本小题满分12分)在,中,角A、B、C的对边分别为a、b、c, A=2B.(I )若,求的值;(I I)若C为钝角,求的取值范围.(18) (本小题满分12分)某媒体对“男女同龄退佈”这一公众关注的问题进行了民意调査,右表是在某单位得到的数据(人数):(I)能否有90%以上的把握认为对这一问题的看法与性别有关?(II)进一步调查:(I )从赞同“男女同龄退休”16人中选出3人进行陈述发言,求事件“男士和女士各至少有1人发言”的概率;(II )从反对“男女同龄退休”的9人中选出3人进行座谈,设参加调査的女士人数为,求的分布列和均值.附:(19) (本小题满分12分)如图,在三棱柱ABC-A1B l C1中,CC1丄底面ABC,底面是边长为2的正三角形,M, N分别是棱CC1、AB的中点.(I)求证:CN//平面AMB1;(II)若二面角A-MC为45°,求CC1的长.(20)(本小题满分12分)中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2, 2),且(I )求椭圆E的方程;(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.(21) (本小题满分12分)设函数.(I )讨论f(x)的单调性;(I I)( i )若证明:当x>6 时,(ii)若方程f(x)=a有3个不同的实数解,求a的取值范围.请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.(22) (本小题满分10分)选修4-1几何证明选讲如图,AB是圆O的直径,以B为圆心的圆B与圆O的一个交点为P.过点A作直线交圆O于点Q,交圆B于点M、N.(I )求证:QM=QN;(I I)设圆O的半径为2,圆B的半径为1,当AM=时,求MN的长.(23) (本小题满分10分)选修4-4坐标系与参数方程以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数,),曲线C的极坐标方程为,(I )求曲线C的直角坐标方程:(II)设直线l与曲线C相交于A、B两点,当a变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5不等式选讲设.(I)求不等式的解集S(II )若关于X不等式有解,求参数T的取值范围.理科数学参考答案一、选择题:二、填空题:(13)5 (14)(-1,1) (15)n2(16)(1, 3 2)三、解答题:(19)解:(Ⅰ)设AB 1的中点为P ,连结NP 、MP . ∵CM ∥= 1 2AA 1,NP ∥= 12AA 1,∴CM ∥=NP , ∴CNPM 是平行四边形,∴CN ∥MP . ∵CN ⊄平面AMB 1,MP ⊂平面AMB 1, ∴CN ∥平面AMB 1.…4分(Ⅱ)如图,以C 为原点,建立空间直角坐标系C —xyz ,使x 轴、y 轴、z 轴分别与NA →、CN →、CC 1→同向. 则C(0,0,0),A(1,3,0),B(-1,3,0), 设M(0,0,a)(a >0),则B 1(-1,3,2a), MA →=(1,3,-a),MB 1→=(-1,3,a), CM →=(0,0,a),…6分设平面AMB 1的法向量n =(x ,y ,z),则n ·MA →=0,n ·MB 1→=0, 即⎩⎪⎨⎪⎧x +3y -az =0,-x +3y +az =0, 则y =0,令x =a ,则z =1,即n =(a ,0,1). …8分设平面MB 1C 的一个法向量是m =(u ,v ,w),则m ·MB 1→=0,m ·CM →=0, 即⎩⎨⎧-u +3v +aw =0,aw =0,则w =0,令v =1,则u =3,即m =(3,1,0). …10分C A 11C 1MNPxz y所以cos 〈m ,n 〉=3a2a 2+1, 依题意,〈m ,n 〉=45︒,则3a 2a 2+1=22,解得a =2, 所以CC 1的长为22. …12分(20)解:(Ⅰ)设椭圆E 的方程为x 2a 2+y2b 2=1(a >b >0),则4a 2+4b2=1, ① …1分记c =a 2-b 2,不妨设F 1(-c ,0),F 2(c ,0),则CF 1→=(-c -2,-2),CF 2→=(c -2,-2),则CF 1→·CF 2→=8-c 2=2,c 2=6,即 a 2-b 2=6.②由①、②得a 2=12,b 2=6. 所以椭圆E 的方程为x 212+y26=1.…4分(也可通过2a =|CF 1→|+|CF 2→|求出a ) (Ⅱ)依题意,直线OC 斜率为1,由此设直线l 的方程为y =-x +m , 代入椭圆E 方程,得3x 2-4mx +2m 2-12=0. 由Δ=16m 2-12(2m 2-12)=8(18-m 2),得m 2<18. 记A(x 1,y 1)、B(x 2,y 2),则x 1+x 2=4m 3,x 1x 2=2m 2-123.…6分圆P 的圆心为(x 1+x 2 2,y 1+y 2 2),半径r =22|x 1-x 2|=22(x 1+x 2)2-4x 1x 2当圆P 与y 轴相切时,r =|x 1+x 2 2|,则2x 1x 2=(x 1+x 2)24,即2(2m 2-12)3=4m 29,m 2=9<18.…9分当m =3时,直线l 方程为y =-x +3,此时,x 1+x 2=4,圆心为(2,1),半径为2,圆P 的方程为(x -2)2+(y -1)2=4; 同理,当m =-3时,直线l 方程为y =-x -3,圆P 的方程为(x +2)2+(y +1)2=4.…12分(21)解:(Ⅰ)f '(x)=-e -x[x 2-(a +2)x +2a]=-e -x(x -2)(x -a).…1分(1)若a =2,则f '(x)≤0,f(x)在(-∞,+∞)单调递减. …2分(2)若0≤a <2,当x 变化时,f '(x)、f(x)的变化如下表:x (-∞,a) a (a ,2) 2 (2,+∞)f '(x) -+-f(x)↘极小值ae-a[↗极大值(4-a)e-2↘ 此时f(x)在(-∞,a)和(2,+∞)单调递减,在(a ,2)单调递增. …3分(3)若a >2,当x 变化时,f '(x)、f(x)的变化如下表:x (-∞,2) 2 (2,a) a (a ,+∞)f '(x)-+-f(x)↘极小值(4-a)e-2↗ 极大值ae-a↘ 此时f(x)在(-∞,2)和(a ,+∞)单调递减,在(2,a)单调递增.…4分(ⅱ)根据(Ⅰ),(1)若a =2,方程f(x)=a 不可能有3个不同的实数解.…7分(2)若0≤a <2,令⎩⎪⎨⎪⎧0≤a <2,ae -a<a ,(4-a)e -2>a ,解得0<a <4e 2+1.……………………8分当x >6时,f(x)=e -x(x 2-ax +a)=e -x[x 2-a(x -1)]<x 2e -x< 1 x, 则当x >6且x > 1a 时,f(x)<a .又f(0)=a ,所以当0<a <4e 2+1时,方程f(x)=a 有3个不同的实数解.10分 (3)若a >2时,由于f(a)=ae -a<a ,方程f(x)=a 不可能有3个不同的实数解.…11分综上,a的取值范围是(0,4e2+1).…12分高考模拟数学试卷本试题卷分选择题和非选择题两部分。

山西省太原市2020届高三年级数学理科模拟试题(三) (含答案)

山西省太原市2020届高三年级数学理科模拟试题(三) (含答案)

第 I 卷(选择题 共60分)
一、选择题:本题共12小题,每小题5分,共60 分,在每小题给出的四个选项中,只有一项是符
合题目要求的.
1.己知集合A = { xlx2 - 3x + 2 注0},B = { xix + 1 注α},若A UB=R ,则实数α的取值范围是
A.[2, +oo)
B. ( -oo,2]
A. 0
B. 1
C.2
D. 3

高三数学(理) 第3页(共8页)

高三数学(理) 第4页(共8页)
太原市2020年高三年级模拟试题(三)
数 山{子 试卷(理科)
三、解答题:共70,分.解答应写出文字说明、证明过程或演算步骤.第17:时21题为必考题,每个
试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
高三数学(理) 第1页(共8页)
4.已知 sinα - cosα = 〉豆,αε (0, τ ),则 tana =
A.-1
B --一- 2
c.
一v'-2
2
D.1
5.宋元时期数学名著《算学启蒙》中有关于 “ 松竹并生 ” 的问题,松
长三尺,竹长 一尺,松日自半,竹日自倍,松竹何日而长等.如
图是源于其思想的一个程序框图
答.第22题、第23题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分,共20分.
’ log1x(O < x 运 11 I I
111二 13.已知函数J(x)=� 2 , x2 - 1(x > 11
则11 \ \ IS -

_付 14.�ABC的内角 A,B,C的对边分别为α,b 'c. 若A腻的面积为

山西省太原市2020届高三数学模拟试题(一)理(含解析)

山西省太原市2020届高三数学模拟试题(一)理(含解析)

太原市2020年高三年级模拟试题(一)数学试卷(理工类)一、选择题。

1.已知集合,,则()A. B. C. D.【答案】A【解析】【分析】对集合化简,求出.【详解】,,,故本题选A.【点睛】本题考查了集合的交集运算,本题的关键是对数不等式要解正确,不要忘记对数函数的真数要大于零.2.已知复数满足(为虚数单位),则()A. B. C. D.【答案】C【解析】【分析】运用复数的除法运算法则,直接求出.【详解】,故本题选C.【点睛】本题考查复数的除法运算.3.下列命题中的真命题是()A. 若,则向量与的夹角为钝角B. 若,则C. 若命题“是真命题”,则命题“是真命题”D. 命题“,”的否定是“,”【答案】D【分析】对于选项A:当时,向量与的夹角为钝角或夹角,可以判断是否为真命题;对于选项B:要注意成立时,这个特殊情况,对此可以判断是否为真命题;对于选项C: 命题“是真命题”中至少有一个为真命题,不能确定是真命题;对于选项D:含有特称量词命题否定要求改为全称量词,同时否定结论,对此可以判断是否为真命题。

【详解】选项A:是钝角或平角,所以选项A是假命题;选项B:或者,所以选项B是假命题;选项C: 命题“是真命题”中至少有一个为真命题,只有当都是真命题时,才是真命题,所以选项C是假命题;选项D;根据含有特称量词命题的否定要求改为全称量词,同时否定结论,这一原则,“,”的否定是“,”是真命题,故本题选D.【点睛】本题考查了命题真假的判断,属于基础题.4.已知,则()A. B. C. D.【答案】B【解析】【分析】用二倍角的正弦公式和诱导公式,对所求的式子进行化简,根据题目特点,用,构造出关于的双齐式,进行求解。

【详解】,因为,所以,原式故本题选B。

【点睛】本题考查了二倍角的正弦公式及诱导公式。

重点考查了同角三角函数之间的关系。

5.已知函数在处的切线经过原点,则实数()A. B. C. 1 D. 0【答案】A【分析】对函数求导,求出切线的斜率,利用点斜式写出直线方程,把原点的坐标代入,求出的值,最后求出的值。

山西省太原市2020年高三一模理科数学试题文字版带解析

山西省太原市2020年高三一模理科数学试题文字版带解析

太原市2020年高三年级模拟试题(一)数学试卷(理科)(考试时间:下午3:00——5:00)注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至4页,第Ⅱ卷5至8页。

2.回答第I 卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3.回答第I 卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。

4.回答第Ⅱ卷时,将答案写在答题卡相应位置上,写在本试卷上无效。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}26,3x x y x N x x M -+==<=,则M∩N=( ) A .{}32<<-x x B .{}32<≤-x x C .{}32≤<-x x D .{}33≤<-x x2.设复数z 满足5)2(=+⋅i z ,则i z -=( )A .22B .2C .2D .43.七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.(清)陆以湉《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )A.165B.3211C.167D.32134.已知等比数列{n a }中,1a >0,则“41a a <”是“53a a <”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.函数xx x f 1)(2-=的图象大致为( )6某程序框图如图所示,若该程序运行后输出的值是59,则( )A.3=aB.4=aC.5=aD.6=a 7.73)13(xx +展开式中的常数项是( ) A.189 B.63 C.42 D.21。

2020年太原市高三三模考试数学(理)参考答案

2020年太原市高三三模考试数学(理)参考答案

太原市2020年高三年级模拟试题(三)数学试题(理)参考答案及评分标准13. 8 14.23π15. 16. ①②③④三、解答题(共70分) 17.(本小题满分12分)解(1)由已知得,1221a b b b +=,所以11a =. ………………1分 又因为{}n a 是公差为1的等差数列,所以n a n =. ………………3分 所以1(1)n n n b nb ++=,所以数列{}n nb 是常数数列, 所以11n nb b ==,所以1n b n=. ………………6分 (2)由已知得,2n nnc =, ………………7分 所以231232222n n nS =++++ , 23412312222n n n -=+++++234111*********n n n n +=+++++- = 11(1)22112n --12n n +- 1212n n ++=-, ...11分222n n n S +∴=-. ………………12分18.(本小题满分12分) 解:(1)2×2列联表:………………4分2250(297113) 6.272 6.63540103218K ⨯⨯-⨯=≈<⨯⨯⨯. ………………5分所以不能在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异. ………………6分 (2)X 的所有可能取值为0,1,2,3,则X 的分布列为………………10分 所以X 的数学期望是 ………………12分19.(本小题满分12分)证明(1)如图,过点D 作//DE AC 交1AA 于E ,连接,CE BE , 设ADCE O =,连接BO ,1AC AA ⊥,DE AE ∴⊥,又AD 为1A AC ∠的角平分线,∴四边形AEDC 为正方形,CE AD ∴⊥,..............2分 又AC AE =,BAC BAE ∠=∠,BA BA =, BAC BAE ∴∆≅∆,BC BE ∴=,又O 为CE 的中点,CE BO ∴⊥. ................................................4分 又,AD BO ⊂平面BAD ,AD BO O =,CE ∴⊥平面BAD ,.................................5分又CE ⊂平面11AAC C ,∴平面⊥BAD 平面11AAC C ,.................................................6分(2)在ABC ∆中,4AB AC ==,60BAC ∠=︒,4BC ∴=,在Rt BOC ∆中,12CO CE ==,BO ∴=又4AB =,12AO AD ==222BO AO AB +=,BO AD ∴⊥,又BO CE ⊥,ADCE O =,,AD CE ⊂平面11AAC C ,BO ∴⊥平面11AAC C ,..........7分建立如图空间直角坐标系O xyz -,则(2,2,0)A -,1(2,4,0)A ,1(2,4,0)C -,1B ,11C B ∴=,1(4,6,0)AC =-,11(4,0,0)C A =,设平面11AB C 的一个法向量为111(,,)m x y z =,则111m C B m AC ⎧⊥⎪⎨⊥⎪⎩,11111460220x y x y -+=⎧⎪∴⎨++=⎪⎩,令1=6x,得(6,4,m =-, .................................................9分设平面111A B C 的一个法向量为222(,,)n x y z =,则1111n C B n C A ⎧⊥⎪⎨⊥⎪⎩,222240220x x y =⎧⎪∴⎨++=⎪⎩,令2y (0,21)n =-,,.........................................11分9cos ,17102m n m n m n⋅∴<>===⋅,由可知二面角111A B C A --是锐角,故二面角111A B C A --的余弦值为17. ...........12分 20.(本小题满分12分)解(1)因为椭圆C 的焦距为2,所以221a b -=, ..................................................1分因为椭圆C 过点 (1,32),所以221914a b+=. ..................................................2分 解得24a =,23b =,.............................................................4分故椭圆C 的方程为x 24+y 23=1. ........................................................................5分(2)设B (m ,n ),记线段MN 中点为D .因为O 为△BMN 的重心,所以→BO =2→OD ,则点D 的坐标为(-m 2,-n 2). ········ 6分若n =0,则|m |=2,此时直线MN 与x 轴垂直, 故原点O 到直线MN 的距离为|m2|,即为1.若n ≠0,此时直线MN 的斜率存在.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-m ,y 1+y 2=-n .又x 124+y 123=1,x 224+y 223=1,两式相减得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0, 可得k MN =y 1-y 2x 1-x 2=-3m4n . ····································································· 8分故直线MN 的方程为y =-3m 4n (x +m 2)-n2,即6mx +8ny +3m 2+4n 2=0,则点O 到直线MN 的距离为d =|3m 2+4n 2|36m 2+64n 2.将m 24+n 23=1,代入得d =3n 2+9. ························································ 10分 因为0<n 2≤3,所以d min =32. 又32<1,故原点O 到直线MN 距离的最小值为32. ································· 12分21.(本小题满分12分) 解:(1))0(12ln 21ln )('>+-=-⋅+=x ax x ax x x x x f ,…………………………1分 令,0)'=x f (得1ln 2x a x +=,记1ln (),xQ x x +=则2ln )('xx x Q -=, 令0)('>x Q ,得10<<x ;令0)('<x Q ,得1>x ,)(x Q ∴在)1,0(上是增函数,在),1(+∞上是减函数,且()=(1)1Q x Q =最大, ∴当,12>a 即21>a 时,0)('=x f 无解,)(x f ∴无极值点, 当,12=a 即21=a 时, '()0f x ≤恒成立,)(x f ∴无极值点, 当120<<a ,即210<<a 时,0)('=x f 有两解,)(x f ∴有2个极值点 当02≤a 即0≤a 时,0)('=x f 有一解,)(x f 有一个极值点. 综上所述:当12a ≥,()f x 无极值点;210<<a 时,()f x 有2个极值点; 当0a ≤,()f x 有1个极值点. …………………………6分(2)x ax x x x g --=2ln )(,)0(2ln )('>-=x ax x x g ,令0)('=x g ,则02ln =-ax x ,xxa ln 2=∴, 记x x x h ln )(=,则2ln 1)('x xx h -=, 由,0)('>x h 得e x <<0,由0)('<x h ,得e x >, )(x h ∴在),0(e 上是增函数,在),(+∞e 上是减函数,,1)()(max e e h x h ==当e x >时,0)(>x f ,∴当e a 120<<即ea 210<<时,)(x g 有2个极值点21,x x . ……………7分 由⎩⎨⎧==22112ln 2ln ax x ax x ,得121212ln()ln ln 2()x x x x a x x =+=+ ,1212ln()2x x a x x ∴=+ , …………………8分 不妨设,21x x <则211x e x <<<,e x x x >>+∴221 , …………………9分又)(x h 在),(+∞e 上是减函数,1221212212ln()ln ln()2x x x x x a x x x x x +∴<==++ , ……………………11分1212ln()ln()x x x x ∴+< ,2121x x x x <+∴ . …………………12分22.(本小题满分10分)选修4-4:坐标系与参数方程 解(1)因为6cos ρθ=,所以26cos ρρθ=,所以226x y x +=,即曲线C 的直角坐标方程为22(3)9x y -+=, …………2分直线l 的参数方程3πcos ,43π2sin 4x t y t ⎧⎪==⎨+⎪⎪⎪⎩(t 为参数),即,222x y =-=+⎧⎪⎪⎨⎪⎪⎩(t 为参数), ………………………………5分(2)设点A ,B 对应的参数分别为1t ,2t ,将直线l 的参数方程代入曲线C的直角坐标方程得2232922t ⎛⎫⎛⎫--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理,得240t +=+,所以1212·4t t t t ⎧+=-=⎪⎨⎪⎩ ……………………7分1212120,0,0,0t t t t t t <><⋅∴+<,所以12MA MB t t +=+12()t t =-+=, MA MB ⋅||21t t ==4,所以11MA MB +=M M M A MB A B +⋅4=. ………………………10分 23.(本小题满分10分)选修4-5:不等式选讲解:(1)当1=a 时,4|2||1|4)(<-++⇒<x x x f ,化为⎩⎨⎧->-<321x x 或⎩⎨⎧<≤≤-4321x 或⎩⎨⎧<->4122x x , ………………………………3分解得123-<<-x 或21≤≤-x 或252<<x , 2523<<-∴x .即不等式()4f x <的解集为)25,23(-. ……………………5分(2)根据题意,得224m m -+的取值范围是()f x 值域的子集.33)1(4222≥+-=+-m m m ,又由于|12||2||1|)(+≥-++=a a x x x f ,)(x f ∴的值域为)|,12[|+∞+a ,……………………………………8分故3|12|≤+a ,12≤≤-∴a .即实数a 的取值范围为]1,2[-. ……………10分注:以上各题其他正确解法相应得分。

【6月15日太原三模理数】2020年6月山西省太原市高三年级模拟试题(三)理科数学试卷含答案

【6月15日太原三模理数】2020年6月山西省太原市高三年级模拟试题(三)理科数学试卷含答案

第 5 页 共 5 页 22.(本小题满分10分)选修4-4:坐标系与参数方程解(1)因为6cos ρθ=,所以26cos ρρθ=,所以226x y x +=,即曲线C 的直角坐标方程为22(3)9x y -+=, …………2分 直线l 的参数方程3πcos ,43π2sin 4x t y t ⎧⎪==⎨+⎪⎪⎪⎩(t 为参数),即,222x y =-=+⎧⎪⎪⎨⎪⎪⎩(t 为参数),………………………………5分(2)设点A ,B 对应的参数分别为1t ,2t ,将直线l 的参数方程代入曲线C的直角坐标方程得2232922t ⎛⎫⎛⎫--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理,得240t +=+,所以1212·4t t t t ⎧+=-=⎪⎨⎪⎩ ……………………7分 1212120,0,0,0t t t t t t <><⋅∴+<,所以12MA MB t t +=+12()t t =-+=, MA MB⋅||21t t ==4, 所以11MA MB +=M M M A MB A B +⋅4=. ………………………10分 23.(本小题满分10分)选修4-5:不等式选讲解:(1)当1=a 时,4|2||1|4)(<-++⇒<x x x f ,化为⎩⎨⎧->-<321x x 或⎩⎨⎧<≤≤-4321x 或⎩⎨⎧<->4122x x , ………………………………3分 解得123-<<-x 或21≤≤-x 或252<<x , 2523<<-∴x .即不等式()4f x <的解集为)25,23(-. ……………………5分 (2)根据题意,得224m m -+的取值范围是()f x 值域的子集. 33)1(4222≥+-=+-m m m ,又由于|12||2||1|)(+≥-++=a a x x x f ,)(x f ∴的值域为)|,12[|+∞+a ,……………………………………8分故3|12|≤+a ,12≤≤-∴a .即实数a 的取值范围为]1,2[-. ……………10分 注:以上各题其他正确解法相应得分。

2020年山西省太原市高考数学三模试卷(理科)

2020年山西省太原市高考数学三模试卷(理科)

2020年山西省太原市高考数学三模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合2{|320}A x x x =-+…,{|1}B x x a =+…,若A B R =U ,则实数a 的取值范围是( ) A .[2,)+∞B .(-∞,2]C .[1,)+∞D .(-∞,1]2.(5分)若复数z 满足(12)z i i =-g ,则复平面内z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知1a b >>,0c <,则( ) A .c ca b< B .a b c c <C .c c a b <D .log ()log ()a b b c a c ->-4.(5分)已知sin cos αα-(0,)απ∈,则tan α的值是( )A .1-B .CD .15.(5分)宋元时期数学名著《算学启蒙》中有关于“松竹并生“的问题,松长三尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为3,1,则输出的n 等于( )A .5B .4C .3D .26.(5分)已知等比数列{}n a 的前n 项和为n S ,若138a a =-,且313S =,则2(a = ) A .3-B .3C .353-D .3或353-7.(5分)平面向量a r,b r 共线的充要条件是( )A .||||a b a b =r rr r gB .a r,b r 两向量中至少有一个为零向量C .R λ∃∈,b a λ=r rD .存在不全为零的实数1λ,2λ,120a b λλ+=r r r8.(5分)根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为() A .16B .14 C .13D .129.(5分)把函数2()sin f x x =的图象向右平移12π个单位后,得到函数()y g x =的图象.则()g x 的解析式是( ) A .2()sin ()12g x x π=+B .1()cos(2)212g x x π=--C .11()cos(2)262g x x π=--+D .11()sin(2)262g x x π=-+10.(5分)已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增,若实数a 满足212(log )(log )2f a f a f +„(1),则a 的取值范围是( )A .1[,2]2B .[1,2]C .1(0,)2D .(0,2]11.(5分)已知抛物线2:8C x y =,过点0(M x ,0)y 作直线MA 、MB 与抛物线C 分别切于点A 、B ,且以AB 为直径的圆过点M ,则0y 的值为( ) A .1-B .2-C .4-D .不能确定12.(5分)点M 在曲线:3G y lnx =上,过M 作x 轴垂线l ,设l 与曲线1y x=交于点N ,若3OM ONOP +=u u u u r u u u r u u u r ,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”则曲线G 上的“水平黄金点”的个数为( ) A .0B .1C .2D .3二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知函数122log (01),()1(1),x x f x x x <⎧⎪=⎨⎪->⎩„则1(())8f f = .14.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若ABC ∆则A = .15.(5分)设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线上存在点P ,使1260F PF ∠=︒,且12||2||PF PF =,则双曲线的离心率为 .16.(5分)正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 是侧面11CDD C 上的动点,且1//B F 平面1A BE ,记1B 与F 的轨迹构成的平面为α. ①F ∃,使得11B F CD ⊥②直线1B F 与直线BC所成角的正切值的取值范围是,1]2③α与平面11CDD C所成锐二面角的正切值为④正方体1111ABCD A B C D -的各个侧面中,与α所成的锐二面角相等的侧面共四个. 其中正确命题的序号是 .(写出所有正确的命题序号)三、解答题:共70分解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知{}n a 是公差为1的等差数列,数列{}n b 满足11b =,212b =,11n n n n a b b nb +++=. (1)求数列{}n b 的通项公式; (2)设12n nnc b =,求数列{}n c 的前n 项和n S . 18.(12分)垃圾分类是对垃圾进行有效处置的一种科学管理方法,为了了解居民对垃圾分类的知晓率和参与率,引导居民积极行动,科学地进行垃圾分类,某小区随机抽取年龄在区间[25,85]上的50人进行调研,统计出年龄频数分布及了解垃圾分类的人数如表:(1)填写下面22x 列联表,并判断能否在犯错误的概率不超过0.01的前提下认为以65岁为分界点居民对了解垃圾分类的有关知识有差异;(2)若对年龄在[45,55),[25,35)的被调研人中各随机选取2人进行深入调研,记选中的4人中不了解垃圾分类的人数为X ,求随机变量X 的分布列和数学期望. 参考公式和数据22()()()()()n adbc K a b c d a c b d -=++++,其中n a b c d =+++.19.(12分)如图,在三棱柱111ABC A B C -中,已知四边形11AA C C 为矩形,16AA =,4AB AC ==,160BAC BAA ∠=∠=︒,1A AC ∠的角平分线AD 交1CC 于D .(Ⅰ)求证:平面BAD ⊥平面11AA C C ; (Ⅱ)求二面角111A B C A --的余弦值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省太原市高考数学三模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈Z||x﹣1|<3},B={x|x2+2x﹣3≥0},则A∩∁R B=()A.(﹣2,1)B.(1,4)C.{2,3}D.{﹣1,0}2.如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.﹣6 B.C.D.23.设等差数列{a n}的前n项和为S n,若2a6=6+a7,则S9的值是()A.27 B.36 C.45 D.544.下列命题错误的是()A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”B.若命题p:∃x0∈R,x0+1≤0,则¬p:∀x∈R,x+1>0C.△ABC中,sinA>sinB是A>B的充要条件D.若向量,满足•<0,则与的夹角为钝角5.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3 B.6cm3 C.D.6.若用如图的程序框图求数列{}的前100项和,则赋值框和判断框中可分别填入()A.S=S+,i≥100?B.S=S+,i≥101?C.S=S+,i≥100?D.S=S+,i≥101?7.已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递增区间是()A.[6kπ,6kπ+3],k∈Z B.[6k﹣3,6k],k∈ZC.[6k,6k+3],k∈Z D.[6kπ﹣3,6kπ],k∈Z8.已知实数x,y满足约束条件,则z=2x+y的最小值是()A.﹣2B.2 C.2D.19.已知△ABC的外接圆半径为1,圆心为O,且3,则△ABC的面积为()A.B.C.D.10.双曲线C1:﹣=1(a>0,b>0)与抛物线C2:y2=2px(p>0)相交于A,B两点,公共弦AB 恰过它们公共焦点F,则双曲线的一条渐近线的倾斜角所在的区间可能是()A.(,)B.(,)C.(,)D.(0,)11.已知{a n}满足a1=1,a n+a n+1=()n(n∈N*),S n=a1+4a2+42a3+…+4n﹣1a n,则5S n﹣4n a n=()A.n﹣1 B.n C.2n D.n212.已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,) B.(,1)C.(1,2)D.(2,3)二、填空题(本大题共4小题,每小题5分)13.(x+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为.14.曲线f(x)=xlnx在点P(1,0)处的切线l与坐标轴围成的三角形的外接圆方程是.15.已知A、B两个小孩和甲、乙、丙三个大人排队,A不排两端,3个大人有且只要两个相邻,则不同的排法种数有.16.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.已知a、b、c分别是△ABC的三个内角A、B、C的对边,且2asin(C+)=b.(1)求角A的值:(11)若AB=3,AC边上的中线BD的长为,求△ABC的面积.18.某校为调查高中生选修课的选修倾向与性别关系,随机抽取50名学生,得到如表的数据表:倾向“平面几何选讲”倾向“坐标系与参数方程”倾向“不等式选讲”合计男生16 4 6 26女生 4 8 12 24合计20 12 18 50(Ⅰ)根据表中提供的数据,选择可直观判断“选课倾向与性别有关系”的两种,作为选课倾向的变量的取值,并分析哪两种选择倾向与性别有关系的把握大;(Ⅱ)在抽取的50名学生中,按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.若从这8人中任选3人,记倾向“平面几何选讲”的人数减去与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望.附:K2=.P(k2≤k0)0.100 0.050 0.010 0.005 0.001k0 2.706 3.841 6.635 7.879 10.82819.在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,且PA⊥平面ABCD,点M是棱PA的中点.(1)若PA=4,求点C到平面BMD的距离;(2)过直线BD且垂直于直线PC的平面交PC于点N,如果三棱锥N﹣BCD的体积取到最大值,求此时二面角M﹣ND﹣B的大小的余弦值.20.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.21.已知函数f(x)=xe tx﹣e x+1,其中t∈R,e是自然对数的底数.(Ⅰ)若方程f(x)=1无实数根,求实数t的取值范围;(Ⅱ)若函数f(x)在(0,+∞)内为减函数,求实数t的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲] 22.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.(1)求证:AC=2AB;(2)求AD•DE的值.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.山西省太原市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈Z||x﹣1|<3},B={x|x2+2x﹣3≥0},则A∩∁R B=()A.(﹣2,1)B.(1,4)C.{2,3}D.{﹣1,0}【考点】交、并、补集的混合运算.【分析】求出A与B中不等式的解集确定出A与B,根据全集R求出B的补集,找出A与B补集的交集即可.【解答】解:由A中不等式解得:﹣2<x<4,即B={﹣1,0,1,2,3},由B中不等式变形得:(x+3)(x﹣1)≥0,解得:x≤﹣3,或x≥1,即B=(﹣∞,﹣3]∪[1,+∞),∴∁R B=(﹣3,1),则A∩(∁R B)={﹣1,0}.故选:D.2.如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于()A.﹣6 B.C.D.2【考点】复数代数形式的乘除运算.【分析】先将复数化简,确定其实部和虚部,利用实部和虚部互为相反数,可求b的值.【解答】解:由题意,==∵复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数∴∴b=,故选:C.3.设等差数列{a n}的前n项和为S n,若2a6=6+a7,则S9的值是()A.27 B.36 C.45 D.54【考点】等差数列的前n项和.【分析】由等差数列的性质结合已知求得a5=6,然后直接代入项数为奇数的等差数列前n项和公式得答案.【解答】解:在等差数列{a n}中,∵2a6=a5+a7,又由已知2a6=6+a7,得a5=6,∴S9=9a5=54.故选:D.4.下列命题错误的是()A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”B.若命题p:∃x0∈R,x0+1≤0,则¬p:∀x∈R,x+1>0C.△ABC中,sinA>sinB是A>B的充要条件D.若向量,满足•<0,则与的夹角为钝角【考点】命题的真假判断与应用.【分析】A.根据逆否命题的定义进行判断,B.根据含有量词的命题的否定进行判断,C.根据正弦定理以及充分条件和必要条件的定义进行判断,D.根据向量数量积以及夹角关系进行判断.【解答】解:A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”,正确为真命题,B.若命题p:∃x0∈R,x0+1≤0,则¬p:∀x∈R,x+1>0,命题为真命题,C.△ABC中,sinA>sinB等价为a>b,等价为A>B,则△ABC中,sinA>sinB是A>B的充要条件为真命题.D.当向量,反向共线时,夹角为180°,满足•<0,但与的夹角为钝角错误,故D错误,故选:D5.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3 B.6cm3 C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱锥与三棱柱的组合体,由此求出它的体积即可【解答】解:根据几何体的三视图,得该几何体是上部为三棱锥,下部为三棱柱的组合体,三棱柱的每条棱长为2cm,三棱锥的高为2cm,∴该组合体的体积为V=×2×2×2+××2×2×2=cm2,选:C.6.若用如图的程序框图求数列{}的前100项和,则赋值框和判断框中可分别填入()A.S=S+,i≥100?B.S=S+,i≥101?C.S=S+,i≥100?D.S=S+,i≥101?【考点】程序框图.【分析】程序框图的功能是求数列{}的前100项和,数列{}的通项应为的形式,从而可得赋值框内应填的内容,又最后一次进行循环时i的值为100,结合框图即可得解判断框中的条件.【解答】解:程序框图的功能是求数列{}的前100项和S=+++…+的运算,数列{}的通项应为的形式,则赋值框内应填:S=S+,又由框图可知,计数变量i的初值为1,步长值为1,故最后一次进行循环时i的值为100,即当i≥101时,满足判断框中的条件,退出循环,故判断框中的条件应为i≥101.故选:B.7.已知函教f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递增区间是()A.[6kπ,6kπ+3],k∈Z B.[6k﹣3,6k],k∈ZC.[6k,6k+3],k∈Z D.[6kπ﹣3,6kπ],k∈Z【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据交点横坐标求出最小正周期,进而可得w的值,再由当x=3时函数取得最大值确定φ的值,最后根据正弦函数的性质可得到答案.【解答】解:∵函教f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b(0<b<A)的三个相邻交点的横坐标分别是2,4,8∴T=6=∴w=,且当x=3时函数取得最大值∴×3+φ=∴φ=﹣∴f(x)=Asin(πx﹣)∴﹣πx﹣≤∴6k≤x≤6k+3故选C.8.已知实数x,y满足约束条件,则z=2x+y的最小值是()A.﹣2B.2 C.2D.1【考点】简单线性规划.【分析】由题意作平面区域,从而可得当直线z=2x+y与圆在第三象限相切时,有最小值,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,当直线z=2x+y与圆在第三象限相切时,有最小值,此时,d==2,故z=﹣2,故选:A.9.已知△ABC的外接圆半径为1,圆心为O,且3,则△ABC的面积为()A.B.C.D.【考点】向量的线性运算性质及几何意义.【分析】由可得到①,②,③,这三个式子的两边分别平方即可求出cos∠AOB,cos∠BOC,cos∠AOC,从而可以得出sin∠AOB,sin∠BOC,sin∠AOC,这样根据三角形的面积公式即可分别求出△AOB,△BOC,△AOC的面积,从而得到△ABC的面积.【解答】解:如图,;∴由得:①,②,③;①两边平方得:;∴;∴;∴OA⊥OB;同理②③两边分别平方得:,;∴;∴S△ABC=S△AOB+S△BOC+S△AOC==.故选:C.10.双曲线C1:﹣=1(a>0,b>0)与抛物线C2:y2=2px(p>0)相交于A,B两点,公共弦AB 恰过它们公共焦点F,则双曲线的一条渐近线的倾斜角所在的区间可能是()A.(,)B.(,)C.(,)D.(0,)【考点】双曲线的简单性质.【分析】求出抛物线与双曲线的焦点坐标,将其代入双曲线方程求出A的坐标;将A代入抛物线方程求出双曲线的三参数a,b,c的关系,求出双曲线的渐近线的斜率,求出倾斜角的范围.【解答】解:抛物线的焦点坐标为(,0);双曲线的焦点坐标为(c,0)∴p=2c∵点A 是两曲线的一个交点,且AF⊥x轴,∴将x=c代入双曲线方程得到A(c,)将A的坐标代入抛物线方程得到=2pc4a4+4a2b2﹣b4=0解得=双曲线的渐近线的方程为y=±x设倾斜角为α,则tanα==∴<α<故选:A.11.已知{a n}满足a1=1,a n+a n+1=()n(n∈N*),S n=a1+4a2+42a3+…+4n﹣1a n,则5S n﹣4n a n=()A.n﹣1 B.n C.2n D.n2【考点】数列的求和.【分析】a n+a n+1=()n(n∈N*),变形为:a n+1﹣=﹣,利用等比数列通项公式即可得出.【解答】解:∵a n+a n+1=()n(n∈N*),∴a n+1﹣=﹣,∴数列是等比数列,首项为,公比为﹣1.∴a n=+×(﹣1)n﹣1.4n﹣1a n=+(﹣1)n﹣1××4n.4n a n=+(﹣1)n﹣1×.∴5S n=n﹣=n+﹣.∴5S n﹣4n a n=n.故选:B.12.已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,) B.(,1)C.(1,2)D.(2,3)【考点】根的存在性及根的个数判断;对数函数图象与性质的综合应用.【分析】根据题意,由单调函数的性质,可得f(x)﹣log2x为定值,可以设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得t的值,可得f(x)的解析式,对其求导可得f′(x);将f(x)与f′(x)代入f(x)﹣f′(x)=2,变形化简可得log2x﹣=0,令h(x)=log2x﹣,由二分法分析可得h (x)的零点所在的区间为(1,2),结合函数的零点与方程的根的关系,即可得答案.【解答】解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,f′(x)=,将f(x)=log2x+2,f′(x)=代入f(x)﹣f′(x)=2,可得log2x+2﹣=2,即log2x﹣=0,令h(x)=log2x﹣,分析易得h(1)=﹣<0,h(2)=1﹣>0,则h(x)=log2x﹣的零点在(1,2)之间,则方程log2x﹣=0,即f(x)﹣f′(x)=2的根在(1,2)上,故选C.二、填空题(本大题共4小题,每小题5分)13.(x+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为40.【考点】二项式系数的性质.【分析】由于二项式展开式中各项的系数的和为2,故可以令x=1,建立起a的方程,解出a的值来,然后再由规律求出常数项【解答】解:由题意,(x+)(2x﹣)5的展开式中各项系数的和为2,所以,令x=1则可得到方程1+a=2,解得得a=1,故二项式为由多项式乘法原理可得其常数项为﹣22×C53+23C52=40故答案为4014.曲线f(x)=xlnx在点P(1,0)处的切线l与坐标轴围成的三角形的外接圆方程是.【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,求得f′(1),写出切线方程的点斜式,求得l与坐标轴围成的三角形,数形结合求得三角形的外接圆方程.【解答】解:由f(x)=xlnx,得f′(x)=lnx+1,∴f′(1)=1,则曲线f(x)=xlnx在点P(1,0)处的切线方程为y=x﹣1.如图,切线l与坐标轴围成的三角形为AOB,其外接圆的圆心为,半径为.∴三角形的外接圆方程是:.故答案为:.15.已知A、B两个小孩和甲、乙、丙三个大人排队,A不排两端,3个大人有且只要两个相邻,则不同的排法种数有48.【考点】计数原理的应用.【分析】从甲、乙、丙三个大人中任取2人“捆”在一起,共有C32A22=6种不同排法,则A必须在捆绑的整齐与另一个大人之间,此时共有6×2=12种排法,最后再在排好的三个元素中选出四个位置插入B,即可得出结论.【解答】解:从甲、乙、丙三个大人中任取2人“捆”在一起,共有C32A22=6种不同排法,则A必须在捆绑的整齐与另一个大人之间,此时共有6×2=12种排法,最后再在排好的三个元素中选出四个位置插入B,∴共有12×4=48种不同排法.故答案为:48.16.在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F∥平面D1AE,则A1F与平面BCC1B1所成角的正切值的取值范围是.【考点】直线与平面所成的角.【分析】设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点,分别取B1B、B1C1的中点M、N,连接AM、MN、AN,可得到A1F是平面A1MN内的直线,观察点F在线段MN上运动,即可得到A1F与平面BCC1B1所成角取最大值、最小值的位置,从而得到A1F与平面BCC1B1所成角的正切取值范围.【解答】解:设平面AD1E与直线BC交于点G,连接AG、EG,则G为BC的中点分别取B1B、B1C1的中点M、N,连接AM、MN、AN,则∵A1M∥D1E,A1M⊄平面D1AE,D1E⊂平面D1AE,∴A1M∥平面D1AE.同理可得MN∥平面D1AE,∵A1M、MN是平面A1MN内的相交直线∴平面A1MN∥平面D1AE,由此结合A1F∥平面D1AE,可得直线A1F⊂平面A1MN,即点F是线段MN上上的动点.设直线A1F与平面BCC1B1所成角为θ运动点F并加以观察,可得当F与M(或N)重合时,A1F与平面BCC1B1所成角等于∠A1MB1,此时所成角θ达到最小值,满足tanθ==2;当F与MN中点重合时,A1F与平面BCC1B1所成角达到最大值,满足tanθ==2∴A1F与平面BCC1B1所成角的正切取值范围为[2,2]故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤.)17.已知a、b、c分别是△ABC的三个内角A、B、C的对边,且2asin(C+)=b.(1)求角A的值:(11)若AB=3,AC边上的中线BD的长为,求△ABC的面积.【考点】解三角形.【分析】(1)利用正弦定理,结合和角的正弦公式,即可求角A的值:(2)若AB=3,AC边上的中线BD的长为,求出AC,再求△ABC的面积.【解答】解:(1)∵2asin(C+)=b,∴2sinAsin(C+)=sin(A+C),∴sinAsinC+sinAcosC=sinAcosC+cosAsinC,∴sinAsinC=cosAsinC,∴tanA=,∴A=60°;(2)设AC=2x,∵AB=3,AC边上的中线BD的长为,∴13=9+x2﹣2×3×x×cos60°,∴x=4,∴AC=8,∴△ABC的面积S==6.18.某校为调查高中生选修课的选修倾向与性别关系,随机抽取50名学生,得到如表的数据表:倾向“平面几何选讲”倾向“坐标系与参数方程”倾向“不等式选讲”合计男生16 4 6 26女生 4 8 12 24合计20 12 18 50(Ⅰ)根据表中提供的数据,选择可直观判断“选课倾向与性别有关系”的两种,作为选课倾向的变量的取值,并分析哪两种选择倾向与性别有关系的把握大;(Ⅱ)在抽取的50名学生中,按照分层抽样的方法,从倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生中抽取8人进行问卷.若从这8人中任选3人,记倾向“平面几何选讲”的人数减去与倾向“坐标系与参数方程”的人数的差为ξ,求ξ的分布列及数学期望.附:K2=.P(k2≤k0)0.100 0.050 0.010 0.005 0.001k0 2.706 3.841 6.635 7.879 10.828【考点】独立性检验的应用.【分析】(Ⅰ)利用K2=,求出K2,与临界值比较,即可得出结论;(Ⅱ)倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生人数的比例为20:12=5:3,从中抽取8人进行问卷,人数分别为5,3,由题意,ξ=﹣3,﹣1,1,3,求出相应的概率,即可求ξ的分布列及数学期望.【解答】解:(Ⅰ)选倾向“坐标系与参数方程”与倾向“不等式选讲”,k=0,所以这两种选择与性别无关;选倾向“坐标系与参数方程”与倾向“平面几何选讲”,K2=≈6.969>6.635,∴有99%的把握认为选倾向“坐标系与参数方程”与倾向“平面几何选讲”与性别有关;选倾向“平面几何选讲”与倾向“不等式选讲”,K2=≈8.464>7.879,∴有99.5%的把握认为选倾向“平面几何选讲与倾向“不等式选讲”与性别有关,综上所述,选倾向“平面几何选讲与倾向“不等式选讲”与性别有关的把握最大;(Ⅱ)倾向“平面几何选讲”与倾向“坐标系与参数方程”的学生人数的比例为20:12=5:3,从中抽取8人进行问卷,人数分别为5,3,由题意,ξ=﹣3,﹣1,1,3,则P(ξ=﹣3)==,P(ξ=﹣1)==,P(ξ=1)==,P(ξ=1)==,ξ的分布列ξ﹣3 ﹣1 1 3P数学期望Eξ=(﹣3)×+(﹣1)×+1×+3×=.19.在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,且PA⊥平面ABCD,点M是棱PA的中点.(1)若PA=4,求点C到平面BMD的距离;(2)过直线BD且垂直于直线PC的平面交PC于点N,如果三棱锥N﹣BCD的体积取到最大值,求此时二面角M﹣ND﹣B的大小的余弦值.【考点】二面角的平面角及求法;点到直线的距离公式.【分析】(1)设BD与AC相交于点O,连接MO,则BD⊥AC,证明平面BMD⊥平面PAC,过点A在平面PAC作AT⊥MO于点T,则AT⊥平面BMD,利用等面积,可求点C到平面BMD的距离;(2)连接ON,则△ONC为直角三角形,设∠OCN=θ(0<θ<),过N作NQ⊥OC于点Q,则NQ⊥平面ABCD,利用三棱锥N﹣BCD的体积取到最大值,确定AP=AC=2,以A为原点,分别以AB,AD,AP所在直线为x、y、z轴建立坐标系,求出平面MND的一个法向量、平面BND的一个法向量,利用向量的夹角公式,即可求此时二面角M﹣ND﹣B的大小的余弦值.【解答】解:(1)设BD与AC相交于点O,连接MO,则BD⊥AC,∵PA⊥平面ABCD,BD⊂ABCD,∴PA⊥BD,∴PA∩AC=A,∴BD⊥平面PAC,∵BD⊂平面BMD,∴平面BMD⊥平面PAC,过点A在平面PAC作AT⊥MO于点T,则AT⊥平面BMD,∴AT为点A到平面BMD的距离,∵C,A到平面BMD的距离相等,在△MAO中,AT==;(2)连接ON,则△ONC为直角三角形,设∠OCN=θ(0<θ<),过N作NQ⊥OC于点Q,则NQ⊥平面ABCD,==NQ=NCsinθ=OC•cosθsinθ=×sin2θ≤,∴V N﹣BCD当且仅当θ=时,V最大,此时AP=AC=2,以A为原点,分别以AB,AD,AP所在直线为x、y、z轴建立坐标系,则有点、,设平面MND的一个法向量为,则有,取y=1,则有,∵直线PC⊥平面BND,∴平面BND的一个法向量为,易知二面角M﹣ND﹣B的平面角为锐角α,则.20.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段ON的长;(Ⅱ)联立直线和抛物线方程进行削元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.【解答】解:(Ⅰ)由抛物线y2=2px经过点M(2,2),得22=4p,故p=1,c的方程为y2=2x …C在第一象限的图象对应的函数解析式为y=,则′=,故C在点M处的切线斜率为,切线的方程为y﹣2=(x﹣2),令y=0得x=﹣2,所以点N的坐标为(﹣2,0),故线段ON的长为2 …(Ⅱ)l2恒过定点(2,0),理由如下:由题意可知l1的方程为x=﹣2,因为l2与l1相交,故m≠0由l2:x=my+b,令x=﹣2,得y=﹣,故E(﹣2,﹣)设A(x1,y1),B(x2,y2)由消去x得:y2﹣2my﹣2b=0则y1+y2=2m,y1y2=﹣2b …直线MA的斜率为==,同理直线MB的斜率为,直线ME的斜率为因为直线MA、ME、MB的斜率依次成等差数列,所以+=2×=1+,即=1+=1+,…整理得:,因为l2不经过点N,所以b≠﹣2所以2m﹣b+2=2m,即b=2故l2的方程为x=my+2,即l2恒过定点(2,0)…21.已知函数f(x)=xe tx﹣e x+1,其中t∈R,e是自然对数的底数.(Ⅰ)若方程f(x)=1无实数根,求实数t的取值范围;(Ⅱ)若函数f(x)在(0,+∞)内为减函数,求实数t的取值范围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)先确定原方程无负实数根,令g(x)=,求出函数的值域,方程f(x)=1无实数根,等价于1﹣t∉(﹣∞,],从而求出t的范围;(Ⅱ)利用函数f(x)是(0,+∞)内的减函数,确定t<1,再分类讨论,即可求实数t的取值范围.【解答】解:(Ⅰ)由f(x)=1,可得x=e x(1﹣t)>0,∴原方程无负实数根,故有=1﹣t.令g(x)=,则g′(x)=,∴0<x<e,g′(x)>0;x>e,f′(x)<0,∴函数g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,∴函数g(x)的最大值为g(e)=,∴函数g(x)的值域为(﹣∞,];方程f(x)=1无实数根,等价于1﹣t∉(﹣∞,],∴1﹣t>,∴t<1﹣,∴当t<1﹣时,方程f(x)=1无实数根;(Ⅱ)f′(x)=e tx[1+tx﹣e(1﹣t)x]由题设,x>0,f′(x)≤0,不妨取x=1,则f′(1)=e t(1+t﹣e1﹣t)≤0,t≥1时,e1﹣t≤1,1+t≤2,不成立,∴t<1.①t≤,x>0时,f′(x)=e tx[1+tx﹣e(1﹣t)x]≤(1+﹣),由(Ⅰ)知,x﹣e x+1<0,∴1+﹣<0,∴f′(x)<0,∴函数f(x)是(0,+∞)内的减函数;②<t<1,>1,∴ln>0,令h(x)=1+tx﹣e(1﹣t)x,则h(0)=0,h′(x)=(1﹣t)[﹣e(1﹣t)x]0<x<ln,h′(x)>0,∴h(x)在(0,ln)上单调递增,∴h(x)>h(0)=0,此时,f′(x)>0,∴f(x)在(0,ln)上单调递增,有f(x)>f(0)=0与题设矛盾,综上,当t≤时,函数f(x)是(0,+∞)内的减函数.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲] 22.如图,△ABC内接于直径为BC的圆O,过点A作圆O的切线交CB的延长线于点P,∠BAC的平分线分别交BC和圆O于点D、E,若PA=2PB=10.(1)求证:AC=2AB;(2)求AD•DE的值.【考点】相似三角形的判定.【分析】(1)通过证明△ABP∽△CAP,然后证明AC=2AB;(2)利用切割线定理以及相交弦定理直接求AD•DE的值.【解答】(1)证明:∵PA是圆O的切线∴∠PAB=∠ACB又∠P是公共角∴△ABP∽△CAP…∴=2,∴AC=2AB…(2)解:由切割线定理得:PA2=PB•PC,∴PC=20又PB=5,∴BC=15…又∵AD是∠BAC的平分线,∴=2,∴CD=2DB,∴CD=10,DB=5…又由相交弦定理得:AD•DE=CD•DB=50…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知曲线C1:(t为参数),C2:(θ为参数).(Ⅰ)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:ρ(cosθ﹣2sinθ)=7距离的最小值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)曲线C1:(t为参数),利用sin2t+cos2t=1即可化为普通方程;C2:(θ为参数),利用cos2θ+sin2θ=1化为普通方程.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,利用点到直线的距离公式与三角函数的单调性即可得出.【解答】解:(Ⅰ)曲线C1:(t为参数),化为(x+4)2+(y﹣3)2=1,∴C1为圆心是(﹣4,3),半径是1的圆.C2:(θ为参数),化为.C2为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当t=时,P(﹣4,4),Q(8cosθ,3sinθ),故M,直线C3:ρ(cosθ﹣2sinθ)=7化为x﹣2y=7,M到C3的距离d==|5sin(θ+φ)+13|,从而当cossinθ=,sinθ=﹣时,d取得最小值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.【考点】不等式的证明;绝对值不等式;绝对值不等式的解法.【分析】(Ⅰ)根据绝对值不等式的解法解不等式f(x﹣1)+f(x+3)≥6即可;(Ⅱ)利用分析法进行证明不等式.【解答】解:(I)∵f(x)=|x﹣1|.∴不等式f(x﹣1)+f(x+3)≥6等价|x﹣2|+|x+2|≥6,若当x≥2时,不等式等价为x﹣2+x+2≥6,即2x≥6,解得x≥3.当﹣2<x<2时,不等式等价为2﹣x+x+2≥6,即4≥6,此时不成立.当x≤﹣2时,不等式等价为2﹣x﹣x﹣2≥6,即2x≤﹣6,即x≤﹣3.综上不等式的解集为(﹣∞,﹣3]∪[3,+∞).(II)要证,只需证|ab﹣1|>|b﹣a|,只需证(ab﹣1)2>(b﹣a)2而(ab﹣1)2﹣(b﹣a)2=a2b2﹣a2﹣b2+1=(a2﹣1)(b2﹣1)>0,∵|a|<1,|b|<1,∴a2<1,b2<1,即a2﹣1<0,b2﹣1<0,即(a2﹣1)(b2﹣1)>0,成立,从而原不等式成立.。

相关文档
最新文档