2018年中考数学一轮复习:分式

合集下载

中考数学一轮总复习 第4课时 分式(无答案) 苏科版

中考数学一轮总复习 第4课时 分式(无答案) 苏科版

第4课时:分式【课前预习】(一)知识梳理1、分式的有关概念:①定义;②分式有意义的条件;③分式的值为0的条件.2、分式的基本性质:①约分;②最简分式;③通分;④最简公分母.3、分式的运算:①分式的乘除;②分式的加减;③分式的混合运算.(二)课前练习1. 下列有理式: x 1,()12x y +,y x y x --22,π2,3-x x ,1394y x +,212-+x x 中,分式是____ _______________.2、当x 时,分式x x -2有意义,当x 为 时,分式3212-++x x x 的值为零. 3、不改变分式的值,把分式b a b a 212.031+-的分子和分母各项系数化为整数,结果是__ ______.4、约分:222axy y ax =_ ____ ,32)()(x y y x --=___ __, 11222-+-x x x =____ ___. 5、分式245a b c ,2310c a b 与252b ac -的最简公分母为_________;分式11,122-+x x x 的最简公分母为_________. 6、计算① xx x x x x x +-⋅-+÷+--111112122= ; ② 1111--+x x = .【解题指导】例1 计算: (1)112---x x x (2) x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+-- (3) )212(112a a a a a a +-+÷--例2 化简求值:①(x 2+4x -4)÷ x 2-4 x 2+2x ,其中x =-1, ②222(1)(1)(1)121x x x x x x x --÷+---+,其中210x x +-=.③先化简211()1122x x x x -÷-+-,1-中选取一个你认为合适..的数作为x 的值代入求值.例3、已知22)2(2)2(3-+-=-+x B x A x x ,则A= ,B= .【巩固练习】 1.要使分式212x x x -+-的值为零,则x 的取值为 ( ) A.x =1 B. x =-1 C. x ≠1且x ≠-2 D.无任何实数2.将分式y x xy -中的y x ,都扩大2倍,分式的值 ( ) A.扩大4倍 B.扩大2倍 C.不变 D.缩小23、计算:(1))3()42()(-62322b a b a ab -÷-⋅ (2)222+-+y y y (3))11(122b a b a b a -++÷-4、 先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中21=x【课后作业】 班级 姓名一、必做题: 1.要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >2.若分式33x x -+的值为零,则x 的值是( ) A .3 B .3- C .3± D .03.化简222a b a ab -+的结果为( )A .b a -B .a ba - C .a ba + D .b -4.化简22422b a a b b a +--的结果是( )A .2a b --B .2b a -C .2a b -D .2b a +5.计算22()ab a b -的结果是( )A .aB .bC .1D .-b6.分式111(1)a a a +++的计算结果是( )A .11a +B .1a a +C .1aD .1a a +7.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x xx x x x x x x x +-++-=-=-==++-+++.其中正确的是( )A .小明B .小亮C .小芳D .没有正确的8、当x 时,分式12x -无意义;若分式22221x x x x --++的值为0,则x 的值等于 .9、化简: 22a aa += ;=---b a bb a a _____________.10、计算:①(12-a )÷(1a 1-) ②2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭11、先化简aa a a a -+-÷--2244)111( ,再选取一个适当的a 的值代入求值.二.选做题:1、 a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 2、某单位全体员工在植树节义务植树240棵,原计划每小时植树a 棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).3、设0a b >>,2260a b ab +-=,则a b b a+-的值等于 . 4、(1)若3a b +=0,求22222124b a ab b a b a b ++⎛⎫-÷ ⎪+-⎝⎭; (2已知x 2-3x -1=0,求x 2+1x 2的值.5、观察下列格式:111122=-⨯,1112323=-⨯,1113434=-⨯,… (1)计算111111223344556++++=⨯⨯⨯⨯⨯__________; (2)探究()11111223341n n ++++=⨯⨯⨯+…__________;(用含有n 的式子表示) (3)若()()111117133557212135n n ++++=⨯⨯⨯-+…,求n 的值.。

因式分解分式二次根式含解析-中考各地试题分类汇编

因式分解分式二次根式含解析-中考各地试题分类汇编

专题1.4 因式分解分式二次根式一、单选题1.【湖南省邵阳市2018年中考数学试卷】将多项式x﹣x3因式分解正确的是()A. x(x2﹣1) B. x(1﹣x2) C. x(x+1)(x﹣1) D. x(1+x)(1﹣x)【答案】D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案.【详解】x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选D.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键.2.【台湾省2018年中考数学试卷】已知某文具店贩售的笔记本每本售价均相等且超过10元,小锦和小勤在此文具店分别购买若干本笔记本.若小锦购买笔记本的花费为36元,则小勤购买笔记本的花费可能为下列何者?()A. 16元 B. 27元 C. 30元 D. 48元【答案】D点睛:此题主要考查了质因数分解,正确得出笔记本的单价是解题关键.3.【湖南省郴州市2018年中考数学试卷】下列运算正确的是()A. a3•a2=a6 B. a﹣2=﹣ C. 3﹣2= D.(a+2)(a﹣2)=a2+4【答案】C【解析】【分析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A、a3•a2=a5,故A选项错误;B、a﹣2=,故B选项错误;C、3﹣2=,故C选项正确;D、(a+2)(a﹣2)=a2﹣4,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.4.【河北省2018年中考数学试卷】若2n+2n+2n+2n=2,则n=()A.﹣1 B.﹣2 C. 0 D.【答案】A【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n(m,n是正整数).5.【湖北省孝感市2018年中考数学试题】已知,,则式子的值是()A. 48 B. C. 16 D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:(x-y+)(x+y-)===(x+y)(x-y),当x+y=4,x-y=时,原式=4×=12,故选:D.点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.6.【湖南省邵阳市2018年中考数学试卷】据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B. 2.8×10﹣8m C.28×109m D. 2.8×108m【答案】B【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【四川省内江市2018年中考数学试卷】已知:﹣=,则的值是()A. B.﹣ C. 3 D.﹣3【答案】C【解析】分析:已知等式左边两项通分并利用同分母分式的减法法则计算,变形后即可得到结果.详解:∵﹣=,∴=,则=3,故选:C.点睛:此题考查了分式的化简求值,化简求值的方法有直接代入法,整体代入法等常用的方法,解题时可根据题目具体条件选择合适的方法,当未知的值没有明确给出时,所选取的未知数的值必须使原式的各分式都有意义,且除数不能为0.8.【四川省内江市2018年中考数学试卷】小时候我们用肥皂水吹泡泡,其泡沫的厚度是约0.000326毫米,用科学记数法表示为()A.毫米 B.毫米 C.厘米 D.厘米【答案】A点睛:此题考查了科学记数法—表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.9.【河北省2018年中考数学试卷】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁【答案】D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键. 10.【四川省达州市2018年中考数学试】题二次根式中的x的取值范围是()A. x<﹣2 B.x≤﹣2 C. x>﹣2 D.x≥﹣2【答案】D点睛:本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.11.【台湾省2018年中考数学试卷】算式×(﹣1)之值为何?()A. B. C. 2- D. 1【答案】A【解析】分析:根据乘法分配律可以解答本题.详解:×(﹣1)=×﹣1=,故选:A.点睛:本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.12.【山东省聊城市2018年中考数学试卷】下列计算正确的是()A. B.C. D.【答案】B点睛:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则. 13.【湖南省张家界市2018年初中毕业学业考试数学试题】下列运算正确的是()A. B. C. D.=【答案】D【解析】分析:根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;=a (a≥0);完全平方公式:(a±b)2=a2±2ab+b2;幂的乘方法则:底数不变,指数相乘进行计算即可.详解:A、a2和a不是同类项,不能合并,故原选项错误;B、=|a|,故原选项错误;C、(a+1)2=a2+2a+1,故原选项错误;D、(a3)2=a6,故原选项正确.故选:D.点睛:此题主要考查了二次根式的性质、合并同类项、完全平方公式、幂的乘方,关键是掌握各计算法则和计算公式.二、填空题14.【山东省东营市2018年中考数学试题】分解因式:x3﹣4xy2=_____.【答案】x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为:x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【湖南省郴州市2018年中考数学试卷】因式分解:a3﹣2a2b+ab2=_____.【答案】a(a﹣b)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【湖南省怀化市2018年中考数学试题】因式分解:ab+ac=_____.【答案】a(b+c)【解析】分析:直接找出公因式进而提取得出答案.详解:ab+ac=a(b+c).故答案为:a(b+c).点睛:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17.【河北省2018年中考数学试卷】若a,b互为相反数,则a2﹣b2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0,故答案为:0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.18.【山东省威海市2018年中考数学试题】分解因式:﹣a2+2a﹣2=__.【答案】﹣(a﹣2)2【解析】分析:原式提取公因式,再利用完全平方公式分解即可.详解:原式=﹣(a2﹣4a+4)=﹣(a﹣2)2,故答案为:﹣(a﹣2)2点睛:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.19.【湖南省湘西州2018年中考数学试卷】要使分式有意义,则x的取值范围为_____.【答案】x≠﹣2【解析】【分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为:x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.20.【湖北省襄阳市2018年中考数学试卷】计算的结果是_____.【答案】【点睛】本题考查了同分母分式的加减法,熟练掌握同分母公式加减法的法则是解题的关键,注意结果要化成最简分式.21.【湖北省武汉市2018年中考数学试卷】计算的结果是_____.【答案】【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式===,故答案为:.【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.22.【山东省滨州市2018年中考数学试题】若分式的值为0,则x的值为______.【答案】-3点睛:本题主要考查分式的值为0的条件,注意分母不为0.23.【新疆自治区2018年中考数学试题】如果代数式有意义,那么实数x的取值范围是_____.【答案】x≥1.【解析】分析:直接利用二次根式的定义分析得出答案.详解:∵代数式有意义,∴x-1≥0,解得,x≥1.∴实数x的取值范围是:x≥1.故答案为:x≥1.点睛:此题主要考查了二次根式的定义,正确把握定义是解题关键.24.【山东省烟台市2018年中考数学试卷】与最简二次根式5是同类二次根式,则a=_____.【答案】2【解析】分析:先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.详解:∵与最简二次根式5是同类二次根式,且=2,∴a+1=3,解得:a=2.故答案为2.点睛:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.25.【黑龙江省哈尔滨市2018年中考数学试题】计算6﹣10的结果是_____.【答案】【解析】分析:首先化简,然后再合并同类二次根式即可.详解:原式=6-10×=6-2=4,故答案为:4.点睛:此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.三、解答题26.【浙江省杭州市临安市2018年中考数学试卷】阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.【答案】(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.27.【上海市2018年中考数学试卷】先化简,再求值:(﹣)÷,其中a=.【答案】原式=【点睛】本题考查了分式的化简求值,熟练掌握分式化简求值的步骤是解题的关键.28.【吉林省长春市2018年中考数学试卷】先化简,再求值:,其中x=﹣1.【答案】【解析】【分析】根据分式的加法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】====x+1,当x=﹣1时,原式=﹣1+1=.【点睛】本题考查分式的化简求值,熟练掌握分式化简求值的方法是解答本题的关键.29.【云南省昆明市2018年中考数学试题】先化简,再求值:(+1)÷,其中a=tan60°﹣|﹣1|.【答案】原式=【解析】分析:根据分式的运算法则即可求出答案.详解:当a=tan60°-|-1|时,∴a=-1∴原式===.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式运算法则.30.【黑龙江省哈尔滨市2018年中考数学试题】先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【答案】点睛:本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.31.【广西钦州市2018年中考数学试卷】计算:|﹣4|+3tan60°﹣﹣()﹣1【答案】+2【解析】【分析】按顺序先进行绝对值的化简、特殊角的三角函数值、二次根式的化简、负指数幂的计算,然后再按运算顺序进行计算即可得出答案.【详解】|﹣4|+3tan60°﹣﹣()﹣1=4+3﹣2﹣2=+2.【点睛】本题考查了实数的混合运算,涉及到特殊角的三角函数值、二次根式的化简、负指数幂的运算等,熟练掌握各运算的运算法则以及实数混合运算的运算法则是解题的关键.32.【江苏省徐州巿2018年中考数学试卷】计算:(﹣1)2008+π0﹣()﹣1+.【答案】1【解析】【分析】按顺序分别进行乘方的运算、0次幂的运算、负指数幂的运算、立方根的运算,然后再按去处顺序进行运算即可.【详解】(﹣1)2008+π0﹣()﹣1+=1+1﹣3+2=1.【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂,熟练掌握0次幂的运算法则、负指数幂的运算法则以及实数混合运算的运算法则是解题的关键.33.【湖北省荆门市2018年中考数学试卷】先化简,再求值:(x+2+)÷,其中x=2.【答案】,4-2.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.34.【四川省达州市2018年中考数学试题】化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【答案】0【解析】分析:直接将所给式子进行去括号,利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.点睛:此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.35.【湖南省邵阳市2018年中考数学试卷】计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|【答案】【解析】【分析】按顺序先分别进行乘方的计算,零指数幂的运算、绝对值的化简,然后再按运算顺序进行计算即可.【详解】(﹣1)2+(π﹣3.14)0﹣|﹣2|=1+1-(2-)=1+1-2+=.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.36.【湖北省随州市2018年中考数学试卷】先化简,再求值:,其中x为整数且满足不等式组.【答案】,.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,由x为整数且满足不等式组可以求得x的值,然后代入化简后的结果进行计算即可得答案.【详解】===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点睛】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,熟练掌握分式的化简求值的方法是解答本题的关键.37.【山东省烟台市2018年中考数学试卷】先化简,再求值:(1+)÷,其中x满足x2﹣2x ﹣5=0.【答案】5点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.38.【江苏省淮安市2018年中考数学试题】先化简,再求值:(1﹣)÷,其中a=﹣3.【答案】原式==﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式===,当a=﹣3时,原式==﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.39.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】(1)计算:|﹣2|﹣2cos60°+()﹣1﹣(2018﹣)0(2)先化简(1﹣)•,再在1、2、3中选取一个适当的数代入求值.【答案】(1)6;(2)-2(2)(1﹣)•,===,当x=2时,原式=.点睛:本题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.40.【湖北省黄石市2018年中考数学试卷】先化简,再求值:.其中x=sin60°.【答案】【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再根据三角函数值代入计算可得.详解:原式==,当x=sin60°=时,原式==.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.41.【江苏省盐城市2018年中考数学试题】先化简,再求值:,其中.【答案】原式=x-1=点睛:本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.42.【湖北省恩施州2018年中考数学试题】先化简,再求值:,其中x=2﹣1.【答案】【解析】分析:直接分解因式,再利用分式的混合运算法则计算得出答案.详解:==,把x=2-1代入得,原式==.点睛:此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.43.【新疆自治区2018年中考数学试题】先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.【答案】-2点睛:本题考查分式的化简求值、一元二次方程的解,解答本题的关键是明确分式的化简求值的计算方法.44.【山东省聊城市2018年中考数学试卷】先化简,再求值:,其中.【答案】-4【解析】分析: 首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a的值可得答案.详解:原式====-当a=-时,原式=-4.点睛:此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.45.【四川省眉山市2018年中考数学试题】先化简,再求值:,其中x满足x2-2x-2=0.【答案】点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.46.【湖南省常德市2018年中考数学试卷】先化简,再求值:,其中.【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把数值代入化简后的结果进行计算即可得.【详解】原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,当x=时,原式=﹣3=﹣.【点睛】本题主要考查了分式的化简求值,熟练掌握分式的混合运算法则是解题关键.47.【湖南省常德市2018年中考数学试卷】计算:.【答案】-2.【解析】【分析】按顺序先分别进行零指数幂运算、绝对值化简、二次根式化简、负指数幂的运算,然后再按运算顺序进行计算即可得.【详解】原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点睛】本题主要考查了实数的混合运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.48.【2018年湖南省湘潭市中考数学试卷】先化简,再求值:(1+)÷.其中x=3.【答案】x+2,5点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.49.【江苏省泰州市2018年中考数学试题】(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【答案】(1)2﹣5;(2)【解析】分析:(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.详解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+-4=2﹣5;(2)原式=,=,=.点睛:本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.50.【山东省菏泽市2018年中考数学试题】先化简,再求值:,其中,.【答案】7点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.。

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。

一轮复习第一章数与式第3讲--分式

一轮复习第一章数与式第3讲--分式

1 负整数指数: a p ____a__p_(a≠0,p为正整数)
► 考点1: 分式的有关概念
命题角度: 1. 分式的概念; 2. 使分式有(无)意义、值为0(正或负)的条件.
例1下列式子是分式的是
A. x B. x
C. x y
2
x 1
2
ቤተ መጻሕፍቲ ባይዱ
(B )
D. x

例2 (C
(1) )
若分式
5 1 x
别相乘,然后约去公因式,化为最简
分位_c_≠式置b_a0_除后,_分分然要分_以,d_式子后把子≠_;、再整,分与×0若分相式分式被)_分母乘与母_dc,除子分,分不__、解当式变把式_分因分的._除相_母式式分_式乘是,与子=多看整相的,项能式乘分即a式 否 相 作bdc子,约乘为先分时积、将,,的(ab分b÷≠dc母0颠, 倒=
有意义,则x的取值范围是
A.x=0 B.x=1 C.x≠1 D.x≠ 0
(2) [2012·温州] 若代数式
的值为零,则x
=____3____.
[解析] (1)∵分式有意义,∴1-x≠0,∴x≠1. (2)x-2 1-1=3x--x1的值为零,则 3-x=0,且分母
x-1≠0,所以 x=3.
(1)分式有意义的条件是分母不为零;分母为 零时分式无意义.

异分母分式 先通分,变为a 同c 分母的分a式d ,然后相bc加减,
相加减 即
b±d =_____ab_d±_d_b±c _____b_d__=
bd
分式 的乘

乘法法则 除法法则
母分的式积分乘母做分当是积分式单式的项,与式分用分请,母式分您可相,牢先子乘记将即的时:分,积子若ab、做× 分分积子d母c、的分=分__子ba_dc_,__分__

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式(含答案)

2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式一.选择题(共22小题) 1.(2020•津南区一模)计算2a (a+1)2+2(a+1)2的结果为( ) A .1B .2C .1a+1D .2a+12.(2020•和平区三模)计算a (a+b)2+b (a+b)2的结果为( ) A .1B .1a+1bC .a +bD .1a+b3.(2020•红桥区三模)计算2−x x−1+2x−3x−1的结果为( )A .2x−1x−1B .1C .1x−1D .24.(2020•河北区二模)化简x 2x−2+42−x的结果是( )A .x +2B .x +4C .x ﹣2D .2﹣x5.(2020•滨海新区二模)计算3x−1x−1+2−3x x−1的结果为( ) A .3x−1B .x ﹣1C .1x−1D .−1x−16.(2020•西青区二模)化简a 2a−1+1−2a a−1结果为( )A .a+1a−1B .a ﹣1C .aD .17.(2020•天津二模)计算x−2x−1+1x−1的结果为( )A .1B .1x−1C .12D .xx−18.(2020•滨海新区一模)计算3x(x−1)2−3(x−1)2的结果是( )A .3B .3x ﹣3C .xx−1D .3x−19.(2020•红桥区一模)计算2a−1a−1−1a−1的结果是( )A .2B .2a ﹣2C .1D .2aa−110.(2020•南开区二模)化简x 2+2xy+y 2x 2−y 2−y x−y的结果是( )A .xx−yB .y x+yC .xx+yD .yx−y11.(2020•和平区一模)计算22a+b+b 2a+b的结果为( )A .1B .2+bC .2−b2a+bD .2+b2a+b12.(2020•红桥区模拟)计算x+2x+1−x x+1的结果为( )A .1B .2C .2x+1D .2xx+113.(2020•西青区一模)化简x 2x−1+x 1−x的结果是( )A .xB .x ﹣1C .﹣xD .x +114.(2019•津南区二模)计算a a 2−b 2−1a−b的结果为( )A .bB .﹣bC .ba−bD .−b a 2−b215.(2019•西青区二模)计算m 2m−n+n 2n−m的结果为( )A .m 2+n 2B .m +nC .m ﹣nD .n ﹣m16.(2019•天津二模)化简m 2m−4+164−m的结果是( )A .m ﹣4B .m +4C .m+4m−4D .m−4m+417.(2019•河北区二模)计算x 2−2x−1+1x−1的结果为( )A .x +1B .x ﹣1C .1x+1D .1x−118.(2019•和平区一模)计算xx−2+2x−2的结果为( )A .0B .1C .2−xx−2D .x+2x−219.(2019•红桥区一模)计算2x+13x−1−2−x3x−1的结果为( )A .1B .﹣1C .33x−1D .x+33x−120.(2019•天津模拟)计算2a a 2−1−1a+1的结果为( )A .1a+1B .1a−1C .aa+1D .aa−121.(2019•河西区模拟)计算2x5x−3÷325x 2−9⋅x5x+3的结果为( )A .2x 23B .(5x+3)23 C .2x5x−3D .2x15x−922.(2019•东丽区二模)计算a(a+1)2+1(a+1)2的结果为( ) A .1B .1aC .a +1D .1a+1二.填空题(共28小题)23.(2020•津南区一模)计算(√3+√5)2的结果等于 . 24.(2020•西青区二模)计算(√5−2)(√5+2)的结果等于 . 25.(2020•滨海新区二模)计算(√3−1)2的结果等于 . 26.(2020•河北区二模)化简(√5−1)2= .27.(2020•红桥区二模)计算(√11+2)(√11−2)的结果等于 . 28.(2020•南开区二模)计算(3+√6)2的结果等于 . 29.(2020•河东区一模)计算(√5+6)•(√5−6)= . 30.(2020•和平区二模)计算(2√2−3)(3+2√2)的结果等于 . 31.(2020•和平区一模)计算(√6+2)(√6−2)的结果等于 . 32.(2020•南开区一模)计算(√5+√2)2的结果是 . 33.(2020•天津二模)计算(√3+2)(√3−2)的结果是 . 34.(2020•河西区模拟)使式子√a −1有意义的a 的取值范围是 . 35.(2020•西青区一模)计算(2√5−√2)2的结果等于 .36.(2020•滨海新区一模)已知x =√3+1,y =√3−1,则x 2+2xy +y 2的值为 . 37.(2019•宝坻区模拟)将√423化为最简二次根式的结果为 .38.(2019•北辰区二模)当x =√10−1时,多项式x 2+2x +6的值等于 . 39.(2019•津南区二模)计算(√5−√2)2的结果等 . 40.(2019•天津二模)计算(√3−√2)2的结果等于 .41.(2019•红桥区二模)计算:(√5+√2)(√5−√2)的结果等于 . 42.(2019•红桥区一模)计算(√7+2)(√7−2)的结果等于 . 43.(2019•和平区二模)计算(2√2−3)2的结果等于 . 44.(2019•滨海新区模拟)计算(√5−√3)2的结果等于 . 45.(2019•东丽区一模)计算:(√3−√2)2= . 46.(2019•大港区模拟)计算√24−√18×√13−√19= .47.(2018•和平区二模)计算(2+√3)(√3−2)的结果等于.48.(2018•北辰区二模)计算(√10+√2)(√10−√2)的结果等于.49.(2018•天津二模)计算(√7+√5)(√7−√5)的结果等于.50.(2018•南开区二模)计算√2×(√6−2√12)的结果等于.2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式参考答案与试题解析一.选择题(共22小题) 1.【解答】解:2a (a+1)2+2(a+1)2=2(a +1)(a +1)2=2a+1. 故选:D . 2.【解答】解:原式=a+b (a+b)2=1a+b . 故选:D . 3.【解答】解:2−x x−1+2x−3x−1=2−x+2x−3x−1=x−1x−1=1.故选:B . 4.【解答】解:x 2x−2+42−x=x 2x −2−4x −2 =x 2−4x −2 =(x −2)(x +2)x −2=x +2. 故选:A . 5.【解答】解:3x−1x−1+2−3x x−1=3x −1+2−3xx −1=1x−1. 故选:C .6.【解答】解:原式=a 2+1−2aa−1=(a −1)2a −1=a ﹣1. 故选:B . 7.【解答】解:x−2x−1+1x−1=x −2+1x −1=1. 故选:A . 8.【解答】解:3x (x−1)2−3(x−1)2=3x−3(x−1)2=3(x−1)(x−1)2=3x−1;故选:D . 9.【解答】解:2a−1a−1−1a−1=2a −1−1a −1=2a −2a −1 =2(a −1)a −1=2, 故选:A .10.【解答】解:原式=(x+y)2(x+y)(x−y)−yx−y=x +y x −y −yx −y=xx−y , 故选:A .11.【解答】解:原式=2+b2a+b , 故选:D . 12.【解答】解:x+2x+1−x x+1=x+2−x x+1=2x+1,故选:C .13.【解答】解:原式=x 2x−1−x x−1=x(x−1)x−1=x ,故选:A.14.【解答】解:aa2−b2−1a−b=a(a+b)(a−b)−a+b(a+b)(a−b)=−ba2−b2,故选:D.15.【解答】解:原式=m2−n2 m−n=m+n,故选:B.16.【解答】解:原式=m2m−4−16m−4=m2−16m−4=(m+4)(m−4)m−4=m+4,故选:B.17.【解答】解:原式=x2−1 x−1=x+1,故选:A.18.【解答】解:xx−2+2 x−2=x+2x−2,故选:D.19.【解答】解:原式=2x+1−2+x3x−1=3x−13x−1=1,故选:A.20.【解答】解:2aa2−1−1a+1=2a(a+1)(a−1)−a−1(a+1)(a−1)=2a−(a−1)(a+1)(a−1)=a+1(a+1)(a−1)=1a−1, 故选:B .21.【解答】解:原式=2x 5x−3•(5x+3)(5x−3)3•x5x+3=2x 23, 故选:A . 22.【解答】解:a (a+1)2+1(a+1)2=1a+1,故选:D .二.填空题(共28小题) 23.【解答】解:原式=3+2√15+5 =8+2√15. 故答案为8+2√15.24.【解答】解:原式=(√5)2﹣22 =5﹣4 =1. 故答案为1.25.【解答】解:原式=3﹣2√3+1 =4﹣2√3. 故答案为4﹣2√3.26.【解答】解:原式=5﹣2√5+1 =6﹣2√5. 故答案为6﹣2√5.27.【解答】解:原式=(√11)2﹣22 =11﹣4 =7. 故答案为728.【解答】解:原式=9+6√6+6 =15+6√6. 故答案为15+6√6.29.【解答】解:原式=(√5)2﹣62=5﹣36=﹣31.故答案为:﹣31.30.【解答】解:(2√2−3)(3+2√2)=(2√2)2﹣32=8﹣9=﹣1,故答案为:﹣1.31.【解答】解:原式=(√6)2﹣22=6﹣4=2.故答案为2.32.【解答】解:原式=(√5)2+2√10+(√2)2=5+2√10+2=7+2√10.故答案为7+2√10.33.【解答】解:原式=(√3)2﹣22=3﹣4=﹣1,故答案为:﹣1.34.【解答】解:使式子√a−1有意义,则a﹣1≥0,解得:a≥1.故答案为:a≥1.35.【解答】解:原式=20﹣4√10+2=22﹣4√10.故答案为22﹣4√10.36.【解答】解:∵x=√3+1,y=√3−1,∴x2+2xy+y2=(x+y)2=(√3+1+√3−1)2=(2√3)2=12;故答案为:12.37.【解答】解:原式=√143=√423, 故答案为:√423; 38.【解答】解:解法一:当x =√10−1时, x 2+2x +6=(√10−1)2+2(√10−1)+6 =10﹣2√10+1+2√10−2+6 =15, 故答案为15;解法二:x 2+2x +6=(x +1)2+5 =(√10−1+1)2+5 =10+5 =15, 故答案为15.39.【解答】解:原式=5﹣2√10+2 =7﹣2√10. 故答案为7﹣2√10.40.【解答】解:原式=3﹣2√6+2 =5﹣2√6. 故答案为5﹣2√6. 41.【解答】解:原式=5﹣2 =3. 故答案为3.42.【解答】解:原式=7﹣4=3. 故答案为3.43.【解答】解:原式=(2√2)2﹣2×2√2×3+32 =8﹣12√2+9 =17﹣12√2, 故答案为:17﹣12√2.44.【解答】解:原式=5﹣2√15+3=8﹣2√15.故答案为8﹣2√15.45.【解答】解:原式=(√3)2+(√2)2−2√3×√2=3+2﹣2√3×2=5﹣2√6.故答案为:5﹣2√6.46.【解答】解:原式=2√6−√18×13−13=2√6−√6−1 3=√6−13.故答案为√6−1 3.47.【解答】解:(2+√3)(√3−2)=(√3)2﹣22=3﹣4=﹣1.故答案为:﹣1.48.【解答】解:原式=10﹣2=8.故答案为8.49.【解答】解:原式=7﹣5=2.故答案为2.50.【解答】解:原式=√2×6−2√2×1 2=2√3−2.故答案为2√3−2.。

《中考大一轮数学复习》课件 课时5 分式

《中考大一轮数学复习》课件 课时5 分式

1 2 3
7
中考大一轮复习讲义◆ 数学
1. (2013·山东泰安)化简分式 2 x+1 2 x-1 2 2 1 ÷( 2 + )的结果是( x-1 x -1 x+1 D. -2
课前预测 你很棒
A
)
A. 2
B.
C.
a3 2. (2013·山东滨州)化简 ,正确的结果为( a A. a B. a
2
B
)
1 2 3
5
夯实基本
中考大一轮复习讲义◆ 数学 考点 分式的运算
a b a±b a c ad bc ad±bc 1. 分式的加减法法则: ± = ; ± = ± = . c c c b d bd bd bd a c ac 2. 分式的乘法法则: · = . b d bd a c a d a·d 3. 分式的除法法则: ÷ = · = . b d b c b·c an 4. 分式的乘方法则:要把分子、分母分别乘方,即 =________. b
知已知彼
1 2
6
3
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
考点 分式的运算 5. a-n=________(a≠0,n为整数). 规律总结: (1)含有分式的加减运算中,整式可以看成是分母为1的式子,然后通过通分 进行计算. (2)能约分的要先约分,可以减少计算步骤. (3)注意运算步骤,也是先算乘方,再算乘除,最后算加减,有括号的先算 括号里面的. (4)另外可以结合交换律、结合律、分配律等,可以使运算更简便.运算的 结果要化为最简分式或整式. (5)分式的乘除运算中,整式可以看作分母为1的式子,然后依照分式的乘除 法则进行运算. (6)乘方法则中“分子、分母分别乘方”指的是分子、分母整体分别乘方, 而不是部分. (7)分式乘除法若无附加条件(如括号等),应按照从左到右的顺序进行;最 好先将算式中的除式的分子、分母颠倒位置,将除法转化为乘法后再计算.

第3节分式-中考数学一轮知识复习PPT课件

第3节分式-中考数学一轮知识复习PPT课件

3.通分:
(1)定义:把几个异分母的分式化为同___分__母__分式的过程叫做 分式的通分.通分的关键是确定各分母的_最__简__公___分__母__.
(2)确定最简公分母的方法: ①取各分母系数的最小公倍数,作为最简公分母的系数;取 各分母所有因式的最高次幂的积,作为最简公分母的因式. ②若分母是多项式,则应先把各个分母分解因式,再确定最 简公分母. 温馨提示
2.分式有、无意义和值为 0 的条件: 条件
分式AB 有意义
__B__≠_0__
分式AB 无意义
__B_=__0__
分式AB 的值为 0
__A_=__0__且 B≠0
3.最简分式:分子与分母没有_公__因__式__的分式.
分式的基本性质
1.基本性质:分式的分子与分母都_乘__或___除__以___同一个不等
B.缩小 10 倍
C.是原来的23
D.不变
☞命题点3 分式的运算 A
1 x+1
8.(2020·随州)x2-2 4
1 ÷x2-2x
的计
算结果为( B )
A.x+x 2
B.x+2x2
C.x-2x2
2 Dx(x+2)
☞命题点4 分式的化简及求值(8年7考)
9.(2018·广东 18 题 6 分)先化简,再求值:
6.(2020·花都区一模)计算:x+x 1 +x+1 1 =___1__.
7.(12020·黄冈)计算:x2-y y2 ÷1-x+x y 的结果 是_____x_-__y____.
8.(2020·东莞一模)先化简:1+a2-1 1
a ÷a-1

请在-1,0,1,2,3 当中选一个合适的数代入求值.
3

中考数学一轮教材梳理复习课件:第3课分式

中考数学一轮教材梳理复习课件:第3课分式
第3课 分式
首页
下一页
课程 标准
了解分式和最简分式的概念,能 利用分式的基本性质进行约分和 通分;能进行简单的分式加、减、 乘、除运算.
近几年 试题规律
分式的简单计算以选择、填空题 出现,分式的化简求值多以解答 题出现.
首页
下一页
基础过关
1.分式的概念 形如AB (A,B 是整式,且 B 中含有字母,B≠0)的 式子.
1 ÷x2-2x
的计算结果
为___x_+__2__.
首页
下一页
三、解答题
11.(2020·滨州)先化简,再求值:1-xy+-2xy
x2-y2 ÷x2+4xy+4y2
;其中 x=cos 30°×
12 ,y=
(π-3)0-13 -1 .
首页
下一页
解:原式=1-xy+-2xy
(x+y)(x-y) ÷ (x+2y)2
=a±c b
,ab
c ±d
=adb±dbc

(4)分式乘方:(ab )n=abnn (n 为整数).
首页
下一页
5.(2020·河北)若 a≠b,则下列分式化简正确的是
( D)
a+2 A.b+2
=ab
C.ab22 =ab
a-2 B.b-2
=ab
1 D.21a =ab
2b
首页
下一页
考点精炼
分式有(无)意义及分式值为 0 的条件(7
首页
下一页
13.(2019·广东改编)先化简,再求值:x-x 3-x-1 3
x2-x ÷x2-9
,其中 x=
3.
解:原式=xx--31
(x+3)(x-3) · x(x-1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式、选择题(每题3分,共30
分)
2
1•分式有意义,则x的取值范围是(
x 1
A. x 丰 1
B. x=1
C. x -1
D. x=-
1
【答案】A
2.下列各式:
A. 1个
B. 2个【答案】C
3.如果把分式
A.不变
B. 【答案】B
y中,是分式的共有(
C. 3个
D. 4个
3n2
中的m和n都扩大3倍,那么分式的值
m n
扩大3倍C.缩小3倍 D.扩大9倍
4.下列算式中,你认为正确的是(
b A.
abba
b a
B. 1 * .-
a b
C. 3a 1-
3a
D.——
a
【答
案】
D 5.化简:
3a-41 (a+(1- ) a-3a-2
a-2
A. a - 2
B. a+2
C.
a-3【答
案】
B
6.下列计算正确的是, ( )
2
b3b53b A.2 B.
2a2a2a
D. 2
【答案】C 的结果等于
a-3
a-2
9b2
4a2 C.
2y
3x
8y3
27x D.
3x 9x2
~2 2
x a
x
7.分式-
x
m中,当m时,下列说法正确的是
A.分式的值为零
B. 分式无意义
C.若m 1时,分式的值为零
D.若m 1时, 分式的值为零【答案】C
&分式 g的值为零,贝y x的值为(
x+1
A. - 1
B. 0
C. ±
D. 1
【答案】D
9 •若xy=x - y 工0则分式丄丄=(
)
y x
1 A.
B. y - x
C. 1
D. - 1
xy
【答案】C
10. 下列式子 x (1) h
x
y
2
y
1 x (2)b a
a b
( 3)1
a c
b a a b
1
( 4): y
X y 中正确的是(
x y

y
c a A. 1 个 B 2个
C. 3 个
D. 4 个
【答案】B
二、填空题(每题3分,共30分)
1
11.当x _____ 时,分式 ------- 有意义•
x 5
【答案】
5 a 4
的值为零,那么
2a 4
【答案】-2
【答案】
14 .分式—,,丄 的最简公分母是 ______________________
xy 4x 6xyz
【答案】12x 3yz
15.化简:
【答案】x+y
16.计算:
2ab a b a a b
a b
【答案】a.
.2x 1
17 .式子 --------- 有意义的x 的取值范围是 ____________
x 1
12.分式 a 的值为
13.分式
m 2 2m 1
1 m 2
约分的结果是
1
【答案】x > 1
且x工
1.
2
1&当x=2016时,分式【答案】2013
19.若a C
b d
1 【答案】1
3
【解析】由题意得:
b=3a, d=3c.
20.已知•, xy=1,则-y 【答案】1/4
三、解答题(共40分)
21 .(本题4分)化简:
x 1
2x
6
x2 1
x 3
2x
3
4x2
【答案】16 3
22.(本题5分)计算:先化简:
a29
【答案】

a=4 时,原式=a - 3=1
23.(本题5分)先化简,再求值:
【答案】
a
,-1; a+2
24.(本题6分) 先化简,再求值: 【答案】-
25.(本题6分) 先化简再求值:
9
a23a,再找一个适合的
a值代入求值.
(答案不唯
一)
⑴丄?
a-1
2 2y
y 1
,其中
a -a
(
a
a是整数,且-3 v a v 3.
5
——-a+2),其中a=2sin60 +3tan45 :
2
2
y y,其中y是不等式2y 7 12的正整数解.
y 1
1 【答案】
1
2
26.(本题6分)先化简,再求值: x21 x22x
【答案】则原式
x
,其中x满足方程x2+4x - 5=0 .
x 2
x 2 3
27.(本题8分)阅读下面材料,并解答问题
将分式3拆分成一个整式与一个分式(分子为整数)的和的形式X2 1
解:由分母为x2-1,可设X4+X2-3= (x2-1) (x2+a) +b.
则X4+X2-3= (x2-1) ( x2+a) +b=x4-x2+ax2-a+b=x4+ ( a-1) 2
X -a+b
X4X2
X2 1
x2 1 x2 2 1
x2 1
x2 1 x2 2
x2 1
1
X2 1
1
X2 1 4
这样,分式邛3被拆分成了一个整式X2+2与一个分式-
X2 1 -的和.
1
根据上述作法,将分式 -一6X 8拆分成一个整式与一个分式(分子为整数)
X2 1 的和的形式
【答案】X2
1 X
2 1。

相关文档
最新文档