第三章 一元函数的导数及其应用第四课时 导数与函数的零点

合集下载

【2022高考数学一轮复习(步步高)】目录

【2022高考数学一轮复习(步步高)】目录

第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。

2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)

2023年高考数学总复习第三章导数及其应用利用导数研究函数的零点问题题型一判断、证明或讨论函数零点的个数例1已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)证明由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.感悟提升利用导数研究方程根(函数零点)的一般方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)数形结合法分析问题,可以使问题的求解过程有一个清晰、直观的整体展现.训练1设函数f (x )=ln x +m x ,m 为正数.试讨论函数g (x )=f ′(x )-x 3零点的个数.解由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).转化为函数y =m 与y =-13x 3+x 的图像的交点情况.设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;综上所述,当m >23时,函数g (x )无零点;当实数m =23时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二根据零点个数确定参数范围例2(2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x a ax (x >0).(1)当a =2时,求f (x )的单调区间;(2)若函数φ(x )=f (x )-1有且仅有两个零点,求a 的取值范围.解(1)当a =2时,f (x )=x 22x ,定义域为(0,+∞),f ′(x )=x (2-x ln 2)2x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )(2)函数φ(x )=f (x )-1有且仅有两个零点,则转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增,当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e)=1e,且当x >e 时,g (x )g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e)∪(e ,+∞).感悟提升在解决已知函数y =f (x )有几个零点求f (x )中参数t 的取值范围问题时,经常从f (x )中分离出参数t =g (x ),然后用求导的方法判断g (x )的单调性,再根据题意求出参数t 的值或取值范围.解题时要充分利用导数工具和数形结合思想.训练2已知函数f (x )=ax -2ln x -a x(a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数h (x )=1-a 2x -f (x )2恰有两个不同的零点,求实数a 的取值范围.解(1)函数f(x)=ax-2ln x-ax的定义域是(0,+∞),求导可得f′(x)=a-2x+ax2=ax2-2x+ax2.当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减.当a≥1时,4(1-a2)≤0,此时f′(x)=ax2-2x+ax2≥0,故函数f(x)在(0,+∞)上单调递增.当0<a<1时,4(1-a2)>0,令f′(x)=0,得x1=1-1-a2a,x2=1+1-a2a,所以函数f(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减.综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减;当a≥1时,函数f(x)在(0,+∞)上单调递增;当0<a<1时,函数f(x)(1-1-a2a,1+1-a2a)上单调递减.(2)由题意得函数h(x)=1-a2x-f(x)2=1-a2x+ln x(x>0),则函数h(x)=1-a2xf(x)2恰有两个不同的零点即方程1-a2x+ln x=0恰有两个不同的根.由1-a2x+ln x=0得a=2(1+ln x)x,所以直线y=a与函数g(x)=2(1+ln x)x的图像有两个不同的交点.由g(x)=2(1+ln x)x,得g′(x)=-2ln xx2,当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,所以g(x)max=g(1)=2.又e-2<1,g(e-2)=2(1+ln e-2)e-2=-2e-2<0,x>1时,g(x)>0,所以实数a的取值范围为(0,2).题型三可化为函数零点的个数问题例3已知函数f(x)=ln x(0<x≤1)与函数g(x)=x2+a的图像有两条公切线,求实数a的取值范围.解设公切线与函数f(x)=ln x的图像切于点A(x1,ln x1)(0<x1≤1),因为f(x)=ln x,所以f′(x)=1 x,所以在点A(x1,ln x1)处切线的斜率k1=f′(x1)=1 x1,所以切线方程为y-ln x1=1x1(x-x1),即y=xx1+ln x1-1,设公切线与函数g(x)=x2+a的图像切于点B(x2,x22+a),因为g(x)=x2+a,所以g′(x)=2x,所以在点B(x2,x22+a)处切线的斜率k2=g′(x)=2x2,所以切线方程为y-(x22+a)=2x2(x-x2),即y=2x2x-x22+a,1x1=2x2,ln x1-1=-x22+a.因为0<x1≤1,所以1x1=2x2≥1,x2≥12.又a=-ln2x2+x22-1,令t=x2∈12,+∞,则h(t)=-ln2t+t2-1=-ln2-ln t+t2-1,所以h′(t)=2t2-1 t.令h′(t)>0且t≥12,得t>22;令h ′(t )<0且t ≥1,得12≤t <22.所以h (t )在12,所以函数f (x )=ln x (0<x ≤1)与函数g (x )=x 2+a 有两条公切线,满足h (t )≤ln2-12<h (t )≤-34,所以a ln 2-12,-34.感悟提升解决曲线的切线条数、两曲线的交点个数、方程根的个数等问题的关键是转化为对应函数的零点个数问题,利用数形结合思想,通过研究函数的零点个数解决相关问题.训练3已知函数f (x )=1+ln x x.(1)求函数f (x )的图像在x =1e 2处的切线方程(e 为自然对数的底数);(2)当x >1时,方程f (x )=a (x -1)+1x(a >0)有唯一实数根,求a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln x x 2,所以f 2e 4,又e 2,所以函数f (x )的图像在x =1e2处的切线方程为y +e 2=2e 即y =2e 4x -3e 2.(2)当x >1时,f (x )=a (x -1)+1x,即ln x -a (x 2-x )=0.令h (x )=ln x -a (x 2-x ),有h (1)=0,h ′(x )=-2ax 2+ax +1x.令r (x )=-2ax 2+ax +1(a >0),则r (0)=1,r (1)=1-a ,①当a≥1时,r(1)≤0,r(x)在(1,+∞)上单调递减,所以x∈(1,+∞)时,r(x)<0,即h′(x)<0,所以h(x)在(1,+∞)上单调递减,故当x>1时,h(x)<h(1)=0,所以方程f(x)=a(x-1)+1x无实根.②当0<a<1时,r(1)=1-a>0,r(x)在(1,+∞)上单调递减,所以存在x0∈(1,+∞),使得x∈(1,x0)时,r(x)>0,即h(x)单调递增;x∈(x0,+∞)时,r(x)<0,即h(x)单调递减.所以h(x)max=h(x0)>h(1)=0.取x=1+1(x>2),则1+1a ln1+1a a1+1a+a1+1a ln1+1a-1+1a.令t=1+1a>0,故m(t)=ln t-t(t>2),则m′(t)=1t-1<0,所以m(t)在(2,+∞)单调递减,所以m(t)<ln2-2<0,即h 1+1a故存在唯一x1x0,1+1a,使得h(x1)=0.综上,a的取值范围为(0,1).隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫作隐零点;若x0容易求出,就叫作显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.例1设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为R,f′(x)=e x-a.当a≤0时,f′(x)>0恒成立,所以f(x)单调增区间为(-∞,+∞),无单调减区间.当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+x+1e x-1(x>0)恒成立,令g(x)=x+1e x-1+x(x>0),得g′(x)=e x-1-(x+1)e x(e x-1)2+1=e x(e x-x-2)(e x-1)2(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=α+1eα-1+α.又h(α)=eα-α-2=0,所以eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.例2已知函数f(x)=(x-1)e x-ax的图像在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-32.(1)解因为f′(x)=x e x-a,由f′(0)=-1得a=1,又f(0)=-1,所以切线方程为y-(-1)=-1(x-0),即x+y+1=0,所以b=1.(2)证明令g(x)=f′(x)=x e x-1,则g′(x)=(x+1)e x,所以当x<-1时,g(x)单调递减,且此时g(x)<0,则g(x)在(-∞,-1)内无零点;当x≥-1时,g(x)单调递增,且g(-1)<0,g(1)=e-1>0,所以g(x)=0有唯一解x0,f(x)有唯一的极值点x0.由x0e x0=1⇒e x0=1 x0,f(x0)=x0-1x0-x0=1x又=e2-1<0,g(1)=e-1>0⇒12<x0<1⇒2<1x0+x0<52,所以f(x0)>-3 2 .1.已知函数f(x)=e x+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.解(1)当a=0时,f(x)=e x-e x,则f′(x)=e x-e,f′(1)=0,当x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.(2)由题意得f′(x)=e x-2ax+a-e,设g(x)=e x-2ax+a-e,则g′(x)=e x-2a.若a=0,则f(x)的最大值f(1)=0,故由(1)得f(x)在区间(0,1)内没有零点.若a<0,则g′(x)=e x-2a>0,故函数g(x)在区间(0,1)内单调递增.又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,1)时,f′(x)>0,f(x)单调递增.因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.若a>0,由(1)得当x∈(0,1)时,e x>e x.则f(x)=e x+(a-e)x-ax2>e x+(a-e)x-ax2=a(x-x2)>0,此时函数f(x)在区间(0,1)内没有零点.综上,实数a的取值范围为(-∞,0).2.设函数f(x)=12x2-m ln x,g(x)=x2-(m+1)x,m>0.(1)求函数f(x)的单调区间;(2)当m≥1时,讨论f(x)与g(x)图像的交点个数.解(1)函数f(x)的定义域为(0,+∞),f′(x)=(x+m)(x-m)x.当0<x<m时,f′(x)<0,函数f(x)单调递减;当x>m时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调递增区间是(m,+∞),单调递减区间是(0,m).(2)令F(x)=f(x)-g(x)=-12x2+(m+1)x-m ln x,x>0,题中问题等价于求函数F(x)的零点个数.F′(x)=-(x-1)(x-m)x,当m=1时,F′(x)≤0,函数F(x)为减函数,因为F(1)=32>0,F(4)=-ln4<0,所以F(x)有唯一零点;当m>1时,0<x<1或x>m时,F′(x)<0;1<x<m时,F′(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,因为F(1)=m+12>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即函数f(x)与g(x)的图像总有一个交点.3.已知函数f(x)=(x-1)e x-ax2+b+12.(1)若a=1,求函数f(x)的单调区间;(2)当a=12时,f(x)的图像与直线y=bx有3个交点,求b的取值范围.解(1)当a=1时,f(x)=(x-1)e x-x2+b+12(x∈R),则f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,解得x<0或x>ln2;令f′(x)<0,解得0<x<ln2,所以函数f(x)的单调递增区间为(-∞,0)和(ln2,+∞),单调递减区间为(0,ln2).(2)因为a=12,所以f(x)=(x-1)e x-12x2+b+12.由(x-1)e x-12x2+b+12=bx,得(x-1)e x-12(x2-1)=b(x-1).当x=1时,方程成立.当x≠1时,只需要方程e x-12(x+1)=b有2个实根.令g(x)=e x-12(x+1),则g′(x)=e x-12.当x <ln 12时,g ′(x )<0,当x >ln 12且x ≠1时,g ′(x )>0,所以g (x )∞,ln 12,(1,+∞)上单调递增,因为=12-12+=12ln 2,g (1)=e -1≠0,所以b 2,e -(e -1,+∞).4.已知函数f (x )=ax cos x -1在0,π6上的最大值为3π6-1.(1)求a 的值;(2)证明:函数f (x )2个零点.(1)解f ′(x )=a (cos x -x sin x ),因为x ∈0,π6,所以cos x >sin x ≥0,又1>x ≥0,所以1·cos x >x sin x ,即cos x -x sin x >0.当a >0时,f ′(x )>0,所以f (x )在区间0,π6上单调递增,所以f (x )max =a ·π6×32-1=3π6-1,解得a =2.当a <0时,f ′(x )<0,所以f (x )在区间0,π6上单调递减,所以f (x )max =f (0)=-1,不符合题意,当a =0时,f (x )=-1,不符合题意.综上,a =2.(2)证明设g (x )=cos x -x sin x ,则g ′(x )=-2sin x -x cos x x所以g (x )又g (0)=1>0,=-π2<0,所以存在唯一的x0g(x0)=0,当0<x<x0时,g(x)>0,即f′(x)=2g(x)>0,所以f(x)在(0,x0)上单调递增;当x0<x<π2时,g(x)<0,即f′(x)=2g(x)<0,所以f(x)0又f(0)=-1<0,=2π4-1>0,1<0,所以f(x)综上,函数f(x).。

人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.1 导数的概念、意义及运算

人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.1 导数的概念、意义及运算
第三章
3.1 导数的概念、意义及运算




01
第一环节
必备知识落实
02
第二环节
关键能力形成
第一环节
必备知识落实
【知识筛查】
对于函数y=f(x),设自变量x从x0变化到x0+Δx,相应地,函数值就从f(x0)变化
到f(x0+Δx),这时,x的变化量为Δx,y的变化量为Δy=f(x0+Δx)-f(x0).
(2)设曲线与经过点 A(2,-2)的切线相切于点 P(x0,03 -402 +5x0-4).
∵f'(x0)=302 -8x0+5,
∴切线方程为 y-(-2)=(302 -8x0+5)(x-2),
又切线过点 P(x0,03 -402 +5x0-4),
∴03 -402 +5x0-2=(302 -8x0+5)(x0-2),
它的导数与函数y=f(u),u=g(x)的导数间的关系为yx'= yu'·ux' .
1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是
周期函数.
1 ' 1
2.熟记以下结论:(1)
=- 2 ;


1
(2)(ln|x|)'=;
1 '
'()
(3) () =2(f(x)≠0);
[()]
于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点
的纵坐标.
3.已知切线方程(斜率)求参数的值(取值范围)的关键是能利用函数的导数
等于切线斜率列出方程.
对点训练2
(1)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的

2021版新高考数学一轮复习第三章导数及其应用3.4.2导数与函数零点课件新人教B版

2021版新高考数学一轮复习第三章导数及其应用3.4.2导数与函数零点课件新人教B版

令x+1=t,则ln t<t-1(t>1),
所以 2 1 1 ln 1,
aa
a
所以S(x)在 (ln 1 , 2) 上有且只有一个零点,
aa
综上,0<a<1.
【规律方法】 处理函数y=f(x)与y=g(x)图象的交点问题的常用方法 (1)数形结合,即分别作出两函数的图象,观察交点情况; (2)将函数交点问题转化为方程f(x)=g(x)根的个数问题,通过构造函数y=f(x)g(x),利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.
【解析】(1)a=1,f(x)=x2-x-ln x,则
f′(x)=2x-1- 1 (2x 1)(x 1) (x 0),
x
x
当0<x<1时,f′(x)<0,函数f(x)单调递减,
当x>1时,f′(x)>0,函数f(x)单调递增, 所以f(x) 在x=1处取最小值0.
(2)由 f(x)=ax2-x-ln x,
a
(2)由(1)知,f(x)=x3-3x2+x+2. 设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4. 由题意知1-k>0, 当x≤0时,g′(x)=3x2-6x+1-k>0, g(x)单调递增, g(-1)=k-1<0,g(0)=4, 所以g(x)=0在(-∞,0]有唯一实根. 当x>0时,令h(x)=x3-3x2+4,
2
(2)若直线l与曲线y=f(x)有两个不同的交点,求实数a的取值范围.
【解题导思】
序号
(1)曲线y=f(x)在直线l的上方
1 2
x2

自考高等数学一教材目录

自考高等数学一教材目录

自考高等数学一教材目录第一章实数与函数1.1 实数1.1.1 有理数1.1.2 无理数1.2 函数1.2.1 函数的概念1.2.2 函数的性质1.2.3 常用函数的性质第二章一元函数的极限理论2.1 极限的概念与性质2.1.1 无穷小与无穷大2.1.2 极限的存在性与唯一性2.1.3 极限的四则运算2.2 函数极限与极限的运算性质2.2.1 函数极限的定义2.2.2 极限的运算性质2.3 无穷小的比较与无穷大的比较2.3.1 无穷小的比较2.3.2 无穷大的比较第三章一元函数的连续性3.1 连续函数的概念与性质3.1.1 连续函数的定义3.1.2 连续函数的性质3.2 连续函数的运算与初等函数的连续性 3.2.1 连续函数的四则运算3.2.2 初等函数的连续性3.3 闭区间上连续函数的性质3.3.1 闭区间上连续函数的性质3.3.2 奇偶函数与周期函数的连续性第四章一元函数导数与微分4.1 导数的概念与性质4.1.1 导数的定义4.1.2 导数的性质4.1.3 导数的几何意义与物理意义4.2 导数的基本运算法则4.2.1 导数的基本运算法则4.2.2 高阶导数4.3 微分的概念与计算法则4.3.1 微分的定义4.3.2 微分的计算法则第五章高阶导数与隐函数及参数方程的导数 5.1 高阶导数5.1.1 高阶导数的定义5.1.2 高阶导数的计算方法5.2 隐函数及参数方程的导数5.2.1 隐函数的导数5.2.2 参数方程的导数第六章微分中值定理与泰勒公式6.1 罗尔中值定理及其应用6.1.1 罗尔中值定理的原理6.1.2 罗尔中值定理的应用6.2 拉格朗日中值定理及其应用 6.2.1 拉格朗日中值定理的原理 6.2.2 拉格朗日中值定理的应用 6.3 高阶导数的应用6.3.1 泰勒公式6.3.2 高阶导数的应用第七章不定积分与定积分7.1 不定积分的概念与性质7.1.1 不定积分的概念7.1.2 不定积分的性质7.2 不定积分的基本计算方法7.2.1 基本积分表7.2.2 第一换元法7.2.3 第二换元法7.3 牛顿-莱布尼兹公式7.3.1 牛顿-莱布尼兹公式7.3.2 无穷小技术7.4 定积分的概念与性质7.4.1 定积分的概念7.4.2 定积分的性质7.4.3 函数的定积分第八章定积分的计算法则与应用8.1 定积分的计算法则8.1.1 区间可加性8.1.2 线性性质8.1.3 线性变换与曲线坐标系下的定积分 8.2 反常积分8.2.1 第一类反常积分8.2.2 第二类反常积分8.3 定积分的几何应用8.3.1 平面图形的面积与弧长8.3.2 旋转体的体积与曲线的弧长第九章微分方程初步9.1 微分方程的基本概念9.1.1 微分方程的概念9.1.2 微分方程的阶与解的概念9.2 一阶微分方程9.2.1 可分离变量的微分方程9.2.2 一阶线性微分方程9.2.3 齐次线性微分方程9.2.4 Bernoulli微分方程9.3 高阶线性微分方程9.3.1 高阶线性微分方程的常系数齐次线性微分方程 9.3.2 常系数线性非齐次微分方程第十章空间解析几何初步10.1 三维空间的点、直线、平面10.1.1 点的概念与坐标10.1.2 直线的方程与相交关系10.1.3 平面的方程与夹角10.2 空间曲线与曲面10.2.1 空间曲线的参数方程与方程 10.2.2 空间曲面的方程10.2.3 空间曲线与曲面间的相交关系 10.3 空间向量与标量积10.3.1 空间向量的基本概念与运算 10.3.2 两向量的数量积10.3.3 向量的投影与夹角10.4 空间向量与矢量积10.4.1 两向量的向量积10.4.2 矢量积的几何意义及其应用。

人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.4 导数的综合应用

人教版高中总复习一轮数学精品课件 第3章 一元函数的导数及其应用 3.4 导数的综合应用
1
(1)解 由题设,知f(x)的定义域为(0,+∞), f'(x)= -1,

令f'(x)=0,解得x=1.
当0<x<1时,f'(x)>0,f(x)单调递增;
当x>1时,f'(x)<0,f(x)单调递减.
(2)证明 由(1)知 f(x)在 x=1 处取得最大值,最大值为 f(1)=0.
则当 x≠1 时,ln x<x-1.
求实数λ的取值范围.
e
1
1
解 同例题过程,得 +x+>λ 在区间 2 ,6 上有解,
e
1
令 g(x)= +x+,则需 λ<g(x)max.
1
由例题解答过程可知,g(x)在区间 2 ,1 上单调递减,
1
1
5
e6 37
1
在区间[1,6]上单调递增,且 g 2 =2e2 + 2,g(6)= 6 + 6 >g 2
1


1
0,
1
0<x< ;令

f'(x)>0,得
上单调递减,在区间
1
x> ,

1
,+∞

上单调递增.
≤1,即 a≥1 时,函数 f(x)在区间[1,2]上单调递增,故函数 f(x)在区间[1,2]上
的最小值为 f(1)=1;
1


≥2,即 0<a≤
1
时,函数
2
上的最小值为 f(2)=aln
f(x)在区间[1,2]上单调递减,故函数 f(x)在区间[1,2]

第三章 一元函数的导数及其应用-新高考高中数学双基复习

第三章  一元函数的导数及其应用-新高考高中数学双基复习

第三章一元函数的导数及其应用第一节导数的概念及其意义、导数的运算一、基本概念1导数的概念(一差二比三极限)(1)函数)(x f y =在0x x =处的平均变化率为x x f x x f ∆-∆+)()(00(2)函数)(x f y =在0x x =处的瞬时变化率为x x f x x f x ∆-∆+→∆)()(lim 000)(x f y =在0x x =处的导数)2、导函数2.已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)=_______3、函数)(x f y =在0x x =处的导数的几何意义)(x f y =在0x x =处的导数的几何意义是)(x f y =在0x x =处切线的斜率。

说明:利用导数解决切线方程问题:总结切线问题:找切点求导数得斜率(1)曲线)(x f y =在))(,(00x f x P 点处的切线方程。

利用导数的几何意义先求出)(0''x f y =,再利用点斜式写出切线方程))(()(00'0x x x f x f y -=-(2)曲线)(x f y =,C 过),(b a P 点处的切线方程。

设切点))(,(00x f x 利用导数的几何意义列出ax b x f x f y --==000'')()(,求出切点横坐标。

计算)(0''x f y =,再用点斜式写出切线方程))(()(00'0x x x f x f y -=-或))((0'a x x f b y -=-(3)奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是周期函数.(4)函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.【例】1、已知曲线C:3x y =上一点)1,1(P (1)求曲线C 在点)1,1(P 处的切线方程(2)求曲线C 过点)1,1(P 处的切线方程2、若点P 是曲线x x y ln 2-=上任意一点,则点P 到直线2-=x y 的最小距离为__________。

第三章 导数及其应用3-4定积分与微积分基本定理(理)

第三章  导数及其应用3-4定积分与微积分基本定理(理)
9 4

2 3 1 x + x249 3 2 2
2 3 2 3 1 2 1 1 2 = ×9 - ×4 + ×9 - ×4 =45 . 3 2 3 2 2 2 6 1+cosx (4) cos dx= dx 2 2
π 0
2x
π 0
1 0
1 1 3 1 -3 2 (2) x +x4dx= 3x -3x 1
2 1

2
8 1 1 1 21 = - - + = . 3 3 3×8 3 8
(3)
9 4
1 x(1+ x)dx= (x +x)dx 2
b a b a
n -1 i =0
分下限与积分上限,区间[a,b]叫做积分区间,函数 f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积 式.此时称函数f(x)在区间[a,b]上可积.
对定义的几点说明:
(1)定积分bf(x)dx是一个常数. a
(2)用定义求定积分的一般方法是: ①分割区间:将区间分为n个小区间,实际应用 中常常是n等分区间[a,b]; ②近似代替:取点ξi∈[xi-1,xi];
1,xi]上任取一点ζi(i=1,2,…,n),作和

n f(ζi)Δx,记λ为每个小区间Δxi=xi+1-xi i= 1

(i=0,1,2,…,n-1)中的长度最大者,当λ 趋近于0时,所有小区间的长度都趋近于0.
当λ→0时,此和式如果无限接近某个常数,这个 常数叫做函数f(x)在区间[a,b]上的定积分,记作 f(x)dx. 即 f(x)dx= lim f (ξi)Δxi,这里a与b分别叫做积 λ→0
在曲线y=x2(x≥0)上某一点A处作一切线使之 1 与曲线以及x轴所围成的面积为 .则 12 (1)切点A的坐标为________. (2)过切点A的切线方程为________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律方法 1.函数零点个数可转化为图象的交点个数,根据图象的几何直观求解. 2.与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点, 并结合特殊点判断函数的大致图象,进而求出参数的取值范围.
10
考点聚焦突破
【训练 2】 已知函数 f(x)=x12+aln x(a∈R). (1)求f(x)的单调递减区间; (2)已知函数f(x)有两个不同的零点,求实数a的取值范围. 解 (1)由题意可得,f′(x)=-x23+ax=ax2x-3 2(x>0), 当a≤0时,f′(x)<0,函数f(x)在(0,+∞)上单调递减,
且 f
2a=a2+a2ln 2a<0,
化为 ln 2a<-1,解得 a>2e.
所以实数a的取值范围是(2e,+∞).
12
@《创新设计》 考点聚焦突破
考点三 函数零点的综合问题 【例3】 设函数f(x)=e2x-aln x.
(1)讨论 f(x)的导函数 f′(x)零点的个数; (2)证明:当 a>0 时,f(x)≥2a+aln 2a. (1)解 f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0). 当a≤0时,f′(x)>0,f′(x)没有零点; 当 a>0 时,因为 y=e2x 单调递增,y=-ax单调递增,
所以f′(x)在(0,+∞)上单调递增.
13
@《创新设计》 考点聚焦突破

f′(a)>0,当
b
满足
0<b<a4,且
1 b<2ln
2
时,f′(b)<0,
故当a>0时,f′(x)存在唯一零点.
(2)证明 由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,
当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.
1
@《创新设计》 考点聚焦突破
可得x∈(0,1)时,g′(x)>0,函数g(x)单调递增; x∈(1,+∞)时,g′(x)<0,函数g(x)单调递减. ∴当x=1时,函数g(x)取得极大值也是最大值, ∴g(x)≤g(1)=0,即ln x≤x-1. (2)f′(x)=1x-2x+a=-2x2+x ax+1,x>0. 令-2x20+ax0+1=0,解得 x0=a+ 4a2+8(负值舍去), 在(0,x0)上,f′(x)>0,函数f(x)单调递增; 在(x0,+∞)上,f′(x)<0,函数f(x)单调递减. ∴f(x)max=f(x0).
@《创新设计》
当 x∈(-∞,3-2 3)∪(3+2 3,+∞)时,f′(x)>0;
当 x∈(3-2 3,3+2 3)时,f′(x)<0.
故 f(x)在(-∞,3-2 3),(3+2 3,+∞)单调递增,在(3-2 3,3+2 3) 单调递减.
5
考点聚焦突破
(2)证明 由于 x2+x+1>0,所以 f(x)=0 等价于x2+xx3+1-3a=0.
@《创新设计》
设 g(x)=x2+xx3+1-3a,则 g′(x)=x2((xx22++x2+x+1)3)2 ≥0,仅当 x=0 时 g′(x)=0,
所以 g(x)在(-∞,+∞)单调递增.
故g(x)至多有一个零点,从而f(x)至多有一个零点. 又 f(3a-1)=-6a2+2a-13=-6a-162-16<0, f(3a+1)=13>0,故 f(x)有一个零点. 综上,f(x)只有一个零点.
故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
所以当x=x0时,f(x)取得最小值,最小值为f(x0). 由于 2e2x0-xa0=0,
所以 f(x0)=2ax0+2ax0+aln
2a≥2a+aln
2 a.
故当 a>0 时,f(x)≥2a+aln 2a.
14
@《创新设计》 考点聚焦突破
6
考点聚焦突破
考点二 根据零点个数求参数的值(范围) 【例2】 函数f(x)=ax+xln x在x=1处取得极值.
(1)求f(x)的单调区间; (2)若y=f(x)-m-1在定义域内有两个不同的零点,求实数m的取值范围. 解 (1)函数f(x)=ax+xln x的定义域为(0,+∞). f′(x)=a+ln x+1, 因为f′(1)=a+1=0,解得a=-1, 当a=-1时,f(x)=-x+xln x, f′(x)=ln x,令f′(x)>0,解得x>1; 令f′(x)<0,解得0<x<1.
ax+ 当 a>0 时,f′(x)=
2ax- x3
2
a,
由 f′(x)≤0,解得 0<x≤ 2a,
11
@《创新设计》 考点聚焦突破
∴此时函数 f(x)的单调递减区间为0,
a2a.
综上可得:a≤0时,函数f(x)的单调递减区间为(0,+∞),
a>0 时,函数 f(x)的单调递减区间为0,
2a
a
.
(2)由(1)可得若函数f(x)有两个不同的零点,则必须满足a>0,
2 a.
15
考点聚焦突破
@《创新设计》
【训练3】 (2019·全国Ⅰ卷)已知函数f(x)=2sin x-xcos x-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点; (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围. (1)证明 设g(x)=f′(x),则g(x)=cos x+xsin x-1, g′(x)=xcos x. 当 x∈0,π2时,g′(x)>0; 当 x∈π2,π时,g′(x)<0, 所以 g(x)在0,π2上单调递增,在π2,π上单调递减.
2
@《创新设计》 考点聚焦突破
当a=1时,x0=1,f(x)max=f(1)=0,此时函数f(x)只有一个零点x=1. 当a>1时,f(1)=a-1>0, f21a=ln 21a-41a2+12<21a-1-41a2+12
=-21a-122-14<0, f(2a)=ln 2a-2a2<2a-1-2a2=-2a-122-12<0. ∴函数 f(x)在区间21a,1和区间(1,2a)上各有一个零点. 综上可得:当a=1时,函数f(x)只有一个零点x=1; 当a>1时,函数f(x)有两个零点.
4
考点聚焦突破
【训练 1】 (2018·全国Ⅱ卷)已知函数 f(x)=13x3-a(x2+x+1). (1)若a=3,求f(x)的单调区间; (2)证明:f(x)只有一个零点.
(1)解 当 a=3 时,f(x)=13x3-3x2-3x-3,f′(x)=x2-6x-3. 令 f′(x)=0,解得 x=3-2 3或 x=3+2 3.
17
@《创新设计》 考点聚焦突破
本节内容结束
18
@《创新设计》
规律方法 1.在(1)中,当 a>0 时,f′(x)在(0,+∞)上单调递增,从而 f′(x)在(0,
+∞)上至多有一个零点,问题的关键是找到 b,使 f′(b)<0.
2.由(1)知,函数 f′(x)存在唯一零点 x0,则 f(x0)为函数的最小值,从而把问题转
化为证明 f(x0)≥2a+aln
3
@《创新设计》 考点聚焦突破
@《创新设计》
规律方法 1.利用导数求函数的零点常用方法: (1)构造函数g(x)(其中g′(x)易求,且g′(x)=0可解),利用导数研究g(x)的性质,结合 g(x)的图象,判断函数零点的个数. (2)利用零点存在定理,先判断函数在某区间有零点,再结合图象与性质确定函数 有多少个零点. 2.根据参数确定函数零点的个数,解题的基本思想是“数形结合”,即通过研究函 数的性质(单调性、极值、函数值的极限位置等),作出函数的大致图象,然后通过 函数图象得出其与x轴交点的个数,或者两个相关函数图象交点的个数,基本步骤 是“先数后形”.
第四课时 导数与函数的零点
考点一 判断零点的个数 【例1】 (2020·潍坊检测)已知函数f(x)=ln x-x2+ax,a∈R.
(1)证明ln x≤x-1; (2)若a≥1,讨论函数f(x)的零点个数. (1)证明 令g(x)=ln x-x+1(x>0),则g(1)=0, g′(x)=1x-1=1-x x,
8
考点聚焦突破
当0<x<e时,f(x)=x(-1+ln x)<0;当x>e时,f(x)>0. 当x>0且x→0时,f(x)→0; 当x→+∞时,显然f(x)→+∞. 由图象可知,-1<m+1<0, 即-2<m<-1. 所以m的取值范围是(-2,-1).
9
@《创新设计》 考点聚焦突破
@《创新设计》16 Nhomakorabea考点聚焦突破
又 g(0)=0,gπ2>0,g(π)=-2, 故g(x)在(0,π)存在唯一零点. 所以f′(x)在区间(0,π)存在唯一零点. (2)解 由题设知f(π)≥aπ,f(π)=0,可得a≤0. 由(1)知,f′(x)在(0,π)只有一个零点,设为x0, 当x∈(0,x0)时,f′(x)>0;当x∈(x0,π)时,f′(x)<0, 所以f(x)在(0,x0)上单调递增,在(x0,π)上单调递减. 又f(0)=0,f(π)=0,所以当x∈[0,π]时,f(x)≥0. 又当a≤0,x∈[0,π]时,ax≤0,故f(x)≥ax. 因此,a的取值范围是(-∞,0].
@《创新设计》
7
考点聚焦突破
@《创新设计》
所以f(x)在x=1处取得极小值,f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1). (2)y=f(x)-m-1在(0,+∞)内有两个不同的零点,可转化为y=f(x)与y=m+1图象 有两个不同的交点. 由(1)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=-1,
相关文档
最新文档