2019年考研数学三真题及答案解析
2019年考研数学(三)真题及答案解析(完整版)

【解析】令 un
1 n3
, vn
1n
,故(A)(C)排除。令 un
1 n3
, vn
1n
1 ln n
,故(D)
排除,对于选项(B),由于 vn 条件收敛,则 lim vn 0 ,且 lim unvn lim vn 0 ,
n1 n
n n
n nun n n
根据正项级数判别法 nun 绝对收敛,则 unvn 绝对收敛。综上,故选(B).
(C)3.
(D)4.
【答案】(C)
【解析】 x tan x ~ 1 x3, 故 k 3. 3
(2)已知方程 x5 5x k 0 有 3 个不同的实根,则 k 的取值范围( )
(A) (, 4) (B) (4, ) (C)[4, 4] (D) (4, 4)
【答案】(D)
【解析】令 f x x5 5x k ,则 f x 5x4 5 5 x4 1 5 x2 1 x2 1 ,
则 x 1, f x 0 ; 1 x 1, f x 0 ; x 1, f x 0 ;
又 lim f x , lim f x ,综合单调性知 f 1 0, f 1 0 时才有三个根,
x
x
即 f 1 1 5 k 0, f 1 1 5 k 0, 则 4 k 4 。
n 2 2 3
n n+1 n n+1
(10)
曲线
y
x
sin
x
2
cos
x
2
x
3 2
的拐点坐标为
【答案】
【解析】 y ' sin x x cos x 2sin x x cos x sin x
y '' cos x x sin x cos x x sin x ,令 y '' 0得x 0或x
(完整版)2019考研数学三真题及参考答案解析

2019全国研究生考试数学三真题及参考答案解析一、选择题1.()为同阶无穷小,则与时,若当=-→k xx x x ktan 0 A.0 B.1 C.2 D.3 2.的取值范围为()个不同的实根,则有已知k k x x 3055=+- A.()4-∞-, B.()∞+,4 C.]44[,- D.),(44- 3.c ,b ,a ,x C C y ce by y a y x -x x 则的通解为已知e )e (21++==+'+''的值为( )A.1,0,1B.1,0,2C.2,1,3D.2,1,44.的是()条件收敛,则下列正确绝对收敛,已知∑∑∞=∞=11n nn n nv nu A.条件收敛nn n v u ∑∞=1 B.绝对收敛∑∞=1n nn v uC.)收敛(nn nv u +∑∞=1D.)发散(nn nv u +∑∞=15个的基础解析有的伴随矩阵,且为阶矩阵,为已知204*=Ax A A A 线性无关的解,则) ()(=*A r A.0 B.1 C.2 D.36.设A 是3阶实对称矩阵,E 是3阶单位矩阵.若E A A 22=+,且4=A ,则二次型Ax x T 的规范形为A.232221y y y ++.B.232221y y y -+.C.232221y y y --.D.232221y y y ---.7.设B A ,为随机事件,则)()(B P A P =的充分必要条件是A.).()()(B P A P B A P +=YB.).()()(B P A P AB P =C.).()(A B P B A P =D.).()(B A P AB P =8.设随机变量X 与Y 相互独立,且都服从正态分布),(2σμN ,则{}1<-Y X P A.与μ无关,而与2σ有关. B.与μ有关,而与2σ无关. C.与2,σμ都有关. D.与2,σμ都无关.二.填空题,9~14小题,每小题4分,共24分.9.()=⎪⎪⎭⎫⎝⎛+++⨯+⨯∞→nn n n 11321211lim Λ 10. 曲线⎪⎭⎫⎝⎛-+=232cos 2sin ππ<<x x x y 的拐点坐标为 11. 已知()t t x f xd 114⎰+=,则()=⎰x x f x d 10212. A, B 两种商品的价格为A p ,B p ,A 商品的价格需求函数为222500B B A A p p p p +--,则当A p =10,B p =20时,A 商品的价格需求弹性AA η(0>AA η)=13. 设⎪⎪⎪⎭⎫ ⎝⎛---=1101111012a A ,⎪⎪⎪⎭⎫⎝⎛=a b 10,若b Ax =有无穷多解,则a= 14 设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=,其他,020,2)(x xx f )(x F 为X 的分布函数,X E 为X 的数学期望,则{}=->1X X F P E )( . 三、解答题15.已知函数⎩⎨⎧≤+>=010)(2x xe x x x f x x ,求的极值并求)(f )('f x x16.设)(v u f ,具有连续的2阶偏导数,求),,(),(y x y x f xy y x g -+-=22222y gy x g x g ∂∂+∂∂∂+∂∂ 17.)(x y 显微分方程2221'x e xxy y =-满足条件e y =)1(的特解.(1)求)(x y(2)区域D {})(0,21,x y y x y x ≤≤≤≤)(,D 绕轴旋转的旋转体的体积 18.求曲线)0(sin >=-x x e y x与x 轴之间图形的面积。
2019考研数学三真题及答案

ax 22
b) x
ax 33
ax
a n
a
x
n
x
0, 0,
a11x11
a 2x 22
(a2 b)3x 3
3
3
a nx n nn
0,
a1
x 1
a 2
x 2
a x 33
(a n
b) x n
0,
n a
其中 i1 i
0.
试讨论
a 1
,
a 2
,
, a n 和 b 满足何种关系时,
f ( x) (1)设 f(x)为不恒等于零的奇函数,且 f (0) 存在,则函数 g(x) x
(A)在 x=0 处左极限不存在.(B)有跳跃间断点 x=0. (C)在 x=0 处右极限不存在.(D)有可去间断点 x=0.[D] 【分析】由题设,可推出 f(0)=0,再利用在点 x=0 处的导数定义进行讨论即可. 【详解】显然 x=0 为 g(x)的间断点,且由 f(x)为不恒等于零的奇函数知,f(0)=0.
A 2
,
3
4A相, 互A独立.
A 2
,
3
4A两, 两A独立.
三、(本题满分8 分)
设:
f ( x)
1 x
1 sin x
1 (1
x)
,
x
[
1 2
,1).
试补充定义 f(1)使得 f(x)在 [21 ,1]上连续.
四、(本题满分8 分)
2 f 设 f(u,v)具有二阶连续偏导数,且满足 u2
2 f v2
求幂级数 n1
2n ( x 1) 的和函数 f(x)及其极值.
七、(本题满分9 分)
2019考研数学三真题及答案解析

2019考研数学三真题答案解析(完整版)1.3tan 3x x x --若要x - tan x 与x b 同阶无穷小,\ k = 3\选C2.54()5()5501f x x x k f x x x '=-+=-==±(1,1)()0,(),(,1)(1,),()0x f x f x x f x ''∈-<↓∈-∞-⋃+∞>,()f x ↑极大值(1)154f k k -=-++=+极小值(1)154f k k =-+=-lim ();lim ()x x f x f x →-∞→+∞=-∞=+∞若要550x x k -+=有3个不同的实根∴(1)0(1)04040f f k k -><+>-<即∴44(4,4)k -<<-即选D 。
3.解:∵通解为12()e e xxy C C x -=++∴e ,e 0x x x y ay by --'''++=为的两个解.即1λ=-为重根.22010402,1,a b a b a b a b λλ++=⇒-+=∆=-=⇒==∴e x 为e x y ay by c '''++=的特解:2exy y y c '''++=将e x y =代入e 2e e e 4x x x x c c ++=⇒=∴2,1,4a b c ===∴选D.4.1n n nu ¥=å 绝对收敛,1nn v n ¥=å 条件收敛n n u nu £ 1n n u ¥=\å绝对收敛.nv n有界.不妨设n v M n <n n nu v M u \£1n n M u ¥=å 收敛1n n n u v ¥=\å绝对收敛.故选B5.0Ax = 的基础解系中只有2个向量()24()n r A r A \-==-()0r A *\=\选A6.选(C )解:由22A A E +=得22λλ=+,λ为A 的特征值,2λ=-或1,又1234A =λλλ=,故1232,1,λλλ==-=规范形为222123y y y --,选(C )7.选(C )解:法一:()()()P AB P A P AB =-()()()P B A P B P AB =-()()()()P A P B P AB P B A =\=选(C )法二排除法(A )A B ==W 时排除(A )(B )若A 、B 互斥,且0()1,0()1,P A P x <<<<排除(B )(D )若A B ==W ,则()()1,()()0P AB P P AB P =W ==F =,排除(D)8.解:因为22(,)(,)X N u Y N u s s X 与Y 相互独立2(0,2)X Y N s \-{}11121222X Y P X Y Pss s -÷ç\-<=<=F -÷ç÷ç\与u 无关,即与2a 有关选择(A )9.11lim 12(1)nx n n +¥÷ç÷++ç÷ç÷×+11lim eenn x -++¥==10.3sin 2cos 22y x x x x p p ÷ç=+-<<÷ç÷çsin cos 2sin cos sin y x x x x x x x¢=+-=-令()cos sin cos sin 0y x x x x x x x =--=-=得0,x x p==0x <时,()0y x <0x >时,()0y x <不为拐点.0x p <<时,()0y x <32x pp >>时,()0y x >拐点为(),2p -11.解析:()()()1201201130113130104034120()d d 1d 31|311)341211(1)|1)1231818x f x xx t xt xx t x xx x ===-=-⋅+=-⋅+=-=-⎰⎰⎰⎰⎰⎰⎰⎰12.解析:2222(2)5002(2)5002A AA A AAA B A A B B A A B A A B B P Q Q P P P P P P P P P P P P P P P h ¶=-×¶=-×----++=-+故10,20A B P P ==时,10404000.45001002008001000h ´===--+13.解析:2221010()111101110101010010101010110011A b a a a a a a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭--⎛⎫⎛⎫ ⎪ ⎪→→ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭当a =1时()()23r A r A b ==< ,Ax =b 有无穷多解.14.X 的概率密度为,02()20,else xx f x ⎧<<⎪=⎨⎪⎩3222210022221184d d |2223630()024121{()1}{()}{2}2}32d 2243xx EX x x x x x x F x x x P F X EX P F X P X P X x P X x x =⋅====<⎧⎪⎪=≤<⎨⎪≥⎪⎩≥-=≥=≥=<⎫=<<=⎬⎭==⎰⎰15.解:当0x >时22ln 2ln ()e ()e (2ln 2)x x x x x f x x f x x ¢===+当0x <时()e e x xf x x ¢=+当0x =时0000()(0)e 11lim ()lim lim lim e 10x xx x x x f x f x f x x x-----+-====-2000()(0)11lim ()lim lim 0x x x x f x f x f x x x----+-==-不存在\有()f x 在0x =点不可导.于是2ln e (2ln 2)0(),0e +e ,0x x x x x xf x x x x ,不存在ìï+>ïïï¢==íïïï<ïî令()0f x ¢=得121,1,ex x ==-于是有下列表x (,1)-¥--1(-1,0)010,e ÷ç÷ç÷ç1e1,e÷ç+¥÷ç÷ç()f x ¢-0+不存在-0+()f x ¯极小值极大值¯极小值于是有()f x 的极小值为2e 11(1)1,e e ef f -÷ç-=-=÷ç÷ç,极大值为(0)1f =16.解析:(,)(,)g x y xy f x y x y =-+-''2""""2''2""""22""""(,)(,)1u v uu uv vu vvu v uu vv vu vv uu uv vu vvgy f x y x y f x y x y x g f f f f x gx f f yg f f f f yx g f f f f x y∂=-+--+-∂∂=----∂∂=-+∂∂=-++-∂=-+-+∂∂所以:22""""212uu uu vv uu g g xg f f f f x x y y ∂∂∂++=---+-∂∂∂∂""13uu vvf f =--17.解析:(1)22x y xy ¢-=)2222222d d 22222ee d e e d e ex x x xx xx x x x y x C x C x C C通解--÷ç÷ç=×+÷ç÷÷ç÷ç÷ç=×+÷ç÷÷ç÷ç=+÷ç÷ç=òòò由(f C =+0C =所以22(e x f x (2)()22222221221222411e d e d e d e =e -e 222x x x x x V x x x x p p p p p ÷÷=÷÷÷=×==òòò18.[)2,2x k k p p p Î+时()(21)12(21)2(21)(21)22(21)2(21)(21)22(21)21(21)2e sin d sin de sin e e cos d e cos d =e cos d cos e +e (sin )d e e1e e 2k x k k xk k k x x x k k k x k k k x x k k k k k k S x x x x x x x xx xx x xS x p pp pp p ppp pp p ppppp p +-+-++---+-++---+--+-==-=-×+=-=+-=+òòòòò[)22,22x k k p p p Î++(22)22(22)(22)22(21)21)(22)2(21)2(22)(21)2(22)e sin d sin e -e cos d =-ecos d cos e -e (sin )d e e 1e e 2k x k k k x x k k k k k xx x k k k k k k S x xx x xx x x x xS p p pp p pp pp p pp ppp pp p p +-+++--++++---+++-+-+-+==-=+-=-+--=+òò((21)k p -+ùúû面积为(())()12(21)2(22)02202212e e e 21=12e e e 211e 112e e 21e 2e 1k k k k k k k SS p p p p pp p p p p p ¥=¥-+--+=¥---=----ù=++úû+++=++=--ååå19.设1(0,1,2,)n a x n ==⎰…(1)证明:数列{}n a 单调减少,且21(2,3,);2n n n a a n n --==+ (2)求1lim.nn n a a →∞-解析(1)111110(1)0.n n n n a a xxx x ----=-=-<⎰⎰⎰则{}n a 单调递减.1/2/222201sin sin cos sin (1sin ),2n n n n n n a x dxx t t tdt t t dt I I I n ππ+=-⋅=⋅-=-=+⎰⎰⎰则2222111,.(2)(2)n n n n n n n a I a a I n n n n ------===++则(2)由(1)知,{}n a 单调递减,则211111, 1.222n n n n n a n n n a a a n n n a ------=><<+++即由夹逼准则知,1lim1.nn n a a →∞-=20.解:123123(,,,,,)αααβββ2222111101102123443313111101011022001111a a a a r a a a a ⎛⎫ ⎪= ⎪ ⎪++-+⎝⎭⎛⎫⎪- ⎪ ⎪----⎝⎭①若a =1,则123123123123(,,)(,,)(,,,,,)r r r αααβββαααβββ==此时向量组(Ⅰ)与(Ⅱ)等价,令123(,,)A ααα=则31023()01120000A β⎛⎫⎪→-- ⎪⎪⎝⎭此时3123(32)(2)k k k βααα=-+-++②若a =-1,则()2(,)3r A r A B =≠=,向量组(Ⅰ)与(Ⅱ)不等价.③若1,1a ≠-,31001()01010011A β⎛⎫⎪→- ⎪⎪⎝⎭3123βααα=-+21.2212102201000200A x B y --⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦与相似(1)1231~413()()242210(2)010(1)(2)(2)00021,2,21211211201242000001210001001000022A Bx yx tr A tr B y x y E B x x A E A E λλλλλλλλλξλ∴-=+=⎧∴=⇒⇒⎨=-+=-⎩---=+=++-=-=-=-=---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-+=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦=-+=T 时, =(-,,)时,()2311321410440125201050211240000000004212122102221200100112004000000211,122040A E P ξλξξξξ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦---⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦TT =(-,,)时, =(-,,0), 111122P AP --⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦1223310310100000113000100041010022010010001000000010010322030001100004000B E x B E x B E x λλλ⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-+=→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥=-=-→=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦TT时, (-,,)时, (,,)时, (,,121232212212121211221()22122()1211030122001040130111212004101100()3000006100011011000P x x x P BP B P P B P P A PP P PP P iE -----⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦=-=---⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦---⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦--→T) 故=03310010001101100010001100100311000030100011001103⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎣⎦22.(1)随机变量X 的分布函数为⎩⎨⎧<≥-=-0,00,1)(x x e x F x X {}{}{}{}())(1)()1(1,1,)(z F p z F p Y z X P Y z X P z XY P z Z P z F XXZ --+-=-=-≥+=≤=≤=≤=当0<z 时,()zX Z pe z F p z F =--=)(1)(当0≥z 时,()pe p z F p z F p z F z X X Z +--=--+-=-)1)(1()(1)()1()(则⎩⎨⎧≤>-=-0,0,)1()(z pe z e p z f z zZ (2)p EY EX XY E EZ EX 21)(,1-=⋅===()())21(221)()()()()(222p p EX DX Y E X E Y X E XZ E -=-+===当())()(2Z E XE XZ E =时,Z X ,不相关.即)21(221p p -=-,可得21=p .(3)因为{}{}01,1,11,1=≥-=≤=-≤≤X Y X P Z X P 又{}111--=≤e X P ,{}11-=-≤peZ P 则{}{}{}111,1-≤⋅≤≠-≤≤Z P X P Z X P ,故不独立.23.(1)由1222222222)(2)(==-=⎰⎰∞+----∞+πσμσμσμσμμA x deA dx eAx x 可得:π2=A .(2)设n x x x ,,,21 为样本值,似然函数为()()⎪⎩⎪⎨⎧>∑⎪⎪⎭⎫ ⎝⎛==--elsex x x e L n x nn ni i ,0,,,,2121212122μπσσμσ当μ>n x x x ,,,21 时,()()()()2122221ln 2ln 2ln 2ln ∑----==n i i x n n L μσσπσ令()()()0)(2112ln 1222222=∑-+-==n i i x n d L d μσσσσ,可得()nx ni ∑=-=1212μσ故2σ的最大似然估计量为()nXni ∑=-=1212μσ .。
2019年全国硕士研究生入学统一考试数学三真题_真题(含答案与解析)-交互

2019年全国硕士研究生入学统一考试数学三真题(总分150, 做题时间180分钟)选择题每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
1.当x →0 时,若x-tanx与x k是同阶无穷小,则 k=SSS_SINGLE_SELA1B2C3D4该题您未回答:х该问题分值: 4答案:C2.已知方程 x5-5x + k = 0 有个不同的实根,则 k 的取值范围SSS_SINGLE_SELA(-∞,-4)B(4,+∞)C[-4,4]D(-4,4)该题您未回答:х该问题分值: 4答案:D3.已知微分方程y''+ay'+by=ce x的通解为y=(C1+C2x)e-x+e x,则a,b,c依次为SSS_SINGLE_SELA1,0,1B1,0,2C2,1,3D2,1,4该题您未回答:х该问题分值: 4答案:D由题干分析出-1为特征方程r2+ar+b=0的二重根,即(r+1)2=0 故a=2,b=1;又e x为y''+ay'+by=ce x的解,代入方程得c=44.SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 4答案:B5.设A是四阶矩阵,A*是 A的伴随矩阵,若线性方程组 Ax = 0 的基础解系中只有 2 个向量,则A*的秩是SSS_SINGLE_SELAB1C2D3该题您未回答:х该问题分值: 4答案:A由于 AX = 0 的基础解系有只有两个解向量,则由4 - R(A) = 2可得R(A) - 2 < 3,故R(A* ) = 0。
6.设A是3阶实对称矩阵,E是3阶单位矩阵,若A2+A=2E ,且| A |=4 ,则二次型x T Ax的规范形为SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 4答案:C∵A2+A=2E ,设 A的特征值为λ∴λ2+λ=2(λ+2)(λ-1)=0∴λ=-2或1∵| A |=4∴A的特征值为λ1=λ2=-2,λ3=1∴q=2,p=1∴X T Ax的规范形为y12-y22-y327.设 A,B 为随机事件,则 P(A) = P(B) 的充分必要条件是SSS_SINGLE_SELAP(A∪B) = P(A) + P(B)BP(AB) = P(A)P(B)CD该题您未回答:х该问题分值: 4答案:CA选项⇔P(AB) =0 ,故 A 排除B选项⇔ A、B 独立,故 B 排除C选项⇔ P(A) - P(AB) = P(B) - P(AB)而P(A) ⇔ P(B) ,故 C 正确= 1- P(A) -P(B) + P(AB)⇔1 = P(A) + P(B) 故 D 排除8.设随机变量 X 与Y 相互独立,且都服从正态分布N(μ,σ2),则P{|X-Y|<1}SSS_SINGLE_SELA与μ无关,而与σ2有关B与μ有关,而与σ2无关C与μ,σ2都有关D与μ,σ2都无关该题您未回答:х该问题分值: 4答案:A填空题每小题4分,共24分。
2019年全国研究生考试数学(三)真题

全国硕士研究生入学统一考试数学试题全国硕士研究生入学统一考试数学试题一、填空题:本题共6小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(1) 极限xx x 20)]1ln(1[lim ++→=. (2)dx ex x x⎰--+11)(=.(3) 设0a >,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧== 而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=.(4) 设,A B 均为三阶矩阵,E 是三阶单位矩阵. 已知2AB A B =+, 202040202B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1)(--E A =.(5) 设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵T E A αα-=, T aE B αα1+=,其中A 的逆矩阵为B ,则a = .(6) 设随机变量X 和Y 的相关系数为0.5,0EX EY == ,222==EY EX , 则2)(Y X E += .二、选择题:本题共6小题,每小题4分,共24分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(1) 曲线21x xe y = ( )(A) 仅有水平渐近线. (B) 仅有铅直渐近线.(C) 既有铅直又有水平渐近线. (D) 既有铅直又有斜渐近线. (2) 设函数)(1)(3x x x f ϕ-=,其中)(x ϕ在1x =处连续,则0)1(=ϕ是()f x 在1x =处可导的 ( )(A) 充分必要条件. (B)必要但非充分条件.(C) 充分但非必要条件 . (D) 既非充分也非必要条件. (3) 设可微函数(,)f x y 在点),(00y x 取得极小值,则下列结论正确的是 ( )(A) ),(0y x f 在0y y =处的导数等于零. (B)),(0y x f 在0y y =处的导数大于零.(C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在.(4) 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100B .已知矩阵A 相似于B ,则秩(2)A E -与秩()A E -之和等于( )(A) 2. (B) 3. (C) 4. (D) 5. (5) 对于任意二事件A 和B ( )(A) 若φ≠AB ,则,A B 一定独立. (B) 若φ≠AB ,则,A B 有可能独立.(C) 若φ=AB ,则,A B 一定独立. (D) 若φ=AB ,则,A B 一定不独立.(6) 设随机变量X 和Y 都服从正态分布,且它们不相关,则 ( )(A) X 与Y 一定独立. (B) (X ,Y )服从二维正态分布. (C) X 与Y 未必独立. (D) X +Y 服从一维正态分布.设 ).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ试补充定义(1)f 使得()f x 在]1,21[上连续.四 、(本题满分8分)设(,)f u v 具有二阶连续偏导数,且满足12222=∂∂+∂∂vfu f ,又)](21,[),(22y x xy f y x g -=,求.2222y g x g ∂∂+∂∂ 五 、(本题满分8分) 计算二重积分.)sin(22)(22dxdy y x e I Dy x+=⎰⎰-+-π其中积分区域22{(,)}.D x y x y π=+≤ 六、(本题满分9分)设1a >,at a t f t -=)(在),(+∞-∞内的驻点为).(a t 问a 为何值时,()t a 最小?并求出最小值.七、(本题满分9分)设()y f x =是第一象限内连接点(0,1),(1,0)A B 的一段连续曲线,(,)M x y 为该曲线上任意一点,点C 为M 在x 轴上的投影,O 为坐标原点. 若梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,求()f x 的表达式. 八、(本题满分8分)设某商品从时刻0到时刻t 的销售量为kt t x =)(,).0(],,0[>∈k T t 欲在T 时将数量为A 的该商品销售完,试求(1) t 时的商品剩余量,并确定k 的值;(2) 在时间段[0,]T 上的平均剩余量. 九、(本题满分13分)设有向量组(I):T )2,0,1(1=α,T )3,1,1(2=α,T a )2,1,1(3+-=α和向量组(II):T a )3,2,1(1+=β,T a )6,1,2(2+=β,.)4,1,2(3T a +=β 试问:当a 为何值时,向量组(I)与(II)等价?当a 为何值时,向量组(I)与(II)不等价?设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a A 11121112可逆,向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11b α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵. 试求,a b 和λ的值. 十一、(本题满分13分)设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x f()F X 是X 的分布函数. 求随机变量()Y F X =的分布函数.十二、(本题满分13分)对于任意二事件A 和B ,1)(0,1)(0<<<<B P A P , )()()()()()()(B P A P B P A P B P A P AB P -=ρ称作事件A 和B 的相关系数.(1) 证明事件A 和B 独立的充分必要条件是其相关系数等于零;(2) 利用随机变量相关系数的基本性质,证明.1≤ρ2003年全国硕士研究生入学统一考试数学四试题解析一、填空题 (1)【答案】2e【详解】方法1:xx x 20)]1ln(1[lim ++→,属于∞1型未定式极限,可以考虑利用重要极限求解.首先凑成重要极限形式:()200002ln(1)1ln(1)2ln(1)2lim lim 2lim[1ln(1)]lim 1ln(1)xx x x x x x x x xx xx x e e e →→→→+⋅++=++=++==方法2:xx x 20)]1ln(1[lim ++→=2ln[1ln(1)]0lim x x x e++→=2ln[1ln(1)]2ln(1)limlim2x x x x xxeee →→+++==(注意:l n[1ln(1)]ln(1)x x +++:)(2)【答案】)21(21--e【分析】对称区间上的定积分,有0()2()()()0()a a aaaf x dx f x dxf x f x dx f x --⎧=⎪⎨⎪=⎩⎰⎰⎰当为偶函数当为奇函数【详解】dx ex x x⎰--+11)(=dx xedx ex xx⎰⎰----+1111=dx ex x--⎰11+012x xe dx -=⎰102x xde -=-⎰112[]xx xe e dx --=--⎰=)21(21--e .(3)【答案】2a【详解】本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,则二重积分只需在积分区域与被积函数不为零的区域的公共部分商积分即可,因此实际上只需在满足此不等式的区域内积分即可.⎰⎰-=Ddxdy x y g x f I )()(=20101x y x a dxdy ≤≤≤-≤⎰⎰=1120x xa dx dy+⎰⎰1220[(1)]a x x dx a =+-=⎰(4)【答案】⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 【详解】 应先化简,从2AB A B =+中确定1)(--E A .2AB A B =+⇒222AB B A E E -=-+⇒E E A B E A 2)(2)(=---⇒E E B E A 2)2)((=--⇒E E B E A =-⋅-)2(21)(,所以 1)(--E A =)2(21E B -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100.(5) 【答案】-1【详解】这里T αα为n 阶矩阵,而22a T =αα为数,直接通过E AB =进行计算并注意利用乘法的结合律即可.由题设,有)1)((T T a E E AB αααα+-==T T T T a a E αααααααα⋅-+-1111()T T T T E a a αααααααα=-+-=T T T a a E αααααα21-+-1(12)T E a E aαα=+--+=,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 已知0a <,故1a =-.(6)【答案】6【分析】本题的核心是逆向思维,利用协方差公式()cov(,)()()E XY X Y E X E Y =+. 涉及公式:(1)22()()[()]D X E X E X =-,(2)()()()2cov(,)D X Y D X D Y X Y +=++(3)XY ρ=【详解】方法1:由方差定义的公式和相关系数的定义22()()[()]D X E X E X =-202,=-= 同理()2D Y =,1cov(,)212XY X Y ρ==⨯=.所以 222()()[()]()()E X Y D X Y E X Y D X Y EX EY +=+++=+++()()()2cov(,) 6.D X Y D X D Y X Y =+=++=方法2:由数学期望的线性可加性()()()E aX bY aE X bE Y +=+得:222()(2)E X Y E X XY Y +=++222()EX E XY EY =++42()E XY =+再利用()()()(,)E XY Cov X Y E X E Y =+⋅,得2)(Y X E +()()42[(,)]Cov X Y E X E Y =++⋅由方差定义的公式,有22()()[()]D X E X E X =-202,=-= 同理()2D Y =,再由相关系数的定义XY ρ=得,cov(,)XY X Y ρ=2)(Y X E +42420.52 6.XY ρ=+=+⨯⨯=二、选择题 (1)【答案】()D【分析】按照铅直、水平、斜渐近线三种情况分别考虑:先考虑是否有水平渐近线:lim (),()x f x c c →±∞=为常数,y c =为曲线的一条水平渐近线;若无水平渐近线应进一步考虑是否存在斜渐近线:()()lim,lim [()]x x x x x x yk b f x kx x →∞→∞→+∞→+∞→-∞→-∞==-,y kx b =+为曲线的一条斜渐近线;而是否存在铅直渐近线,应看函数是否存在无定义点,且00lim ,lim x x x x y y +-→→=∞=∞,则0x x =为曲线的一条垂直渐近线.【详解】1.y x ±∞→lim 极限均不存在,故曲线不存在水平渐近线;2.1lim lim 21==∞→∞→x x x e x y ,2221212001lim()lim1lim 0u u x x u u e u xe x u x e u uu -→∞→→--=-=:, 所以曲线有斜渐近线y x =.3.在0x =处21xxe y =无定义,且1222111ln 000lim lim lim lim xxx e xx xx x x x xe ee e ++++→→→→====∞,故 0x =为铅直渐近线.故曲线21x xe y =既有铅直又有斜渐近线,应选()D .(2)【答案】()A【详解】被积函数中含有绝对值,应当作分段函数看待,利用()f x 在1x =处左右导数定义讨论即可.32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ+++→→→--=⋅=++⋅=--, 32111()(1)1lim lim ()lim(1)()3(1)11x x x f x f x x x x x x x ϕϕϕ---→→→--=-⋅=-++⋅=---, 由于()f x 在1x =处可导的充分必要条件是左、右导数相等,所以.0)1()1(3)1(3=⇔-=ϕϕϕ故应选()A .(3)【答案】()A【详解】由函数(,)f x y 在点),(00y x 处可微,知函数(,)f x y 在点),(00y x 处的两个偏导数都存在,又由二元函数极值的必要条件即得(,)f x y 在点),(00y x 处的两个偏导数都等于零. 从而有000(,)(,)(,)0y y x y x y df x y f dyy==∂==∂选项()A 正确.(4)【答案】(C)【分析】 利用相似矩阵有相同的秩计算,秩(2)A E -与秩()A E -之和等于秩(2)B E -与秩()B E -之和.【详解】因为矩阵A 相似于B , 又1B P AP -=,所以()111222P A E P P AP P EP B E ----=-=-,于是,矩阵(2)A E -与矩阵(2)B E -相似. 同理有()111P A E P P AP P EP B E ----=-=-所以,矩阵A E -与矩阵B E -相似. 又因为相似矩阵有相同的秩,而秩(2)B E -=秩3201010102=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---,秩()B E -=秩1101000101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--, 所以有秩(2)A E -+秩()A E -= 秩(2)B E -+秩()B E -=4,故应选(C).(5)【答案】B【详解】本题考查独立与互斥事件之间的关系,事实上,独立与互斥事件之间没有必然的互推关系.当{}{}0,0P A P B ≠≠时,若,A B 相互独立,则一定有{}{}{}0P AB P A P B =≠,从而有AB ≠∅. 可见,当,A B 相互独立时,往往,A B 并不是互斥的.AB ≠∅推不出{}{}{}P AB P A P B =⋅, 因此推不出,A B 一定独立,排除(A);若AB =∅,则{}0P AB =,但{}{}P A P B 是否为零不确定,{}{}{}P AB P A P B ≠. 因此(C),(D) 也不成立,故正确选项为(B).(6)【答案】C .【分析】本题考查正态分布的性质以及二维正态分布与一维正态分布之间的关系.只有(,)X Y 服从二维正态分布时,不相关与独立才是等价的.有结论如下:① 若X Y 与均服从正态分布且相互独立,则(,)X Y 服从二维正态分布.如果X Y 与都服从正态分布,甚至X Y 与是不相关,也并不能推出(,)X Y 服从二维正态分布.② 若X Y 与均服从正态分布且相互独立,则bY aX +服从一维正态分布. ③ 若(,)X Y 服从二维正态分布,则X Y 与相互独立⇔X Y 与不相关. 【详解】只有当(,)X Y 服从二维正态分布时,X Y 与不相关⇔X Y 与独立,本题仅仅已知X Y 与服从正态分布,因此,由它们不相关推不出X Y 与一定独立,排除(A);若X Y 与都服从正态分布且相互独立,则(,)X Y 服从二维正态分布,但题设并不知道,X Y 是否独立,可排除(B);同样要求X Y 与相互独立时,才能推出X Y +服从一维正态分布,可排除(D).故正确选项为(C).三【详解】为使函数()f x 在1[,1]2上连续,只需求出函数()f x 在1x =的左极限)(lim 1x f x -→,然后定义(1)f 为此极限值即可.11111lim ()lim[]sin (1)x x f x x x x πππ--→→=+-- 1111lim[]sin (1)x x x πππ-→=+--11(1)sin lim (1)sin x x xx xπππππ-→--=+- 令1u x =-,则当1x -→时,0u +→,所以1lim ()x f x -→01sin (1)lim sin (1)u u u u u πππππ+→--=+-1sin (1)lim (sin cos cos sin )u u u u u u ππππππππ+→--=+⋅⋅-⋅01sin (1)limsin u u u u uπππππ+→--=+⋅ 2201sin (1)lim u u u u ππππ+→--+等201cos (1)lim2u u uπππππ+→+-+洛 2201sin (1)lim 2u u ππππ+→-+洛110ππ+== 定义π1)1(=f ,从而有11lim ()(1)x f x f π-→==,()f x 在1x =处连续. 又()f x 在)1,21[上连续,所以()f x 在]1,21[上连续.四【详解】由复合函数[(,),(,)]z f x y x y ϕψ=的求导法则,得221()()2x y g f xy f x u x v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂f f y x u v ∂∂=+∂∂ 221()()2x y g f xy f y u y v x ⎛⎫∂- ⎪∂∂∂∂⎝⎭=+∂∂∂∂∂.f f x y u v∂∂=-∂∂ 从而2222222222222222g f f f f f y y x x y x x u u v v u v v f f f f y xy x u u v v v ⎡⎤⎡⎤∂∂∂∂∂∂=⋅+⋅++⋅+⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=+++∂∂∂∂∂2222222222222222g f f f f f x x y y x y y u u v v u v v f f f f x xy y u u v v v⎡⎤⎡⎤∂∂∂∂∂∂=⋅-⋅--⋅-⋅⎢⎥⎢⎥∂∂∂∂∂∂∂∂⎣⎦⎣⎦∂∂∂∂=-+-∂∂∂∂∂所以 222222222222222222()()()()g g f f f f x y x y x y x y u v u v∂∂∂∂∂∂+=+++=++∂∂∂∂∂∂=.22y x +五【详解】从被积函数与积分区域可以看出,应利用极坐标进行计算.作极坐标变换:设θθsin ,cos r y r x ==,有2222222()22()22222220sin()sin()sin sin sin .2xy xy DDt r r r t I e x y dxdy e e x y dxdye e d r rdr d r dr e e tdt ππππππππθθπ-+--+=---=+=+=⋅==⎰⎰⎰⎰⎰⎰⎰记tdt e A t sin 0⎰-=π,则000sin cos cos cos ttt t A e tdt e d t e t e tdt ππππ----⎡⎤==-=-+⎢⎥⎣⎦⎰⎰⎰ 0001sin 1sin sin t t t e e d t e e t e tdt πππππ-----⎡⎤=---+=+--⎢⎥⎣⎦⎰⎰=.1A e -+-π因此 )1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-六【详解】()f t 的驻点即满足()f t 的一阶导数为零的点,它是关于a 的函数.由0ln )(=-='a a a t f t ,得唯一驻点.ln ln ln 1)(aa a t -= 求()t a 的最小值,即求函数aaa t ln ln ln 1)(-=在1a >时的最小值, 22211111ln ln ln ln ln 1ln ln ln ()0(ln )(ln )(ln )a a aa a a a a a t a a a a a ⋅---'=-=-=-=得唯一驻点.e e a =当e e a >时,lnln 0,1lnln 0a a >-<,从而0)(>'a t ,这时()t a 单调递增;当e e a <时,lnln 0,1lnln 0a a <->,从而0)(<'a t ,这时()t a 单调递减. 因此当e a e =时()t a 为最小值,此时ee t e 11)(-=为极小值,也是最小值.七【分析】梯形OCMA 的面积可直接用梯形面积公式计算得到,曲边三角形CBM 的面积可用定积分计算,再由题设,梯形OCMA 的面积与曲边三角形CBM 的面积之和为3163+x ,可得一含有变限积分的等式,两边求导数,可转化为一阶线性微分方程,然后用通解公式计算即可. 【详解】由题意得1[1()]2OCMA S x f x =+,1()CBM x S f t dt =⎰ 所以 316)()](1[213+=++⎰x x dt t f x f x . 两边关于x 求导2111[1()]()()222f x xf x f x x '++-=,即21()()2().f x xf x f x x '++-= 化简,当0≠x 时,得211()()x f x f x x x -'-=,即211.dy x y dx x x--⋅=利用一阶线性非齐次微分方程()()dyP x y Q x dx+=的通解公式 ()()()P x dx P x dx y e Q x e dx C -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰ 所以此方程为标准的一阶线性非齐次微分方程,其通解为 y]1[)(121C dx e xx ex f dx x dxx+⎰-⎰=---⎰ =]1[ln 2ln C dx e xx ex x+--⎰ =)1(22C dx xx x +-⎰ Bx=.12Cx x ++曲线过点(1,0)B ,故0f =(1),代入,故有20C +=,从而2C =-. 所以.)1(21)(22-=-+=x x x x f八【详解】(1) 在时刻t 的剩余量()y t 可用总量A 减去销量()x t 得到,即)()(t x A t y -==kt A -, ].,0[T t ∈再T 时刻将数量为A 的该商品销售完,得0A kT -=,即Ak T=.因此, ,)(t TAA t y -= ].,0[T t ∈ (2) 由于()y t 随时间连续变化,因此在时间段[0,]T 上的平均剩余量,即函数平均值可用积分⎰Tdt t y T 0)(1表示(函数()f x 在[,]a b 上的平均值记为⎰-ba dx x f ab .)(1). 所以,)(t y 在[0,]T 上的平均值为⎰=T dt t y T y 0)(1=2-20011()()()22TT A A A T A t dt At t T T T T T T T -=-=-⎰牛莱公式=.2A 因此在时间段[0,]T 上的平均剩余量为.2A九【分析】两个向量组等价也即两个向量组可以相互线性表示;而两个向量组不等价,只需其中一组有一个向量不能由另一组线性表示即可.而线性表示问题又可转化为对应非齐次线性方程组是否有解的问题,这可通过化增广矩阵为阶梯形来判断.一个向量1β是否可由321,,ααα线性表示,只需用初等行变换化增广矩阵(1321,,βααα)为阶梯形讨论,而一组向量321,,βββ是否可由321,,ααα线性表示,则可结合起来对矩阵(321321,,,,βββααα)同时作初等行变换化阶梯形,然后类似地进行讨论即可.【详解】矩阵(321321,,,,βββααα)作初等行变换,有),,,,(321321βββαααM =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-463232112110221111a a a a M M M (第一行乘以-1加到第三行,第二行乘以-1 加到第三行)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--→111100112110111201a a a a M M M . (1) 当1-≠a 时,有行列式12310a ααα=+≠,秩(3),,321=ααα,故线性方程组)3,2,1(332211==++i x x x i βααα均有唯一解. 所以321,,βββ可由向量组(I)线性表示.同样,行列式12360βββ=≠,秩(3),,321=βββ,故321,,ααα可由向量组(II)线性表示.因此向量组(I)与(II)等价.(2) 当1a =-时,有),,,,(321321βββαααM ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→202000112110111201M M M . 由于秩(321,,ααα )≠秩(),,1321βαααM ,线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 因此,向量组(I)与(II)不等价. 【评注1】涉及到参数讨论时,一般联想到利用行列式判断,因此,本题也可这样分析:因为行列式1,,321+=a ααα,06,,321≠=βββ,可见(1) 当1-≠a 时,秩3),,(),,(321321==βββαααr r ,因此三维列向量组321,,ααα与321,,βββ等价,即向量组(I)与(II)等价.(2) 当1a =-时,秩2),,(321=αααr ,而行列式04,,132≠=βαα,可见2),,(321=αααr ≠1231(,,,)r αααβ =3, 因此线性方程组1332211βααα=++x x x 无解,故向量1β不能由321,,ααα线性表示. 即向量组(I)与(II)不等价.【评注2】 向量组(I)与(II)等价,相当于321,,ααα与321,,βββ均为整个向量组321321,,,,,βββααα的一个极大线性无关组,问题转化为求向量组321321,,,,,βββααα的极大线性无关组,这可通过初等行变换化阶梯形进行讨论.十【分析】 题设已知特征向量,应想到利用定义:λαα=*A . 又与伴随矩阵*A 相关的问题,应利用E A AA =*进行化简.【详解】 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且λαα=*A .两边同时左乘矩阵A ,得αλαA AA =*⇒αλαAA =,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111121112b A b a λ,由此,得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=+.1,22,3λλλA b a b A b A b )3()2()1(由式(1),(2)解得1=b 或2-=b ;由式(1),(3)解得 2.a =因此42311121112=-==a aA ,根据(1)式知,特征向量α所对应的特征值.343bbA +=+=λ 所以,当1=b 时,1=λ;当2-=b 时,.4=λ【评注】本题若先求出*A ,再按特征值、特征向量的定义进行分析,则计算过程将非常复杂.一般来说,见到*A ,首先应想到利用公式E A AA =*进行化简.十一【分析】先求出分布函数()F x 的具体形式,从而可确定()Y F X = ,然后按定义求Y 的分布函数即可.注意应先确定()Y F x =的值域范围)1)(0(≤≤X F ,再对y 分段讨论.【详解】易见,当1x <时,()0F x =; 当8x >时,()1F x =.对于]8,1[∈x ,有.131)(3132-==⎰x dt t x F x设()G y 是随机变量()Y F x =的分布函数. 显然,当0<y 时,()G y =0;当1≥y 时,()G y =1. 对于)1,0[∈y ,有})({}{)(y X F P y Y P y G ≤=≤=31}{(1)}P y P X y =≤=≤+3[(1)].F y y =+=于是,()Y F x =的分布函数为0,0,(),01,1, 1.y G y y y y <⎧⎪=≤<⎨⎪≥⎩若若若十二【分析】A 和B 独立的充要条件是{}{}{}P AB P A P B =⋅,由此可以直接证明问题(1);对于问题(2),应先构造随机变量,不难看出与事件A 和A 联系的应是随机变量1, ,0, .A X A ⎧=⎨⎩若出现若不出现 随机变量X 和Y 的相关系数为XY E XY E X E Y ρ-==,需将P AB P A P B ρ-=转化为用随机变量表示. 显然,若有(){}E XY P AB =,(){}(){},E X P AE Y P B ==以及=,=即可,这只需定义1,,0, .A X A ⎧=⎨⎩ 若出现若不出现 1,0, .B Y B ⎧=⎨⎩若出现,若不出现 【详解】 (1) 由题给ρ的定义,可见0=ρ当且仅当{}{}{}0P AB P A P B ==,而这恰好是二事件A 和B 独立的定义,即0=ρ是A 和B 独立的充分必要条件.(2) 考虑随机变量X 和Y :1,0,A X A ⎧=⎨⎩若出现若不出现 1,0,B Y B ⎧=⎨⎩若出现若不出现由条件知,X 和Y 都服从01-分布:{}{}01~X P A P A ⎛⎫ ⎪ ⎪⎝⎭,{}{}01~.Y P B P B ⎛⎫ ⎪⎝⎭ 由离散型随机变量的数字特征,(){}1ni i i i E X x P X x ==⋅=∑,()()()22D X E X EX =-易见 (){}E X P A =,(){}E Y P B =;(){}{}D X P A P A =, (){}{}D Y P B P B =; 由协方差的定义()()(){}{}{}(,).Cov X Y E XY E X E Y P AB P A P B =-=-因此,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二随机变量相关系数的基本性质1ρ≤,所以题目中定义的 .1≤ρ。
数三2019年真题答案解析

数三2019年真题答案解析1、设在sql server 中有如下定义触发器的语句:create trigger tri on t1 for insert as……以下关于该语句的观点,恰当的就是( )。
a.该语句声明的是一个后触发型触发器,每当在t1表上执行完插入操作之后,执行tri触发器b.该语句声明的就是一个后引爆型触发器,每当继续执行回去tri触发器后,再继续执行填入语句c.该语句声明的是一个前触发型触发器,每当在t1表上执行插入操作之前,先执行tri触发器d.该语句声明的就是一个前引爆型触发器,每当继续执行tri触发器前,先继续执行填入语句参考答案:a参照解析:采用for或者after选项定义的触发器为后引爆的触发器,即为只有在引起触发器继续执行的语句中的操作方式都已顺利继续执行,并且所有的约束检查也顺利顺利完成后,才继续执行触发器。
采用instead of选项定义的触发器为前触发器。
在这种模式的触发器中,选定继续执行触发器而不是继续执行引起触发器继续执行的sql语句,从而替代引起的操作方式。
故答案为a项。
2、下列列出的建模方法中,不属于需求分析建模方法的是( )。
a.idef1xb.dfdc.idefod.uml参照解析:idef1x侧重于分析、抽象化和归纳应用领域中的数据市场需求,被称作数据建模方法。
故答案为a项。
3、下列关于数据库优化的说法,错误的是( )。
a.减少数据库内存数量可以在一定程度上减少数据库服务器io操作方式b.性能优化过程有可能需要对应用系统相关程序进行修改c.性能优化操作方式由dba顺利完成,应用领域开发人员无须参予d.为了提高系统写性能,可以考虑将raid5改为raid1参考答案:c参考解析:调整一个数据库应用系统的性能要求熟悉系统环境、数据库管理系统、应用程序以及应用程序所使用的数据。
数据库性能优化是对数据库管理员的严峻考验,有时候对应用程序的修改需要应用开发人员配合才能完成。
2019考研数三真题及解析

2019年全国硕士研究生入学统一考试数学(三)试题及解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)当0x →时,若tan x x -与k x 是同阶无穷小,则k =( )(A) 1(B) 2(C) 3(D) 4【答案】C【解析】0x →时,有3tan 3x x x --,故3k =.(2)已知方程550x x k -+=有3个不同的实根,则k 的取值范围( ) (A) (,4)-∞-(B) (4,)+∞(C) {4,4}- (D) (4,4)-【答案】D【解析】令5()5f x x x k =-+,令4()550f x x '=-=,可得1x =±, 当(,1)-∞-时,()0f x '>,()f x 单调递增; 当(1,1)-时,()0f x '<,()f x 单调递减; 当(1,)+∞时,()0f x '>,()f x 单调递增;而()f -∞=-∞,(1)4f k -=+,(1)4f k =-+,()f +∞=+∞,故若()f x 有3个不同的零点,则在区间(,1)-∞-,(1,1)-,(1,)+∞分别具有一个实根, 所以需满足(1)0f ->,(1)0f <,解得(4,4)k ∈-.(3)已知微分方程x y ay by ce '''++=的通解为12()xx y C C x e e -=++,则,,a b c 依次为( )(A) 1,0,1(B) 1,0,2 (C) 2,1,3(D) 2,1,4【答案】D【解析】由通解形式可得,12()xC C x e-+是对应齐次方程的解,故是1λ=-其二重特征值,所以其特征方程为2(1)0λ+=,即2210λλ++=,所以2,1a b ==;再将特解x e 带入原方程可得4c =.(4)若1n n nu ∞=∑绝对收敛,1nn v n ∞=∑条件收敛,则( ) (A)1n nn u v∞=∑条件收敛(B)1n nn u v∞=∑绝对收敛(C)1()nn n uv ∞=+∑收敛(D)1()nn n uv ∞=+∑发散【答案】B 【解析】因为1n n v n∞=∑条件收敛,故0()nv n n →→∞,所以存在0M >,使得n v M n ≤ 所以()n n n n n v u v nu M nu n ⎛⎫=⋅≤ ⎪⎝⎭,由比较判别法可得:因为1n n nu ∞=∑绝对收敛,故1n n n u v ∞=∑绝对收敛.令31n u n =,(1)nn v =-,则1()n n n u v ∞=+∑发散;令31n u n =,(1)ln n n v n -=,则1()n n n u v ∞=+∑收敛;故选项C 、D 均不成立. (5)设A 是4阶矩阵,*A 是A 的伴随矩阵,若线性方程组0Ax =的基础解系中只有2个向量,则*A 的秩是( )(A) 0(B) 1(C) 2(D) 3【答案】A【解析】因为0Ax =的基础解系中只有2个向量,故有()2n r A -=,即()422r A =-=,又因为*,()()1,()10,()1n r A n r A r A n r A n =⎧⎪==-⎨⎪<-⎩,所以*()0r A =.(6)设A 是3阶实对称矩阵,E 是3阶单位矩阵,若22A A E +=且4A =,则二次型T x Ax 的规范形为( )(A) 222123y y y ++ (B) 222123y y y +-(C) 222123y y y --(D) 222123y y y ---【答案】C 【解析】设矩阵A 的特征值为λ,由22A A E +=可得,22λλ+=,解得1,2λ=-,又因为1234A λλλ==,故A 的3个特征值为1,2,2--,所以二次型T x Ax 的规范形为222123y y y --.(7)设A ,B 为随机事件,则()()P A P B =的充分必要条件是( ) (A) ()()()P AB P A P B =+(B)()()()P AB P A P B =(C) ()()P AB P BA =(D) ()()P AB P AB =【答案】C【解析】由减法公式可得:()()()P AB P A P AB =-,()()()P BA P B P AB =-, 所以()()P A P B =的充要条件为()()P AB P BA =.(8)设随机变量X 与Y 相互独立,且都服从正态分布2(,)N μσ,则{1}P X Y -<( )(A) 与μ无关,而与2σ有关 (B) 与μ有关,而与2σ无关 (C) 与μ,2σ都有关(D) 与μ,2σ有无关【答案】A【解析】由已知可得,2(0,2)X YN σ-(0,1)N ,所以{1}{(P X Y P P -<=<=<<=Φ-Φ21=Φ-,所以{1}P X Y -<与μ无关,而与2σ有关. 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸指定位置上.9. 111lim 1223(1)nn n n →∞⎡⎤+++=⎢⎥⋅⋅+⎣⎦ .【答案】1e -【解析】原式1111111lim(1)lim(1)22311n n n n e n n n -→∞→∞=-+-++-=-=++.10.曲线3sin 2cos ()22y x x x x ππ=+-<<的拐点坐标为 .【答案】(,2)π-【解析】sin cos 2sin cos sin y x x x x x x x '=+-=-,cos sin cos sin y x x x x x x ''=--=-,令0y ''=得0x =或x π=,当(0,)x U δ∈,0y ''<;所以(0,2)不是拐点;当x π>时,0y ''>;当x π<时,0y ''<,故(,2)π-为拐点. 11.已知1()f x =⎰,则120()x f x dx =⎰.【答案】118- 【解析】331112000()()()033x x xf x dx f x f x dx '=-=-⎰⎰⎰134420011121(1)(1)3412318x x -=-⨯+=-⋅+=⎰.12.,A B 两商品的价格分别为,A B P P ,需求函数225002A A A B B Q P P P P =--+,10,20A B P P ==,求A商品对自身价格的需求弹性(0)AA AAηη>=.【答案】25【解析】20B P =,250020800A A A Q P P =--+,2(220)130020A A A A A A A A Q P P P P Q P P η∂=⋅=--⋅∂--,当10A P =时,25η=. 13.2101111011A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,01b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,Ax b =有无穷多解,求a = .【答案】1【解析】由已知可得,()(,)3r A r A b =<,化简增广矩阵222101010101010(,)1111010101010110110011A b a a a a a a ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭, 所以1a =.14.设随机变量X 的概率密度为,02()20,xx f x else⎧<<⎪=⎨⎪⎩,()F x 为X 的分布函数,EX 为X 的数学期望,则{()1}P F X EX >-=.【答案】23【解析】由已知可得,224()23x EX xf x dx dx +∞-∞===⎰⎰, 且分布函数20,0()(),0241,2xx xF x f t dt x x -∞<⎧⎪⎪==≤<⎨⎪≤⎪⎩⎰,所以22112{()1}{()}{}{34323X x P F X EX P F X P P X dx >-=>=>=>==. 【法二】易知()(0,1)Y F X U =,所以42{()1}{1}33P F X EX P Y >-=>-=. 三、解答题:1523小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.15.已知2,0()1,0x x x x f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求()f x 的极值。