【苏教版】七年级下册数学期中测试卷(最新整理)
苏教版数学七年级下学期《期中测试卷》附答案解析

苏 教 版 七 年 级 下 学 期期 中 测 试 卷一、选择题(每题3分,共30分)1. 如图,a ∥b ,∠1=130°,则∠2=( )A. 50°B. 130°C. 70°D. 120°2. 已知一个三角形的两边长分别为3和4,则第三边的长不可能的是( )A. 1B. 2C. 3D. 4 3. 下列运算中,正确的是( )A. 236m m m ⨯=B. 325()m m =C. 232m m m +=D. 32m m m -÷=-4. H7N9型禽流感是一种新型禽流感,于2013年3月底在上海和安徽两地率先发现.H7N9型禽流感是全球首次发现的新亚型流感病毒,其细胞的直径约为0.000000106m ,用科学记数法表示这个数是( )A. 60.10610-⨯mB. 60.10610⨯mC. 71.0610-⨯mD. 71.0610⨯m 5. 下列计算正确的是( )A. 222()x y x y +=+B. 223(421)1261xy y x xy x y ---=-++ C . 2(1)(1)1x x x +-=-D. 2(9)(1)1010a a a a ++=++ 6. 分解因式:3244y y y -+=( )A. 2(44)y y y -+B. 2(2)y y -C. 2(2)y y +D. (2)(2)y y y +- 7. 根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A. 22()(2)32a b a b a ab b ++=++B. 22(3)()34a b a b a ab b ++=++C. 22(2)()23a b a b a ab b ++=++D. 22(32)()352a b a b a ab b ++=++ 8. 关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是( ). A. 34k =- B. 34k = C. 43k = D. 43k =- 9. 不论x 、y 为何有理数,多项式22428x y x y +--+的值总是( )A. 正数B. 零C. 负数D. 非负数10. 如图,点D 是△ABC 的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,则△ABC 的面积等于△BEF 的面积的( )A. 2倍B. 3倍C. 4倍D. 5倍二、填空(每空2分,共18分)11. 一个n 边形的内角和为1080°,则n=________.12. 如图,AB∥CD,∠C=20°,∠E=25°.则∠A=__°.13. 若8x =4x+2,则x=______.14. 计算:(﹣2x )³=_______,1011021()33-⨯=_______.15. 已知a+b=3,ab=-2. 则a 2+b 2的值是________.16. 当a =_______时,关于x ,y 的方程组2122x y a x y a -=+⎧⎨+=⎩的解中x 与y 相等. 17.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是__________18. 如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB=12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.三、解答题19. 计算:(1)244222()()m m m +(2)2(4)(31)(3)x x x x --+-+(3)2(1)(2)(2)x x x +---(4)2(2)(2(4))x x x ++-20. 分解因式:(1)22416m n -(2)222(2)2(2)1x x x x ++++21. 解方程组:(1)244523x y x y -=-⎧⎨-=-⎩(2)643434x yx y ⎧+=⎪⎨⎪-=-⎩22. 已知22(1)0x y -++=,求2(2)(2)(2)x y x y x y +---的值.23. 如图,在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.利用网格点和直尺,完成下列各题:(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)点Q为格点(点Q不与点B重合),且△ACQ的面积等于△ABC的面积,Q点有____个.24. 如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.25. 已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.26. 提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=1 2AD时(如图②):∵AP=12AD,△ABP和△ABD的高相等,∴S△ABP=12S△ABD.∵PD=AD﹣AP=12AD,△CDP和△CDA的高相等,∴S△CDP=12S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣12S△ABD﹣12S△CDA=S四边形ABCD﹣12(S四边形ABCD﹣S△DBC)﹣12(S四边形ABCD﹣S△ABC)=12S△DBC+12S△ABC.(2)当AP=13AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=16AD时,S△PBC与S△ABC和S△DBC之间的关系式为:;(4)一般地,当AP=1nAD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=mnAD(0≤mn≤1)时,S△PBC与S△ABC和S△DBC之间关系式为:.参考答案一、选择题(每题3分,共30分)1. 如图,a∥b,∠1=130°,则∠2=()A. 50°B. 130°C. 70°D. 120°【答案】B【解析】试题分析:如图:∵∠1=130°∴∠3=130°∵a∥b,∴∠2=∠3=130°.故选B.考点:1. 对顶角;2.平行线的性质.2. 已知一个三角形的两边长分别为3和4,则第三边的长不可能的是( )A. 1B. 2C. 3D. 4【答案】A【解析】【分析】根据三角形三边关系得出,任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值范围.【详解】∵此三角形且两边为3和4,∴第三边的取值范围是:1<x<7,在这个范围内的都符合要求.故选A.【点睛】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.3. 下列运算中,正确的是( )A .236m m m ⨯=B. 325()m m = C. 232m m m += D. 32m m m -÷=- 【答案】D【解析】 A.235m m m ⨯=,原计算错误;B.()236m m =,原计算错误;C.m 与m 2不是同类项,不能合并;D.32m m m -÷=-,正确,故选D.4. H7N9型禽流感是一种新型禽流感,于2013年3月底在上海和安徽两地率先发现.H7N9型禽流感是全球首次发现的新亚型流感病毒,其细胞的直径约为0.000000106m ,用科学记数法表示这个数是( )A. 60.10610-⨯mB. 60.10610⨯mC. 71.0610-⨯mD. 71.0610⨯m 【答案】C【解析】科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.则0.000000106=1.06×10-7,故选C. 5. 下列计算正确的是( )A. 222()x y x y +=+B. 223(421)1261xy y x xy x y ---=-++C. 2(1)(1)1x x x +-=-D. 2(9)(1)1010a a a a ++=++ 【答案】C【解析】A.()2222x y x xy y +=++,则原计算错误;B.()2234211263xy y x xy x y xy ---=-++,则原计算错误;C.()()2111x x x +-=-,正确;D.()()291109a a a a ++=++,则原计算错误,故选C . 6. 分解因式:3244y y y -+=( ) A. 2(44)y y y -+B. 2(2)y y -C. 2(2)y y +D. (2)(2)y y y +-【答案】B【解析】先提取公因式y ,再用完全平方差公式分解因式,所以y 3-4y 2+4y=y(y 2-4y+4)=y(y-2)2,故答案为B. 7. 根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是()A. 22()(2)32a b a b a ab b ++=++B. 22(3)()34a b a b a ab b ++=++C. 22(2)()23a b a b a ab b ++=++D. 22(32)()352a b a b a ab b ++=++【答案】D【解析】因为大长方形的长是3a+2b ,宽是a+b ,所以大长方形的面积是(3a+2b)(a+b)=3a 2+5ab+2b 2,故选D. 8. 关于x 、y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值是( ). A. 34k =- B. 34k = C. 43k = D. 43k =-【答案】B【解析】【分析】将k 看出已知数去解方程组,然后代入二元一次方程236x y +=中解出k 的值即可.【详解】解:59①②+=⎧⎨-=⎩x y k x y k ,①+②得:2=14x k ,即=7x k ,把=7x k 代入①得:75k y k +=,解得:2y k =-,则方程组的解为:=72⎧⎨=-⎩x ky k , 把=72⎧⎨=-⎩x k y k 代入二元一次方程236x y +=中得:()27326⨯+⨯-=k k , 解得:34k =,故选B.【点睛】此题考查了二元一次方程组的解,熟练掌握二元一次方程组的解法是解决本题的关键. 9. 不论x 、y 为何有理数,多项式22428x y x y +--+的值总是( )A. 正数B. 零C. 负数D. 非负数 【答案】A【解析】因x 2+y 2-4x-2y+8=x 2-4x+4+y 2-2y+1+3=(x-2)2+(y-1)2+3,且(x-2)2≥0,(y-1)2≥0,所以(x-2)2+(y-1)2+3>0,故选A.10. 如图,点D 是△ABC 的边BC 上任意一点,点E 、F 分别是线段AD 、CE 的中点,则△ABC 的面积等于△BEF 的面积的( )A. 2倍B. 3倍C. 4倍D. 5倍【答案】C【解析】【分析】 根据三角形的中线把三角形分成两个面积相等的三角形解答【详解】解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC , ∴S △BCE =12S △ABC , ∵点F 是CE 的中点,∴S △BEF =12S △BCE . ∴△ABC 面积等于△BEF 的面积的4倍.故选C .考点:三角形的面积二、填空(每空2分,共18分)11. 一个n 边形的内角和为1080°,则n=________.【答案】8【解析】【分析】直接根据内角和公式()2180n -⋅︒计算即可求解.【详解】(n ﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n -⋅︒. 12. 如图,AB∥CD,∠C=20°,∠E=25°.则∠A=__°.【答案】45°【解析】AB CDA EFD ∴∠=∠在CFE ∆ 中,2025C E ∠=︒∠=︒,20254545DFE A ∴∠=︒+︒=︒∴∠=︒13. 若8x =4x+2,则x=______.【答案】4.【解析】试题解析:∵8x =(2×4)x =2x 4x ,4x+2=16×4x , ∴2x =16,∴x=4.考点:幂的乘方与积的乘方.14. 计算:(﹣2x )³=_______,1011021()33-⨯=_______.【答案】 (1). -8x 3 (2). -3【解析】(﹣2x )³=(﹣2)³x ³=﹣8x ³;101102133⎛⎫-⨯ ⎪⎝⎭=1011011333⎛⎫-⨯⨯ ⎪⎝⎭=1011(3)33-⨯⨯=(-1)101×3=-3,故答案为(1)-8x 3;(2)-3.15. 已知a+b=3,ab=-2. 则a 2+b 2的值是________.【答案】13【解析】∵a+b=3,ab=-2,∴a 2+b 2=(a+b )2-2ab=32-2×(-2)=9+4=13,故答案为13.16. 当a =_______时,关于x ,y 的方程组2122x y a x y a -=+⎧⎨+=⎩的解中x 与y 相等. 【答案】-3【解析】因为x=y ,所以原方程组变形为132x a x a=+⎧⎨=⎩,消去x 得,3(a+1)=2a ,解得a=-3,故答案为-3. 17.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是__________【答案】292【解析】试题解析:设连续搭建正三角形的个数为x 个,连续搭建正六边形的个数为y 个,由题意得 21512016{6x y x y +++=-= 解得:292{286x y ==因此,能连续搭建正三角形292个.【点睛】设连续搭建正三角形的个数为x 个,连续搭建正六边形的根数为y 个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1”联立正三角形的个数比正六边形的个数多6个得出关于x 、y 的二元一次方程组,解方程组即可得出结论.本题考查了二元一次方程组的应用,解题的关键是列出关于x 、y 的二元一次方程.本题属于基础题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程(或方程组)是关键.18. 如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠DFB =12∠CGE ;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是_______.【答案】①②③【解析】①∵EG ∥BC ,∴∠CEG=∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG=∠ACB=2∠DCB ,则①正确; ②∵∠EBC+∠ACB=∠AEB ,∠DCB+∠ABC=∠ADC ,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB )=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE ,则②正确; ③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD 平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且EG⊥CG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,则③正确;④无法证明CA 平分∠BCG ,则④错误.故答案为①②③.三、解答题19. 计算:(1)244222()()m m m +(2)2(4)(31)(3)x x x x --+-+(3)2(1)(2)(2)x x x +---(4)2(2)(2(4))x x x ++-【答案】(1) 3m 8;(2) x 2+16x-3;(3) 3x-6;(4) x 4-16【解析】整体分析:(1)先用幂的乘方分式计算,再合并同类项;(2)用单项式乘多项式和多项式乘多项式的法则展开后,合并同类项;(3)用多项式乘多项式的法则和完全平方公式展开后,合并同类项;(4)用平方差公式逐渐往后计算.解:(1)()()422422m m m +=8442?m m m +=882m m +=3m 8.(2)()()()24313x x x x --+-+ 2228393x x x x x =-+++--=x 2+16x-3(3)()()()2122x x x +---=222244x x x x x -+--+-=3x-6.(4)()()()2224x x x +-+ =()()2244x x -+ =x 4-16 20. 分解因式:(1)22416m n -(2)222(2)2(2)1x x x x ++++【答案】(1) 4(m-2n )(m+2n );(2) (x+1)4【解析】整体分析:(1)用平方差公式分解,要分解到不能分解为止;(2)把看成是一个整体,用完全平方和公式分解,相同的因式要写成幂的形式.解:(1)22416m n -=()2244m n -=4(m-2n )(m+2n ) (2)()()2222221x x x x ++++ =()2221x x ++=()221x ⎡⎤+⎣⎦=(x+1)4…21. 解方程组:(1)244523x y x y -=-⎧⎨-=-⎩ (2)643434x y x y ⎧+=⎪⎨⎪-=-⎩【答案】(1) 125x y ⎧=⎪⎨⎪=⎩ ;(2)【解析】整体分析:用代入消元法或加减消元法,化二元一次方程组为一元一次方程,在一元一次方程中求出一个未知数后,再代入方程组中的某一个方程求出另一个未知数.解:(1)244523x y x y -=⎧⎨-=-⎩①② 由(1)得:y=2x+4.代入(2)得:4x ﹣5(2x+4)=﹣23,所以x=12. 代入(1)得:2×12﹣y=﹣4,解得y=5.故方程组的解为125x y ⎧=⎪⎨⎪=⎩.(2)()()61434342x y x y ⎧+=⎪⎨⎪-=-⎩(1)×12得()()347234342x y x y ⎧+=⎪⎨-=-⎪⎩, (3)×3,(2)×4得()()91221641612165x y x y ⎧+=⎪⎨-=-⎪⎩, (4)+(5)得,25x=200,解得x=8.代入(1)得,y=12,812x y =⎧⎨=⎩. 22. 已知22(1)0x y -++=,求2(2)(2)(2)x y x y x y +---的值.【答案】-16【解析】整体分析:把原整式用平方差公式和完全平方差公式展开化简,用非负数的性质求出x ,y 的值后代入求原整式的值. 解:()()()2222x y x y x y +---=x 2-4y 2-x 2+4xy-4y 2=4xy-8y 2. 因为()2210x y -++=,所以x-2=0,y+1=0,解得x=2,y=-1.所以原式=4xy-8y 2=4×2×(-1)-8×(-1)2=-16. 23. 如图,在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.利用网格点和直尺,完成下列各题:(1)补全△A′B′C′;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)点Q为格点(点Q不与点B重合),且△ACQ的面积等于△ABC的面积,Q点有____个.【答案】(1)(2)(3)见解析;(4)7【解析】整体分析:(1)由点B到点B′的平移规律,作出点A,C平移后的点A′,C′即可;(2)利用格点找出AB的中点;(3)利用格点过点A用BC延长线的垂线段;(4)利用两平行线间的距离相等确定点Q.解:(1)分别把点A和点C向下平移1个单位,再向左平移7个单位得到点A′,C′,顺次连接A′,B′,C′,即得如下的图形;(2)如图,取AB的中点D,连接CD,线段CD即为AB边上的中线;(3)如图,过点A作BC延长线的垂线,垂足为点E;(4)如图,过点B作AC的平行线,这条平行线上有6个符合条件的点Q,因为Q7C=BC,所以Q7也符合条件,所以共有7个点.24. 如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【答案】(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.25. 已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【答案】(1)①40°;②30°;(2)50°,130°,10°【解析】试题分析:(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=12∠ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°-∠ACB=140°,根据角平分线的定义得到∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①如图1,当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.试题解析:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=12∠ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°-∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=12∠ABC=40°,∠ECD=12∠ACD=70°,∴∠BEC=∠ECD-∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-40°-40°-90°=10°.【点睛】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.26. 提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=12AD时(如图②):∵AP=12AD,△ABP和△ABD的高相等,∴S△ABP=12S△ABD.∵PD=AD﹣AP=12AD,△CDP和△CDA的高相等,∴S △CDP =12S △CDA . ∴S △PBC =S 四边形ABCD ﹣S △ABP ﹣S △CDP=S 四边形ABCD ﹣12S △ABD ﹣12S △CDA =S 四边形ABCD ﹣12(S 四边形ABCD ﹣S △DBC )﹣12(S 四边形ABCD ﹣S △ABC ) =12S △DBC +12S △ABC . (2)当AP=13AD 时,探求S △PBC 与S △ABC 和S △DBC 之间的关系,写出求解过程; (3)当AP=16AD 时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: ; (4)一般地,当AP=1nAD (n 表示正整数)时,探求S △PBC 与S △ABC 和S △DBC 之间的关系,写出求解过程; 问题解决:当AP=m n AD (0≤m n ≤1)时,S △PBC 与S △ABC 和S △DBC 之间的关系式为: . 【答案】答案见解析【解析】试题分析:(2)仿照(1)的方法,只需把12换为13即可; (3)注意由(1)(2)得到一定的规律;(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系; (5)利用(4),得到更普遍的规律.试题解析:(2)∵13AP AD =,△ABP 和△ABD 的高相等, 1.3ABP ABD S S ∴= 又23PD AD AP AD =-=, △CDP 和△CDA 的高相等, 2.3CDP CDA S S ∴= ∴S △PBC =S 四边形ABCD −S △ABP −S △CDP =S 四边形ABCD −13S △ABD −23S △CDA , =S 四边形ABCD −13(S 四边形ABCD −S △DBC )− 23 (S 四边形ABCD −S △ABC ), 12.33DBC ABC S S =+ 12.33PBC DBC ABC S S S ∴=+ (3)1566PBC DBC ABC S S S =+; (4)11PBC DBC ABC n S S S n n -=+;1AP AD n,= △ABP 和△ABD 的高相等, 1.ABP ABD S S n∴= 又1n PD AD AP AD n-=-=,△CDP 和△CDA 的高相等, 1.CDP CDA n S S n-∴= ∴S △PBC =S 四边形ABCD −S △ABP −S △CDP =S 四边形ABCD −1n S △ABD −1n n -S △CDA , =S 四边形ABCD −1n (S 四边形ABCD −S △DBC )− 1n n-(S 四边形ABCD −S △ABC ), 11.DBC ABC n S S n n-=+ 11.PBC DBC ABC n S S S n n-∴=+ 问题解决: .PBC DBC ABC m n m S S S n n -∴=+。
苏教版数学七年级下学期《期中测试卷》带答案解析

苏 教 版 七 年 级 下 学 期期 中 测 试 卷一、选择题1. 如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A. ∠2B. ∠3C. ∠4D. ∠52. 下列长度的三条线段,能作为三角形三边长的是( )A. 4cm ,5cm ,1cmB. 5cm ,5cm ,11cmC. 6cm ,7cm ,13cmD. 8cm ,8cm ,15cm3. 下列图形中,由AB∥CD,能得到∠1=∠2的是 A.B. C. D. 4. 下面是一位同学做的四道题:①532a a a ÷=,②()22424a a -=-,③()222a b a b -=-,④3412a a a ⋅=.其中做对的一道题的序号是( )A. ①B. ②C. ③D. ④5. 如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°6. 下列分解因式正确是( )A. 24(4)x x x x -+=-+B. 2()x xy x x x y ++=+C. 2()()()x x y y y x x y -+-=-D. 244(2)(2)x x x x -+=+- 7. 若433339x x x x +++=,则x =( ) A. -2 B. -1 C. 0 D. 148. 如图,△ABC 的中线BD 、CE 相交于点O ,OF ⊥BC ,垂足为F ,且AB =6,BC =5,AC =3,OF =2,则四边形ADOE 的面积是( )A. 9B. 6C. 5D. 3二、填空题9. 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为__________________米.10. 已知25x =,23y =,则22x y +=________.11. 如图,直线//a b ,160∠=︒,则2∠=______.12. 因式分解:x 2﹣49=________.13. 如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____. 14. 若5a b +=,2a b -=,则()()2211+--a b 值为______.15. 如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠=______.16. 若()()235x a x ++的结果为2610x bx +-,则b =______.17. 某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若120BCD ∠=︒ ,则ABC ∠= ________.18. 已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.三、解答题19. 计算:(1)223501482π3-⎛⎫÷⨯-+- ⎪⎝⎭ (2)()221222a ab b ab ⎛⎫+-⋅- ⎪⎝⎭20. 如图,在每个小正方形边长为1的方格纸中,ABC 的顶点都在方格纸格点上,将ABC 向左平移1格,再向上平移3格.(1)请在图中画出平移后的A B C ''';(2)再在图中画出ABC 的高CD ;(3)在图的方格中能使PBC ABC S S =△△的格点P 的个数有______个(点P 异于点A ). 21. 某同学化简a (a+2b )﹣(a+b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2) (第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2 (第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.22. 如图,EG BC ⊥于点G ,BFG DAC ∠=∠,AD 平分BAC ∠,试判断AD 与BC 的位置关系,并说明理由.23. 先化简再求值:()()()()224273331a a a a +-+-+-,其中a 是最小的正整数.24. 如图,在Rt ABC △中,90ACB ∠=︒,34A ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.25. 已知25a b +=,156ab =,求下列代数式的值:(1)22a b +(2)32232a b a b ab -+26. 将一副三角板按如图所示放置,DEF 的直角边DE 与ABC 的斜边AC 重合在一起,并将DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)DEF 在移动的过程中,FCE ∠与CFE ∠度数之和是否为定值,若是定值,请求出这个值,并说明理由;(2)能否将DEF 移动至某位置,使//FC AB ?请求出CFE ∠的度数.27. 【阅读理解】勾股定理是几何学中一颗光彩夺目的明珠.她反映了直角三角形的三边关系即直角三角形两直角边(即“勾”,“股”)边长的平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么222+=a b c .迄今为止,全世界发现勾股定理的证明方法约有400种.如:美国第二十任总统伽菲尔德的“总统证法”(如图1),利用三个直角三角形拼成一个直角梯形,于是直角梯形的面积可以表示为()212a b +或者是211222ab c ⨯+,因此得到()221112222a b ab c +=⨯+,运用乘法公式展开整理得到222+=a b c .【尝试探究】(1)其实我国古人早就运用各种方法证明勾股定理,如图2用四个直角三角形拼成正方形,中间也是一个正方形,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你根据古人的拼图完成证明.(2)如图3是2002年在中国北京召开的国际数学家大会会标,利用此图也能证明勾股定理,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你帮助完成.【实践应用】(3)已知a 、b 、c 为Rt ABC △的三边()c b a >>,试比较代数式2222a c a b +与44c b -的大小关系.28. 学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图③,若△ABC中,∠ABO=13∠ABC,∠ACO=13∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为_.参考答案一、选择题1. 如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】 分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可. 详解:由同位角的定义可知,∠1的同位角是∠4.故选C .点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.2. 下列长度的三条线段,能作为三角形三边长的是( )A. 4cm ,5cm ,1cmB. 5cm ,5cm ,11cmC. 6cm ,7cm ,13cmD. 8cm ,8cm ,15cm【答案】D【解析】【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A .145+=,4cm ∴,5cm ,1cm 不能组成三角形,故A 错误; B .5511+<,5cm ∴,5cm ,11cm 不能组成三角形,故B 错误;C .6713+=,6cm ∴,7cm ,13cm 不能组成三角形,故C 错误;D .8815+>,8cm ∴,8cm ,15cm 能组成三角形,故D 正确;故选:D .【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是 A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A 、∵AB ∥CD ,∴∠1+∠2=180°.故本选项错误.B 、如图,∵AB ∥CD ,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C 、∵AB ∥CD ,∴∠BAD=∠CDA ,不能得到∠1=∠2.故本选项错误.D 、当梯形ABDC 是等腰梯形时才有,∠1=∠2.故本选项错误.故选B .4. 下面是一位同学做的四道题:①532a a a ÷=,②()22424a a -=-,③()222a b a b -=-,④3412a a a ⋅=.其中做对的一道题的序号是( )A. ①B. ②C. ③D. ④ 【答案】A【解析】【分析】根据同底数幂的除法法则、积的乘方、完全平方公式以及同底数幂的乘法法则,逐项判定即可.【详解】解:532a a a ÷=,∴选项①符合题意; 224(2)4a a -=,∴选项②不符合题意;222(2)a b a ab b --=+,∴选项③不符合题意;347a a a =,∴选项④不符合题意.故选:A .【点睛】此题主要考查了同底数幂的除法法则、积的乘方、完全平方公式以及同底数幂的乘法法则,解答此题的关键是要熟练掌握相关运算法则.5. 如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°【答案】C【解析】【分析】 根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.6. 下列分解因式正确的是( )A. 24(4)x x x x -+=-+B. 2()x xy x x x y ++=+ C. 2()()()x x y y y x x y -+-=-D. 244(2)(2)x x x x -+=+- 【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.7. 若433339x x x x +++=,则x =( ) A. -2B. -1C. 0D. 14【答案】A【解析】【分析】 43333439x x x x x +++=⨯=,由此可知x 的值. 【详解】解:43333439x x x x x +++=⨯=,21339x -==,所以2x =-. 故选A【点睛】本题考查了负指数幂,熟练掌握负指数幂的性质是解题的关键.8. 如图,△ABC 的中线BD 、CE 相交于点O ,OF ⊥BC ,垂足为F ,且AB =6,BC =5,AC =3,OF =2,则四边形ADOE 的面积是( )A. 9B. 6C. 5D. 3【答案】C【解析】【分析】 首先根据三角形的面积=底×高÷2,求出△BOC 的面积是多少;然后根据三角形的中线将三角形分成面积相等的两部分,可得△BCD 、△ACE 的面积均是△ABC 的面积的一半,据此判断出四边形ADOE 的面积等于△BOC 的面积,据此解答即可.【详解】∵BD 、CE 均是△ABC 的中线,∴S △BCD =S △ACE =12S △ABC , ∴S 四边形ADOE +S △COD =S △BOC +S △COD ,∴S 四边形ADOE =S △BOC =5×2÷2=5. 故选C .【点睛】此题主要考查了三角形的面积的求法,以及三角形的中线的性质,要熟练掌握,解答此题的关键要明确:(1)三角形的中线将三角形分成面积相等的两部分;(2)三角形的面积=底×高÷2. 二、填空题9. 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为__________________米.【答案】81.610-⨯【解析】【分析】由1纳米=10-9米,可得出16纳米=1.6×10-8米,此题得解. 【详解】∵1纳米=10-9米,∴16纳米=1.6×10-8米. 故答案为1.6×10-8. 【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.10. 已知25x =,23y =,则22x y +=________.【答案】75【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】∵25x =,23y =,∴22x y +=22x ×2y =(2x )2×2y =52×3=75,故答案为75.【点睛】本题考查了同底数幂乘法、幂的乘方,熟练掌握相关运算法则并能逆用进行变形是解题的关键. 11. 如图,直线//a b ,160∠=︒,则2∠=______.【答案】60°【解析】【分析】根据两直线平行,同位角相等即可求解.【详解】解://a b ,21∴∠=∠,160∠=︒,260∴∠=︒.故答案为:60°.【点睛】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.12. 因式分解:x 2﹣49=________.【答案】(x ﹣7)(x+7)【解析】【分析】因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解) 【详解】解:可以直接用平方差分解为:2x ﹣49=(x ﹣7)(x+7).故答案为:(x ﹣7)(x+7)13. 如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°, ∴∠ADC=120°, ∵AD ⊥AB ,∴∠DAB=90°, ∴∠B=360°﹣∠C ﹣∠ADC ﹣∠A=40°, 故答案为40°. 【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14. 若5a b +=,2a b -=,则()()2211+--a b 的值为______.【答案】20【解析】【分析】将+a b 、-a b 的值代入原式(11)(11)()(2)a b a b a b a b =++-+-+=+-+计算可得.【详解】解:当5a b +=,2a b -=时,原式(11)(11)a b a b =++-+-+()(2)a b a b =+-+5(22)=⨯+20=, 故答案为:20.【点睛】本题主要考查代数式的求值,解题的关键是灵活运用平方差公式分解因式.15. 如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠=______.【答案】39°.【解析】【分析】利用三角形的内角和定理以及角平分线的定义求出DCB ∠即可解决问题.【详解】解:54A ∠=︒,48B ∠=︒,180544878ACB ∴∠=︒-︒-︒=︒, CD 平分ACB ∠, 1392DCB ACB ∴∠=∠=︒, //DE BC ,39CDE DCB ∴∠=∠=︒,故答案为:39°.【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16. 若()()235x a x ++的结果为2610x bx +-,则b =______.【答案】4【解析】【分析】根据多项式与多项式相乘的法则计算,根据题意列出方程,解方程得到答案.【详解】解:2(2)(35)6(103)5x a x x a x a ++=+++,由题意得,510a =-,103a b +=,解得,2a =-,1031064b a =+=-=,故答案为:4.【点睛】本题考查的是多项式乘多项式,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17. 某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若120BCD ∠=︒ ,则ABC ∠= ________.【答案】150︒【解析】【分析】先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=120°,求得答案.【详解】如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o .【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.18. 已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.【答案】3【解析】【分析】把已知式子化成2221[()()()]2a b a c b c -+-+-的形式,然后代入求解. 【详解】解:120182019a =+,120192019b =+,120202019c =+, 1a b ∴-=-,2a c -=-,1b c -=-,则原式2221(222222)2a b c ab ac bc =++--- 2222221[(2)(2)(2)]2a ab b a ac c b bc c =-++-++-+2221[()()()]2a b a c b c =-+-+- 1[141]2=⨯++ 3=,故答案为:3.【点睛】本题考查了代数式的求值,正确利用完全平方公式把所求的式子进行变形是关键.三、解答题19. 计算:(1)223501482π3-⎛⎫÷⨯-+- ⎪⎝⎭ (2)()221222a ab b ab ⎛⎫+-⋅- ⎪⎝⎭【答案】(1)9;(2)322312a b a b ab --+ 【解析】【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1)235021482()3π-÷⨯-+- 495021222()3π-=÷⨯-+- 119=-+9=;(2)221(22)()2a ab b ab +-- 322312a b a b ab =--+. 【点睛】本题考查的是实数的运算、整式的乘法,掌握同底数幂的乘除法法则、负整数指数幂、单项式乘多项式的运算法则是解题的关键.20. 如图,在每个小正方形边长为1的方格纸中,ABC 的顶点都在方格纸格点上,将ABC 向左平移1格,再向上平移3格.(1)请在图中画出平移后的A B C ''';(2)再在图中画出ABC 的高CD ;(3)在图的方格中能使PBC ABC S S =△△的格点P 的个数有______个(点P 异于点A ).【答案】(1)见解析;(2)见解析;(3)4【解析】【分析】(1)分别将点A 、B 、C 向左平移1格,再向上平移3格,得到点A '、B '、C ',然后顺次连接; (2)过点C 作CD AB ⊥的延长线于点D ;(3)利用平行线的性质过点A 作出BC 的平行线进而得出符合题意的点.【详解】解:(1)如图所示:△A B C '''即为所求;(2)如图所示:CD 即为所求;(3)如图所示:能使PBC ABC S S ∆∆=的格点P 的个数有4个.故答案为:4.【点睛】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P 点位置是解题关键.21. 某同学化简a (a+2b )﹣(a+b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2) (第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2 (第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.【答案】(1)从第二步开始出错,错误原因是去括号时没有变号;(2)2ab +b 2.【解析】【分析】去括号时,括号外面是正号,则去掉括号后,括号里的各项不改变符号,去括号时,括号外面是负号,则去掉括号后,括号里的各项要改变符号;根据上述法则判断哪一步错误,再正确的去掉括号,合并同类项即可.【详解】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)原式=a 2+2ab-(a 2-b 2)=a 2+2ab-a 2+b 2=2ab +b 2.故答案为(1)第二步,去括号时没有变号;(2)2ab +b 2.【点睛】本题主要考查整式的运算,解题关键要掌握去括号法则; 22. 如图,EG BC ⊥于点G ,BFG DAC ∠=∠,AD 平分BAC ∠,试判断AD 与BC 的位置关系,并说明理由.【答案】AD BC ⊥,理由见解析【解析】【分析】根据角平分线的定义可得BAD DAC ∠=∠,从而可得BFG BAD ∠=∠,再根据同位角相等,两直线平行可得//EG AD ,然后根据EG BC ⊥即可证明AD BC ⊥.【详解】解:AD BC ⊥.理由如下:AD 平分BAC ∠,BAD DAC ∴∠=∠,BFG DAC ∠=∠,BFG BAD ∴∠=∠,//EG AD ∴,EGC ADC ∴∠=∠,又EG BC ⊥,90EGC ∴∠=︒,90ADC ∴∠=︒,AD BC ∴⊥.【点睛】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键.23. 先化简再求值:()()()()224273331a a a a +-+-+-,其中a 是最小的正整数.【答案】1082a +,92【解析】【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【详解】解:原式2224(44)7(9)3(21)a a a a a =++--+-+ 22241616763363a a a a a =++-++-+1082a =+,∵a 是最小的正整数,∴1a =,∴原式108292=+=.【点睛】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可.24. 如图,在Rt ABC △中,90ACB ∠=︒,34A ∠=︒,ABC外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.【答案】(1)62°;(2)28°【解析】【分析】(1)根据三角形的外角的性质求出CBD ∠,根据角平分线的定义计算,得到答案;(2)根据平行线的性质解答即可.【详解】解:(1)90ACB ∠=︒,34A ∠=︒,124CBD ∴∠=︒, BE 是CBD ∠的平分线,1622CBE CBD ∴∠=∠=︒; (2)90ECB ∠=︒,62CBE ∠=︒,28CEB ∴∠=︒,//DF BE ,28F CEB ∴∠=∠=︒.【点睛】本题考查的是三角形的外角的性质、平行线的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.25. 已知25a b +=,156ab =,求下列代数式的值:(1)22a b +(2)32232a b a b ab -+【答案】(1)313;(2)156【解析】【分析】(1)将+a b 、ab 的值代入原式2()2a b ab =+-计算可得;(2)将+a b 、ab 的值代入原式22(2)ab a ab b =-+计算可得.【详解】解:(1)当25a b +=,156ab =时,原式2()2a b ab =+-2252156=-⨯625312=-313=; (2)当25a b +=,156ab =时,原式22(2)ab a ab b =-+2156(254156)=⨯-⨯156=.【点睛】本题主要考查代数式的求值,解题的关键是熟练掌握完全平方公式及其灵活变形.26. 将一副三角板按如图所示放置,DEF 的直角边DE 与ABC 的斜边AC 重合在一起,并将DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)DEF 在移动的过程中,FCE ∠与CFE ∠度数之和是否为定值,若是定值,请求出这个值,并说明理由;(2)能否将DEF 移动至某位置,使//FC AB ?请求出CFE ∠的度数.【答案】(1)FCE ∠与CFE ∠度数之和是定值,为45︒;(2)能,15CFE ∠=︒【解析】【分析】(1)FED ∠是EFC ∆的外角,且45FED ∠=︒可得;(2)根据//FC AB ,且90B ∠=︒且60ACB ∠=︒知30FCE ∠=︒,再根据(1)中的结论可得答案.【详解】解:(1)FCE ∠与CFE ∠度数之和是定值,为45︒;FED ∠是EFC ∆的外角,且45FED ∠=︒,45FCE CFE ∴∠+∠=︒;(2)//FC AB ,且90B ∠=︒,90FCB ∠∴=︒,60ACB ∠=︒,30FCE ∴∠=︒,又45FCE CFE ∠+∠=︒,15CFE ∴∠=︒.【点睛】本题主要考查平行线的判定和性质,解题的关键是掌握平行线的判定及三角形外角的性质. 27. 【阅读理解】勾股定理是几何学中一颗光彩夺目的明珠.她反映了直角三角形的三边关系即直角三角形两直角边(即“勾”,“股”)边长的平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么222+=a b c .迄今为止,全世界发现勾股定理的证明方法约有400种.如:美国第二十任总统伽菲尔德的“总统证法”(如图1),利用三个直角三角形拼成一个直角梯形,于是直角梯形的面积可以表示为()212a b +或者是211222ab c ⨯+,因此得到()221112222a b ab c +=⨯+,运用乘法公式展开整理得到222+=a b c .【尝试探究】(1)其实我国古人早就运用各种方法证明勾股定理,如图2用四个直角三角形拼成正方形,中间也是一个正方形,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你根据古人的拼图完成证明.(2)如图3是2002年在中国北京召开的国际数学家大会会标,利用此图也能证明勾股定理,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你帮助完成.【实践应用】(3)已知a 、b 、c 为Rt ABC △的三边()c b a >>,试比较代数式2222a c a b +与44c b -的大小关系.【答案】(1)见解析;(2)见解析;(3)代数式2222a c a b +与44c b -的大小关系是相等.【解析】【分析】[尝试探究](1)根据图形面积的不同求法即可得到结论;(2)根据图形面积的不同求法即可得到结论;[实践应用](3)分解因式,根据勾股定理即可得到结论.【详解】解:[尝试探究](1)图中大正方形的面积可表示为2()a b +,也可表示为214()2c ab +⨯, 即221()4()2a b c ab +=+⨯,222a b c ∴+=;(2)图中大正方形的面积可表示为2c ,也可表示为21()4()2b a ab -+⨯, 即221()4()2b a abc -+⨯=, 222a b c ∴+=;[实践应用](3)2222222()a c a b a c b +=+,442222222()()()c b c b c b c b a -=+-=+,∴代数式2222a c a b +与44c b -的大小关系是相等.【点睛】本题考查了勾股定理的证明,此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 28. 学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC 与∠A 、∠B 、∠C 之间的关系,并说明理由:(2)如图②,若△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,且它们相交于点O ,试探究∠BOC 与∠A 的关系;(3)如图③,若△ABC 中,∠ABO =13∠ABC ,∠ACO =13∠ACB ,且BO 、CO 相交于点O ,请直接写出∠BOC 与∠A 的关系式为 _.【答案】(1)∠BOC=∠BAC+∠B+∠C .理由见解析;(2)∠BOC=90°+12∠A .理由见解析; (3)∠BOC=60°+23∠A .理由见解析. 【解析】【分析】(1)如图1,连接AO ,延长AO 到H .由三角形外角的性质证明即可得到结论:∠BOC=∠BAC+∠B+∠C ;(2)利用角平分线的定义,三角形的内角和定理证明可得到结论:∠BOC=90°+12∠A;(3)类似(2)可证明结论:∠BOC=60°+23∠A.【详解】解:(1)∠BOC=∠BAC+∠B+∠C.理由:如图1,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C,∴∠BOC=∠BAC+∠B+∠C;(2)∠BOC=90°+12∠A.理由:如图2,∵OB,OC是△ABC的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-(180°-∠A)=90°+12∠A,∴∠BOC=90°+12∠A;(3)∠BOC=60°+23∠A.理由:∵∠ABO=13∠ABC,∠ACO=13∠ACB,∴∠BOC=180°-23(∠ABC+∠ACB)=180°-23(180°-∠A)=60°+23∠A.故答案为∠BOC=60°+23∠A.【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握三角形的角的基本知识.。
【苏教版】数学七年级下学期《期中检测试题》附答案

苏教版七年级下学期数学期中测试卷一、选择题(本大题共8小题,每小题2分,共16分)1. 下列选项中能由下图平移得到的是( )A. B. C. D.2. 下列运算正确的是( )A. 339a a a =B. 538a a a +=C. ()235a a = D. ()650a a a a ÷=≠ 3. 下列三条线段能构成三角形的是( )A. 1,2,3B. 3,4,5C. 7,10,18D. 4,12,7 4. 如图所示,下列能够判定AB //CD 的是( )A. ∠3=∠4B. ∠1=∠2C. ∠D =∠AD. ∠ABD =∠ACD 5. 下列等式由左边到右边的变形中,属于因式分解的是( )A. 2269(3)a a a -+=-B. 432221863x y x y x y -=-⋅C. 2(1)(1)1a a a +-=-D. 221(2)1x x x x ++=++6. 若214x bx -+(其中b 为常数)是一个完全平方式,则b 的值是( ) A. 1 B. -2 C. 2 D. ±1 7. 如图,BE 、CF 是△ABC 的角平分线,∠A=50°,BE 、CF 相交于D ,则∠BDC 的度数是( )A. 115°B. 110°C. 100°D. 90°8. 若关于x,y的二元一次方程组21515x y mx y m-=+⎧⎨-=-⎩(m为常数)的解都是自然数,且x,y满足x ky=(k为整数),则k的不同的值有()A.1个B. 2个C. 3个D. 4个二、填空题(本大题共10小题,每小题2分,共20分)9. 计算: 23(3)x-=__________.10. 最薄的金箔的厚度为0.0000091mm,将0.0000091用科学记数法表示为____.11. 已知3,2m n a a==,则m n a-=____.12. 已知二元一次方程524x y-=-,用含x的代数式表示y,则y=____.13. 若三角形的两边长分别为1cm、3cm,且第三边长为整数,则第三边长为____cm.14. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.15. 请写出一个二元一次方程组,使它的解为52x y=-⎧⎨=⎩,该二元一次方程组为____.16. 若213x x b x ax,则+a b的值为____.17. 若M=23b b-+,N=7b-+,则M、N的大小关系为M____N.(填”>”、”<”、”≥“或”≤“)18. 如图,直线AB//CD,EF与AB,CD相交,点M、N分别为直线AB、CD上两点,点P是直线EF上一动点,连接MP、NP,若∠MPN=55°,∠PMA=23°,则∠PNC的度数为____°.三、解答题(本大题共8小题,共64分)19. 计算(1)()02213 3.14()2π-+---(2)21()()2a b a a b ---⋅+ 20. 因式分解(1)252020m m -+-(2)()()2294x y x y +--21. 解方程组 (1)312512x y x y +=⎧⎨-=⎩(2)552323x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩ 22. 如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点的位置如图所示,将△ABC 经过一次平移后得到△A B C ''',图中标出了点B 的对应点B ',利用网格画图:(1)画出△A B C ''';(2)在△ABC 中,画出AB 边上的中线CD ;(3)画出边AC 所在直线的垂线BE (垂足为点E );(4)△A B C '''的面积为 .23. 如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)用两种不同的方法求图2中阴影部分的面积(用含a ,b 的代数式表示).【方法1】S 阴影= ; 【方法2】S 阴影= ;(2)观察图2,直接写出(a +b )2,(a ﹣b )2,ab 这三个代数式之间的等量关系.(3)根据(2)题中的等量关系,解决问题: 若x +y =8,xy =15,求x ﹣y 的值.24. 若c a b =,那么我们规定a b c ,.如: 因为328=,所以2,8=3.(1)根据上述规定,填空: 3,9= ,,1, 14,16 .(2)若记4,35a ,2,5b ,2,7c ,则2a b c 一定成立,请说明理由.25. 某水果店计划进A ,B 两种水果共140千克,这两种水果的进价和售价如表所示:(1)若该水果店购进这两种水果共花费1020元,求该水果店分别购进A ,B 两种水果各多少千克? (2)在(1)的基础上,为了迎接五一假的来临,水果店老板决定把A 种水果全部八折出售,B 种水果全部降价10%出售,那么售完后共获利多少元?26. 如图,将△ABC 纸片沿DM 折叠,使点C 落在点C '位置,其中点D 为AC 边上一定点,点M 为BC边上一动点,点M 与B ,C 不重合.(1)若∠A =84°,∠B =61°,则∠C '= °; (2)如图1,当点C '落在四边形ABMD 内时,设∠BM C '=∠1,∠AD C '=∠2,探索∠C '与∠1,∠2之间的数量关系,并说明理由;(3)在点M 运动过程中,折叠图形,若∠C '=35°,∠BM C '=53°,求∠AD C '的度数.参考答案一、选择题(本大题共8小题,每小题2分,共16分)1. 下列选项中能由下图平移得到的是( )A. B. C. D.【答案】C【解析】【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【详解】能由左图平移得到的是: 选项C.故选C.【点睛】考查平移的性质,掌握平移的性质是解题的关键.2. 下列运算正确的是( )A. 339a a a =B. 538a a a +=C. ()235a a =D. ()650a a a a ÷=≠ 【答案】D【解析】【分析】分别根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【详解】解: A 、336·=a a a ,故本选项错误;B 、35a a +是整式加法运算,但不是同类项,不能合并和计算,故本选项错误.C 、应为326()a a =,故本选项错误;D 、()650a a a a ÷=≠,故本选项正确;故选: D.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则,熟练掌握运算性质是解题的关键.3. 下列三条线段能构成三角形的是()A. 1,2,3B. 3,4,5C. 7,10,18D. 4,12,7【答案】B【解析】【分析】根据”三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【详解】解: 根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选B.【点睛】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两标的和是否大于最长边.4. 如图所示,下列能够判定AB//CD的是()A. ∠3=∠4B. ∠1=∠2C. ∠D=∠AD. ∠ABD=∠ACD【答案】B【解析】【分析】根据内错角相等,两直线平行,即可得到正确结论.【详解】解: A.根据∠3=∠4,可得BD∥AC,不能得到AB∥CD;B.根据∠1=∠2,能得到AB∥CD;C.根据∠D=∠A,不能得到AB∥CD;D.根据∠ABD=∠ACD,不能得到AB∥CD;故选: B.【点睛】本题考查了平行线的判定,掌握内错角相等,两直线平行是解题的关键.5. 下列等式由左边到右边的变形中,属于因式分解的是( )A. 2269(3)a a a -+=-B. 432221863x y x y x y -=-⋅C. 2(1)(1)1a a a +-=-D. 221(2)1x x x x ++=++【答案】A【解析】【分析】属于因式分解变形的等式的左边是多项式,右边是几个整式的积的形式,据此逐项判断即可.【详解】解: A . 2269(3)a a a -+=-,符合因式分解的定义,是因式分解. B . 432221863x y x y x y -=-,等式的左边不是多项式,不是因式分解;C . 2(1)(1)1a a a +-=-,等式的右边不是几个整式的积,不是因式分解;D . 221(2)1x x x x ++=++, 等式的右边不是几个整式的积,不是因式分解;故选: A【点睛】本题考查因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式.6. 若214x bx -+(其中b 为常数)是一个完全平方式,则b 的值是( ) A. 1B. -2C. 2D. ±1 【答案】D【解析】【分析】利用完全平方式的结构特征判断即可确定b 的值. 【详解】∵214x bx -+是一个完全平方式, ∴12112b -=±⨯⨯=±, ∴b=±1,故选: D .【点睛】本题主要考查完全平方式,熟练掌握完全平方式的结构特征是解答的关键.7. 如图,BE 、CF 是△ABC 的角平分线,∠A=50°,BE 、CF 相交于D ,则∠BDC 的度数是( )A. 115°B. 110°C. 100°D. 90°【答案】A【解析】【分析】 由于∠A=50°,根据三角形的内角和定理,得∠ABC 与∠ACB 的度数和,再由角平分线的定义,得∠DBC+∠DCB 的度数,进而求出∠BDC 的度数.【详解】∵∠A=50°, ∴∠ABC+∠ACB=180°﹣50°=130°, ∵BE 、CF 是△ABC 的角平分线, ∴1122EBC ABC FCB ACB ∠=∠∠=∠,, ∴()1652EBC FCB ABC ACB ∠+∠=⨯∠+∠=︒, ∴∠BDC=180°﹣65°=115°, 故选A .【点睛】考查三角形内角和定理以及角平分线的性质,熟练掌握角平分线的性质是解题的关键. 8. 若关于x ,y 的二元一次方程组21515x y m x y m -=+⎧⎨-=-⎩(m 为常数)的解都是自然数,且x ,y 满足x ky =(k 为整数),则k 的不同的值有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据题意先两式相减消去m ,得到关于x,y 的二元一次方程,求出满足条件的整数解即可.【详解】解: 由加减消元法得,x+4y=16,∵关于x ,y 的二元一次方程组(m 为常数)的解都是自然数,∴121x y =⎧⎨=⎩ , 82x y =⎧⎨=⎩,43x y =⎧⎨=⎩,04x y =⎧⎨=⎩. ∵x ,y 满足x ky =(k 为整数),∴121x y =⎧⎨=⎩ , 82x y =⎧⎨=⎩ ,04x y =⎧⎨=⎩. ∴k=12,4或0.即k 的不同的值有3个.故选C【点睛】本题考查了二元一次方程组的含参方程的解法,先把m 消去求出x,y 的整数解是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)9. 计算: 23(3)x -=__________.【答案】627x -【解析】【分析】直接利用积的乘方运算法则化简求出答案.【详解】解: (−3x 2)3=−27x 6.故答案为627x -.【点睛】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.10. 最薄的金箔的厚度为0.0000091mm ,将0.0000091用科学记数法表示为____.【答案】69.110-⨯【解析】【分析】根据科学记数法的定义,把原数改写城a ×10n 的形式(1≤|a|<10,n 为整数),即可.【详解】0.0000091=11009.10000⨯=69.110-⨯, 故答案是: 69.110-⨯【点睛】本题主要考查科学记数法,熟练掌握科学记数法的形式,是解题的关键.11. 已知3,2m n a a ==,则m n a -=____.【答案】32【解析】【分析】 利用同底数幂的除法运算法则即可解答.【详解】∵3,2m n a a ==, ∴32m m n n a a a -=÷=, 故答案为:32. 【点睛】本题考查了同底数幂的除法,熟练掌握同底数幂的除法运算法则是解答的关键.12. 已知二元一次方程524x y -=-,用含x 的代数式表示y ,则y =____. 【答案】522y x =+ 【解析】【分析】把方程524x y -=-,用含x 的代数式表示y ,只需要先移项,再把y 的系数化为1即可.【详解】解: 移项得:245y x , 系数化为1得: 522y x =+, 故答案为: 522y x =+. 【点睛】本题考查的是解二元一次方程,移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其它的项移到另一边,然后合并同类项、系数化1就可用含x 的式子表示y 的形式.13. 若三角形的两边长分别为1cm 、3cm ,且第三边长为整数,则第三边长为____cm .【答案】3【解析】【分析】根据三角形三边长的关系,先求出第三边长的范围,结合第三边长是整数,即可求解.【详解】∵三角形的两边长分别为1cm 、3cm ,∴3-1<第三边长<1+3,即: 2<第三边长<4,∵第三边长为整数,∴第三边长为: 3cm .故答案是: 3.【点睛】本题主要考查三角形三边长的关系,熟练掌握三角形中,两边之差<第三边<两边之和,是解题的关键.14. 若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.【答案】8【解析】【详解】解: 设边数为n ,由题意得,180(n-2)=360⨯3解得n=8.所以这个多边形的边数是8.15. 请写出一个二元一次方程组,使它的解为52x y =-⎧⎨=⎩,该二元一次方程组为____. 【答案】37x y x y +=-⎧⎨-=-⎩(答案不唯一) 【解析】【分析】根据方程组的解的定义,52x y =-⎧⎨=⎩满足所写方程组的每一个方程,用-5,2列出两个等式,最后把-5、2用x 、y 替换即可.【详解】解: ∵-5+2=-3,-5-2=-7,∴x +y =-3,x -y =-7.故答案为: 37x y x y +=-⎧⎨-=-⎩(答案不唯一). 【点睛】本题属于开放题,主要考查了方程组解的定义,理解方程的解得意义是解答本题的关键. 16. 若213x x bx ax ,则+a b 的值为____.【答案】5【解析】【分析】 直接利用多项式乘法将原式变形进而计算得出答案.【详解】解: ∵213x x bx ax ∴2213x b x b x ax则3b -=-,1b a ,解得: 3b =,2a =,故235a b +=+=.故答案是: 5.【点睛】本题考查了多项式乘以多项式,弄清多项式相等的条件是解本题的关键.17. 若M =23b b -+,N =7b -+,则M 、N 的大小关系为M ____N .(填”>”、”<” 、”≥“或”≤“)【答案】<【解析】【分析】利用作差法可得N ﹣M=(7b -+)﹣(23b b -+),再对其进行化简,利用平方式的非负性判断化简结果的正负即可解答.【详解】N ﹣M=(7b -+)﹣(23b b -+)=247b b -+=2(2)3b -+,∵2(2)0b -≥,∴2(2)3b -+﹥0∴N ﹣M ﹥0,即M ﹤N ,故答案为: ﹤.【点睛】本题考查整数的加减运算、完全平方公式、平方式的非负性,会借助作差法、配方法和平方式的非负性比较代数式的大小是解答的关键.18. 如图,直线AB //CD ,EF 与AB ,CD 相交,点M 、N 分别为直线AB 、CD 上两点,点P 是直线EF 上一动点,连接MP 、NP ,若∠MPN =55°,∠PMA =23°,则∠PNC 的度数为____°.【答案】32°或78°【解析】【分析】根据题意,需分两种情况: (1)点P位于两直线之间时,如图1,(2)点P位于两直线外,如图2,延长MP(或PM),利用平行线的性质和三角形的外角性质求解即可.【详解】根据题意,需分两种情况:(1)点P位于两直线之间时,如图1,延长MP交CD于O,∵AB//CD,∴∠PMA=∠MON=23º,∵∠MPN=∠MON+∠PNC=55º,∴∠PNC=∠MPN-∠MON=55º-23º=32º;图1(2)当点P位于两直线外时,如图2,延长PM交CD于Q,∵AB//CD,∴∠PMA=∠PQN=23º,∵∠PNC=∠MPN+∠PQN,∠MPN=55º,∴∠PNC=55º+23º=78º,故答案为: 32º或78º图2【点睛】本题考查了平行线的性质、三角形的外角性质,利用平行线的性质和三角形的外角性质得出三角之间的关系是解答的关键.三、解答题(本大题共8小题,共64分)19. 计算(1)()02213 3.14()2π-+--- (2)21()()2a b a a b ---⋅+ 【答案】(1)6 (2)223122a b -- 【解析】【分析】(1)根据乘方、0指数幂、负指数幂意义分别计算,最后加减即可;(2)根据乘法公式,单项式乘以多项式法则分别计算,再合并同类项即可.【详解】解: (1)()02213 3.14()2π-+--- =914+-=6;(2)21()()2a b a a b ---⋅+ 2221=(2)2a ab b a ab --+-- 22211=22a ab b a ab -+---2231=22a b --. 【点睛】本题考查了0指数幂,负指数幂,乘法公式,单项式乘以多项式等知识,综合性较强,熟知相关概念,理解整式运算法则是解题关键.20. 因式分解(1)252020m m -+-(2)()()2294x y x y +--【答案】(1)25(2)m -- (2)(5)(5)x y x y ++【解析】【分析】(1)先提公因式,再利用完全平方公式分解即可;(2)利用平方差公式分解,再整理即可.【详解】解: (1)252020m m -+- ()2=544m m --+()2=52m --(2)()()2294x y x y +-- ()()()()=3232x y x y x y x y ++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()=55x y x y ++【点睛】本题考查了因式分解,因式分解的步骤一般按照”一提二看三检查”进行,注意分解要彻底. 21. 解方程组(1)312512x y x y +=⎧⎨-=⎩(2)552323x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩ 【答案】(1)12x y =⎧⎨=-⎩ (2)106x y =⎧⎨=-⎩【解析】【分析】(1)用代入消元法求解即可;(2)先将方程组化简,再用加减法解答.【详解】(1)312512x y x y+=⎧⎨-=⎩①②由①得y=1-3x③把③代入②得17x=17,解得x=1,把x=1代入③得y=-2,∴12x y=⎧⎨=-⎩;(2)解: 原方程组可化为25503218x y x y-=⎧⎨+=⎩①②,①×3-②×2得-19y=114,解得: y=-6,代入①得: 2x-30=50,解得: x=10.则方程组的解为: 106x y =⎧⎨=-⎩.【点睛】本题考查了二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.22. 如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点的位置如图所示,将△ABC 经过一次平移后得到△A B C''',图中标出了点B的对应点B',利用网格画图:(1)画出△A B C''';(2)在△ABC中,画出AB边上的中线CD;(3)画出边AC所在直线的垂线BE(垂足为点E);(4)△A B C'''的面积为.【答案】(1)见解析 (2)见解析 (3)见解析 (4)8【解析】【分析】(1)根据点B ′的位置,找出点 A ,点C 的对应点位置,顺次连接起来即可;(2)找到AB 边的中点D ,即可得到中线CD ;(3)根据网格的特点,作出CE ⊥AC ,垂足为点E ,即可;(4)根据三角形的面积公式,即可求解.【详解】(1)如图所示: △A B C '''即为所求;(2) 线段CD 即为所求;(3) 如图所示:(4) △A B C '''的面积=144=82⨯⨯, 故答案是:8【点睛】本题主要考查图形的平移,三角形的中线,高线以及三角形的面积公式,熟练掌握三角形中线,高线的定义以及平移的概念,是解题的关键. 23. 如图1是一个长为2a ,宽为2b 的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.(1)用两种不同的方法求图2中阴影部分的面积(用含a ,b 的代数式表示).【方法1】S 阴影= ;【方法2】S 阴影= ;(2)观察图2,直接写出(a +b )2,(a ﹣b )2,ab 这三个代数式之间的等量关系.(3)根据(2)题中的等量关系,解决问题: 若x +y =8,xy =15,求x ﹣y 的值.【答案】(1)2()a b -;2()4a b ab +- (2)22()()4a b a b ab -=+- (3)2或-2【解析】【分析】(1)观察图形,可得出小正方形的边长是a ﹣b ,方法1、利用小正方形的面积公式求解,方法2、用大正方形的面积减去4个小矩形的面积求解;(2)由(1)中两个代数式联立即可;(3)类比(2)中等量关系求出2()x y -,再开方求解即可.【详解】(1)观察图形,可得出小正方形的边长是a ﹣b ,大正方形的边长为a+b ,则小正方形的面积为2()a b -,大正方形的面积为2()a b +,一个小矩形的面积为ab ,方法1: S 阴影=2()a b -;方法2: S 阴影=2()4a b ab +-;故答案为: 2()a b -;2()4a b ab +-;(2)由(1)知: 22()()4a b a b ab -=+-; (3)根据(2)的结论得22()()4x y x y xy -=+-,∵x +y =8,xy =15,∴22()841564604x y -=-⨯=-=,∴x ﹣y=±2,故x ﹣y 的值为2或-2.【点睛】本题考查了列代数式、代数式的求值、完全平方公式与几何图形关系等知识,主要是利用数形结合的思想研究完全平方式之间的联系,以及代数式求值的问题,属于基础题型.24. 若c a b =,那么我们规定a b c ,.如: 因为328=,所以2,8=3. (1)根据上述规定,填空: 3,9= ,,1 , 14,16 .(2)若记4,35a ,2,5b ,2,7c ,则2a b c 一定成立,请说明理由.【答案】(1)2,0,-2;(2)见解析.【解析】【分析】(1)直接利用乘方运算法则计算得出答案;(2)直接利用乘方运算法则以及同底数幂的除法运算法则计算得出答案.【详解】解: (1)∵239=,∴3,92,∵01π=,∴,10, ∵21416-=, ∴14,216,(2)∵4,35a ,2,5b , 2,7c , ∴435a,25b =,27c , ∴2235a, ∴2202222537125a b c a b c ,∴20a b c, 即有2a b c .【点睛】本题考查是乘方,积的乘方,同底数幂的除法以及有理数的混合运算,掌握相关法则是解题的关键.25. 某水果店计划进A ,B 两种水果共140千克,这两种水果的进价和售价如表所示:(1)若该水果店购进这两种水果共花费1020元,求该水果店分别购进A ,B 两种水果各多少千克? (2)在(1)的基础上,为了迎接五一假的来临,水果店老板决定把A 种水果全部八折出售,B 种水果全部降价10%出售,那么售完后共获利多少元?【答案】(1)A : 60千克;B : 80千克 (2)300元【解析】【分析】(1)设该水果店购进A 种水果x 千克,B 种水果y 千克,根据总价=单价⨯数量结合花1020元购进A ,B 两种水果共140千克,即可得出关于x ,y 的二元一次方程组,解之即可得出结论; (2)分别求出两种水果的销售收入,根据”利润=销售收入-成本”即可求出结论.【详解】解: (1)设该水果店购进A 种水果x 千克,B 种水果y 千克,依题意,得: 140591020x y x y +=⎧⎨+=⎩, 解得: 6080x y =⎧⎨=⎩. 答: 该水果店购进A 种水果60千克,B 种水果80千克. (2)80.86013(110%)801020300⨯⨯+⨯-⨯-=(元). 答: 售完后共获利300元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 26. 如图,将△ABC 纸片沿DM 折叠,使点C 落在点C '的位置,其中点D 为AC 边上一定点,点M 为BC 边上一动点,点M 与B ,C 不重合.(1)若∠A =84°,∠B =61°,则∠C '=°; (2)如图1,当点C '落在四边形ABMD 内时,设∠BM C '=∠1,∠AD C '=∠2,探索∠C '与∠1,∠2之间的数量关系,并说明理由;(3)在点M 运动过程中,折叠图形,若∠C '=35°,∠BM C '=53°,求∠AD C '的度数. 【答案】(1)35 (2)2∠C ′=∠1+∠2,理由见解析 (3)17°或123°【解析】【分析】 (1)由三角形的内角和定理求出∠C ,再由折叠性质得∠C '=∠C 即可解答;(2)由三角形的内角和定理得出∠CDM+∠CMD=180º﹣∠C ,由折叠性质得∠C′DM=∠CDM ,∠C′MD=∠CMD ,推出∠1+∠2=360º-2(∠CDM+∠CMD )即可找出角之间的关系;(3)根据题意,分点C′落在三角形ABC内和外讨论,类比(2)中方法求解即可.【详解】(1)在△ABC中,∠A=84º,∠B=61º,由∠A+∠B+∠C=180º得: ∠C=180º-84º-61º=35º,由折叠性质得: ∠C′=∠C=35º,故答案为: 35;(2)在△CDM中,∠CDM+∠CMD+∠C=180º,即∠CDM+∠CMD=180º﹣∠C,由折叠性质得: ∠C′DM=∠CDM,∠C′MD=∠CMD,∵∠1+∠C′MD+∠CMD=180º,∠2+∠C′DM+∠CDM=180º,∴∠1+∠2=360º﹣2(∠CDM+∠CMD)=2∠C,∴∠1+∠2=2∠C′;(3)设∠BM C'=∠1=53º,∠AD C'=∠2,当点C′落在△ABC的内部时,由(2)知,∠2=2C′-∠1=2×35º-53º=17º;当点C′落在如图1位置时,同(2)中方法由∠1+∠2=2∠C′,∴∠2==17º;当点C′落在如图2位置时,在△CDM中,∠CDM+∠CMD=180º﹣∠C,由折叠性质得: ∠C′DM=∠CDM,∠C′MD=∠CMD,∵∠1+∠C′MD+∠CMD=180º,∠C′DM+∠CDM﹣∠2=180º,∴∠1﹣∠2=360º﹣2(∠CDM+∠CMD)=2∠C,∴∠1﹣∠2=2∠C′,∴∠2=∠1﹣2∠C′=53º-70º=﹣17º(舍去);当点C′落如图3位置时,∵∠C′MD+∠CMD﹣∠1=180º,∠C′DM+∠CDM+∠2=180º,∴∠2﹣∠1=360º﹣2(∠CDM+∠CMD)=2∠C,∴∠2﹣∠1=2∠C′,∴∠2=2∠C′+∠1=70º+53º=123º,综上,∠AD C'的度数为17º或123º.【点睛】本题考查了折叠的性质、三角形的内角和定理、平角的定义,熟练掌握折叠的性质,利用分类讨论的思想方法解决问题是解答本题的关键.。
苏教版七年级下学期数学《期中考试卷》及答案解析

9.若 , ,则 的值为( ).
A. 4B. 3C. 2D. 0
10.在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“ ”.如记:
, ;
已知 ,则 的值是( )
A -40B. -8C. 24D. 8
二、填空题(本大题共8小题,每小题2分,共16分)
11.数值0.0000105用科学记数法表示为______________.
17.若 , ,则 _________.
18.如图,长方形 中, , ,点 是 的中点,动点 从 点出发,以每秒 的速度沿 运动,最终到达点 .若点 运动的时间为 秒,那么当 _____________秒时, 的面积等于 .
三、解答题(本大题共8小题,共54分)
19.计算
(1)
(2)
(3)
20. 因式分解:
14.若二次三项式 是一个完全平方式,则k的值是__
[答案]
[解析]
[分析]
[详解]解:∵ 是一个完全平方式,
∴k=±2×1×1=±2,
故答案为: .
15.如图, 中, 是 边上的高, 是 的平分线, , , ______________.
[答案]
[解析]
[分析]
根据直角三角形两锐角互余求出 ,再根据三角形的内角和等于 求出 的度数,然后根据角平分线的定义求出 再求解即可.
(1)如图1,若DE//OB.
① 度数是________,当 时, ________;
②若 ,求 的值;
(2)如图2,若 ,是否存在这样的 的值,使得 ?若存在,求出 的值;若不存在,说明理由.
参考答案
一、选择题(本大题共10小题,每小题3分,共30分)
【苏教版】数学七年级下学期《期中考试试卷》附答案

苏教版七年级下学期数学期中测试卷一、选择题: (每小题3分,共30分)1. 人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( )A. 7.7×106B. 7.7×107C. 7.7×10-6D. 7.7×10-7 2. 下列等式从左到右的变形,属于因式分解的是( )A. 2(3)(2)6x x x x +-=+-B. 24(2)(2)x x x -=+- C. 2323824a b a b =⋅D. 1()1ax ay a x y --=-- 3. 下列运算正确的是( )A. 325a a a +=B. 236(3)9a a -=-C. 222005*********⨯=-D. ()2222a b a ab b -+=++ 4. 如果一个三角形的两条边长分别为2和6,那么这个三角形的第三边的长可能是( )A. 2B. 9C. 4D. 65. 若23m =,25n =,则322m n -等于 ( )A. 2725B. 910C. 2D. 25276. 如图,点E 在CD 延长线上,下列条件中不能判定AB∥CD 的是( )A. ∠3=∠4B. ∠B+∠BDC=180°C. ∠1=∠2D. ∠5=∠B 7. 如图,在△ABC 中,∠ABC =∠ACB ,∠A =50°,P 是△ABC 内一点,且∠ACP =∠PBC ,则∠BPC 的度数为( )A. 130°B. 115°C. 110°D. 105° 8. 如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为1,则满足条件的点C 个数是( )A . 5B. 6C. 7D. 89. 如图,将一张正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为23m +,则原正方形边长是 ( )A. 6m +B. 3m +C. 23m +D. 26m +10. 如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO+∠CFO=108°,则∠C 的度数为( )A. 40°B. 41°C. 32°D. 36°二、填空题:(每小题2分,共16分)11. 如图,△DEF 平移得到△ABC,已知∠B=45°,∠F =65°,则∠FDE=_______.12. 已知关于x 、y 的二元一次方程kx ﹣2y=4的解是23x y =-⎧⎨=⎩,则k=_________. 13. 若正多边形的一个内角等于144,则这个多边形的边数是__________.14. 计算(-8)2017×(-0.125)2018的结果是 ___________ .15. 已知a ,b ,c 是三角形的三边长,化简: |a-b+c|-|a-b-c|=______.16. 4月15日上午8时,2018徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话: 女孩说: 我和哥哥的年龄和是16岁.男孩说: 两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.若设现在哥哥的年龄为x 岁,妹妹的年龄为y 岁,请你根据对话内容,列出方程组为____________________.17. 如图,已知∠1=70°,∠C+∠D+∠E+∠F+∠A+∠B =_____________.18. 如图,△ABC 的面积为49cm 2,AE =ED ,BD =3DC ,则图中△AEF 的面积等于___________.三、解答题(共54分)19. 计算:(1) ()()3443482x x x x +-⋅ (2)(2x-y )2-4(x-y )(x+2y )20. 因式分解:(1) 2236x y xy -(2) 224129x xy y-+(3) ()()2141m m m -+-21. 解方程组:(1)121 x yx y=-⎧⎨+=⎩(2)32539 x yx y-=⎧⎨+=⎩(3)7 438 32x yx y⎧+=⎪⎪⎨⎪+=⎪⎩22. 如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角尺画图:(1)补全△A′B′C′(2)画出AC边上的中线BD;(3)画出AC边上的高线BE;(4)求△ABD的面积.23.已知: 如图,△ABC中,∠BAD=∠EBC,AD交BE于F. (1) 试说明 :∠ABC=∠BFD;(2) 若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数. 24. 学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40 kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克;(2)这些采摘的黄瓜和茄子可赚多少元?25. 如图,△ABC中,∠C=900,AC=8cm,BC=6cm,AB=10cm,若动点P从点C开始,按C→B→A→C 的路径运动,且速度为每秒3cm,设运动的时间为t秒.(1) 当t= 时,CP把△ABC的周长分成相等的两部分?(2) 当t= 时,CP把△ABC的面积分成相等的两部分?(3) 当t为何值时,△BCP的面积为12?26. 在△ABC中,∠ACB=90°,BD是△ABC的角平分线,P是射线..AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交线段..BD于E.(1) 如图①,当点P在线段AC上时,说明∠PDE=∠PED.(2) 画出∠CPQ的角平分线交线段..AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.参考答案一、选择题: (每小题3分,共30分)1. 人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( )A. 7.7×106B. 7.7×107C. 7.7×10-6D. 7.7×10-7 【答案】C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.000 007 7=7.7×10-6,故选C.2. 下列等式从左到右的变形,属于因式分解的是( )A. 2(3)(2)6x x x x +-=+-B. 24(2)(2)x x x -=+-C. 2323824a b a b =⋅D. 1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解: A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式. 3. 下列运算正确的是( )A. 325a a a +=B. 236(3)9a a -=-C. 222005*********⨯=-D. ()2222a b a ab b -+=++ 【答案】C【解析】分析: 利用合并同类项、幂的乘方与积的乘方、平方差公式以及完全平方式分别计算后即可确定正确的选项.详解: A .a 3和 a 2不是同类项,不能进一步计算,故错误;B .(﹣3a 2)3=﹣27a 6,故错误;C .2005×2003=20042﹣12,正确;D .(﹣a +b )2=a 2﹣2ab +b 2,故错误.故选C .点睛: 本题考查了平方差公式、合并同类项、幂的乘方与积的乘方及完全平方式,属于基础题,难度不大.4. 如果一个三角形的两条边长分别为2和6,那么这个三角形的第三边的长可能是( )A. 2B. 9C. 4D. 6【答案】D【解析】 分析: 根据在三角形中任意两边之和>第三边,任意两边之差<第三边;可求第三边长的范围,再选出答案.详解: 设第三边长为x ,则:由三角形三边关系定理得: 6﹣2<x <6+2,即4<x <8.故选D .点睛: 本题考查了三角形三边关系,此题实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.5. 若23m =,25n =,则322m n -等于 ( ) A. 2725 B. 910 C. 2 D. 2527【答案】A【解析】分析: 先把23m ﹣2n 化为(2m )3÷(2n )2,再求解.详解: ∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛: 本题主要考查了同底数幂除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m)3÷(2n)2.6. 如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A. ∠3=∠4B. ∠B+∠BDC=180°C. ∠1=∠2D. ∠5=∠B【答案】C【解析】分析: 根据平行线的判定方法直接判定.详解: 选项A中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项B中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项C中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故C错误;选项D中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),所以正确.故选C.点睛: 正确识别”三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7. 如图,在△ABC中,∠ABC=∠ACB,∠A=50°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC的度数为()A. 130°B. 115°C. 110°D. 105°【答案】B【解析】分析: 根据∠A=50°的条件,求出∠ACB+∠ABC的度数,再根据∠ABC=∠ACB,∠ACP=∠PBC,求出∠PBA=∠PCB,于是可求出∠ACP+∠ABP=∠PCB+∠PBC,然后根据三角形的内角和定理求出∠BPC的度数.详解: ∵∠A=50°,∴∠ACB+∠ABC=180°﹣50°=130°.又∵∠ABC=∠ACB,∠ACP=∠PBC,∴∠PBA=∠PCB,∴∠ACP+∠ABP=∠PCB+∠PBC=130°×12=65°,∴∠BPC=180°﹣65°=115°.故选B.点睛: 本题考查了三角形的内角和定理,关键是根据∠A=50°的条件,求出∠ACB+∠ABC的度数.8. 如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为1,则满足条件的点C个数是()A. 5B. 6C. 7D. 8【答案】B【解析】如图,共有6个,故选B.9. 如图,将一张正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为23m ,则原正方形边长是()A. 6m +B. 3m + C . 23m + D. 26m +【答案】B【解析】 分析: 设原正方形边长为x ,则 x 2﹣m 2=3(x +m ),解得x -m =3,即可得到结论.详解: 设原正方形边长为x ,依题意得:x 2﹣m 2=3(x +m )∴x -m =3∴x =m +3.故选B .点睛: 本题主要考查了多项式除以单项式,解题的关键是熟悉除法法则.10. 如图,将△ABC 沿DE 、EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO+∠CFO=108°,则∠C 的度数为( )A. 40°B. 41°C. 32°D. 36°【答案】D【解析】 【分析】如图,连接AO 、BO .由题意EA=EB=EO ,推出∠AOB=90°,∠OAB+∠OBA=90°,由DO=DA ,FO=FB ,推出∠DAO=∠DOA ,∠FOB=∠FBO ,推出∠CDO=2∠DAO ,∠CFO=2∠FBO ,由∠CDO+∠CFO=108°,推出2∠DAO+2∠FBO=98°,推出∠DAO+∠FBO=49°,由此即可解决问题.【详解】解: 如图,连接AO 、BO .由题意得: EA=EB=EO ,∴∠AOB=90°,∠OAB+∠OBA=90°.∵DO=DA ,FO=FB ,∴∠DAO=∠DOA ,∠FOB=∠FBO ,∴∠CDO=2∠DAO,∠CFO=2∠FBO.∵∠CDO+∠CFO=108°,∴2∠DAO+2∠FBO=108°,∴∠DAO+∠FBO=54°,∴∠CAB+∠CBA=∠DAO+∠OAB+∠OBA+∠FBO=144°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣144°=36°.故选D.【点睛】本题考查了折叠问题、三角形内角和定理、直角三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.二、填空题:(每小题2分,共16分)11. 如图,△DEF平移得到△ABC,已知∠B=45°,∠F=65°,则∠FDE=_______.【答案】70°【解析】试题分析: 根据△ABC的内角和定理可得: ∠A=180°-45°-65°=70°,根据平移图像的性质可得: ∠FDE=∠A=70°.考点: (1)、平移图形的性质;(2)、三角形内角和定理12. 已知关于x、y的二元一次方程kx﹣2y=4的解是23xy=-⎧⎨=⎩,则k=_________.【答案】-5【解析】分析: 把方程的解代入方程求出k的值即可.详解: 把x=﹣2,y=3代入kx﹣2y=4,解得: k=﹣5.故答案为﹣5.点睛: 本题考查的是方程的解的概念,使方程两边的值相等的未知数的值是方程的解,解答此类题目时,把方程的解代入方程求值即可.13. 若正多边形的一个内角等于144,则这个多边形的边数是__________.【答案】十【解析】【分析】根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【详解】解: 设正多边形是n边形,由题意得(n−2)×180°=144°×n.解得n=10,故答案为十.【点睛】本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.14. 计算(-8)2017×(-0.125)2018的结果是 ___________ .【答案】-18【解析】分析: 直接利用积的乘方运算法则化简得出答案.详解: 原式=(8×0.125)2017×(-0.125)=﹣18.故答案为﹣18.点睛: 本题主要考查了积的乘方运算,正确将原式变形是解题的关键.15. 已知a,b,c是三角形的三边长,化简: |a-b+c|-|a-b-c|=______.【答案】2a-2b【解析】【分析】先根据三角形的三边关系定理得出a+c>b,b+c>a,再去掉绝对值符号合并即可.【详解】∵a,b,c是三角形的三边长,∴a+c>b,b+c>a,∴a-b+c>0,a-b-c<0,∴|a-b+c|-|a-b-c|=(a-b+c)-(b+c-a)=a-b+c-b-c+a=2a-2b,故答案为: 2a-2b.【点睛】本题考查了三角形三边关系定理,绝对值,整式的加减的应用,解此题的关键是能正确去掉绝对值符号.16. 4月15日上午8时,2018徐州国际马拉松赛鸣枪开跑,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话: 女孩说: 我和哥哥的年龄和是16岁.男孩说: 两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.若设现在哥哥的年龄为x岁,妹妹的年龄为y岁,请你根据对话内容,列出方程组为____________________.【答案】163(2)2342 x yy x+=⎧⎨+++=+⎩【解析】分析: 设今年哥哥的年龄为x岁,妹妹的年龄为y岁,根据两个孩子的对话,即可得出关于x、y的二元一次方程组,解之即可得出结论.详解: 设今年哥哥的年龄为x岁,妹妹的年龄为y岁,根据题意得:16322342x yy x+=⎧⎨+++=+⎩()().故答案为16322342x yy x+=⎧⎨+++=+⎩()().点睛: 本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.17. 如图,已知∠1=70°,∠C+∠D+∠E+∠F+∠A+∠B=_____________.【答案】220°【解析】【分析】由三角形的外角性质和三角形内角和定理即可得出结果.【详解】解: 如图所示:由三角形的外角性质得:∠BMH=∠A+∠C,∠BHM=∠F+∠BGF=∠F+∠1.∵∠BMH+∠BHM+∠B=180°,∠1+∠D+∠E=180°,∴∠C+∠D+∠E+∠F+∠A+∠B=∠BMH+∠BHM+∠B+∠1+∠D+∠E﹣2∠1=2×180°﹣2×70°=220°;故答案为: 220°.【点睛】本题考查了三角形的外角性质、对顶角相等以及三角形内角和定理;熟练掌握三角形的外角性质以及三角形内角和定理是解决问题的关键.18. 如图,△ABC的面积为49cm2,AE=ED,BD=3DC,则图中△AEF的面积等于___________.【答案】21 8【解析】分析: 过D作DG∥CA交BF于G,可以得到△AEF≌△GEG,有全等三角形的性质得到GE=EF,DG=AF.由DG∥CF,得到BG=3GF,DG: FC= 3: 4,进而有AF: FC=3: 4.设EF=a,则GE=a,BG=6a,BE=7a.设S△AEF=x,则S△DEG=x,S△ABE=7x,得到S△ABF=8x.由AF: FC=3: 4,得到S△ABF=21,解方程即可得到结论.详解: 过D作DG∥CA交BF于G,∴∠GDE=∠DAF.∵∠GED=∠AEF,AE=ED,∴△AEF≌△GEG,∴GE=EF,DG=AF.∵BD=3DC,DG∥CF,∴BG=3GF,△BDG∽BCF,∴DG: FC=BD: BC=3: 4,∴DG=34FC,∴AF:FC=3: 4.设EF=a,则GE=a,BG=6a,BE=7a.设S△AEF=x,则S△DEG=x,S△ABE=7x,∴S△ABF=8x.∵AF:FC=3: 4,∴AF: AC=3: 7,∴S△ABF=3497=21,∴8x=21,∴x=218.故△AEF的面积=218.故答案为218.点睛: 本题考查的是三角形面积的计算以及全等三角形的判定与性质,平行线分线段成比例定理,相似三角形的判定与性质,熟知相关定理是解答此题的关键.三、解答题(共54分)19. 计算:(1) ()()3443482x x x x +-⋅(2)(2x-y )2-4(x-y )(x+2y )【答案】(1)0(2)-8xy+9y 2【解析】分析: (1)先算幂的乘方和单项式乘以单项式,然后合并同类项;(2)根据完全平方公式、多项式乘多项式可以解答本题.详解: (1)原式=x 12+ x 12―2 x 12=0 ;(2)原式=4x 2―4xy +y 2―4(x 2+xy ―2y 2)= 4x 2―4xy +y 2―4x 2―4xy +8y 2=―8xy +9y 2.点睛: 本题考查了幂的运算以及整式乘法,解题的关键是熟练掌握运算法则和计算公式.20. 因式分解: (1) 2236x y xy -(2) 224129x xy y -+(3) ()()2141m m m -+- 【答案】⑴3xy(x―2y) ⑵(2x―3y)2 ⑶ (m―1)(m+2)(m―2)【解析】分析: (1)直接提取公因式3xy ,即可得出答案;(2)直接利用完全平方公式即可得出答案;(3)先提取公因式(m ﹣1),进而利用平方差公式分解因式得出答案.详解: (1)原式=3xy (x ―2y );(2)原式=(2x ―3y )2 ;(3)原式=m2(m―1)―4(m―1)= (m―1)(m2―4)= (m―1)(m+2)(m―2).点睛: 本题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题的关键.21. 解方程组:(1)121 x yx y=-⎧⎨+=⎩(2)32539 x yx y-=⎧⎨+=⎩(3)7 438 32x yx y⎧+=⎪⎪⎨⎪+=⎪⎩【答案】(1)1xy=⎧⎨=⎩(2)32xy=⎧⎨=⎩(3)6024xy=⎧⎨=-⎩【解析】分析: (1)用代入消元法解答即可;(2)用加减消元法解答即可;(3)整理后用加减消元法解答即可.详解: (1)121x yx y=-⎧⎨+=⎩①②,把①代入②得: 2(1-y)+y=1,解得: y=1,把y=1代入①得: x=0,∴原方程组的解是:1 xy=⎧⎨=⎩.(2)32539x yx y-=⎧⎨+=⎩①②,②×3-①得: 11y=22,解得: y=2,把y=2代入②得: x+6=9,解得: x=3,∴原方程组的解是:32 xy=⎧⎨=⎩.(3)743832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,整理得:34842348x yx y+=⎧⎨+=⎩①②,①×2-②×3得: -y=24,解得: y=-24,把y=-24代入②得: 2x-72=48,解得: x=60,∴原方程组的解是:6024 xy=⎧⎨=-⎩.点睛: 本题考查了解二元一次方程组,能把方程组进行消元是解答此题的关键.22. 如图,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角尺画图:(1)补全△A′B′C′(2)画出AC边上的中线BD;(3)画出AC边上的高线BE;(4)求△ABD的面积.【答案】(1)画图见解析;(2)画图见解析;(3)画图见解析;(4)4【解析】【分析】(1)由点B的对应点B′知,三角形需向左平移5个单位、向下平移2个单位,据此可得;(2)连接AC的中点D与点B即可得;(3)过点B作AC延长线的垂线段即可得;(4)割补法求解可得.【详解】解: (1)如图所示,△A′B′C′即为所求作三角形.(2)如图所示,BD为AC边上的中线;(3)如图所示,BE为AC边上的高线;(4)S△ABD =4×6﹣12×1×2﹣12×4×6﹣12×(1+6)×2=24﹣1﹣12﹣7=4.故答案为4.【点睛】本题主要考查作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23. 已知: 如图,△ABC中,∠BAD=∠EBC,AD交BE于F.(1) 试说明 :∠ABC=∠BFD;(2) 若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.【答案】证明见解析【解析】【分析】(1)根据三角形的外角性质即可得出结论;(2)根据三角形内角和和互余进行分析解答即可.【详解】解: (1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,∵∠BAD=∠EBC,∴∠ABC=∠BFD;(2)∵∠BFD=∠ABC=35°,∵EG∥AD,∴∠BEG=∠BFD=35°,∵EH⊥BE,∴∠BEH=90°,∴∠HEG=∠BEH-∠BEG=55°.【点睛】本题考查的是三角形外角的性质及平行线的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.24. 学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40 kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克;(2)这些采摘的黄瓜和茄子可赚多少元?【答案】(1)采摘的黄瓜和茄子各30千克、10千克;(2)23元.【解析】试题分析: (1)设他当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.试题解析: 解: (1)设采摘黄瓜x千克,茄子y千克.根据题意,得:401.242x yx y+=⎧⎨+=⎩,解得:3010xy=⎧⎨=⎩.答: 采摘的黄瓜30千克,茄子10千克;(2)30×(1.5﹣1)+10×(2﹣1.2)=23(元).答: 这些采摘的黄瓜和茄子可赚23元.25. 如图,△ABC中,∠C=900,AC=8cm,BC=6cm,AB=10cm,若动点P从点C开始,按C→B→A→C 的路径运动,且速度为每秒3cm,设运动的时间为t秒.(1) 当t= 时,CP把△ABC的周长分成相等的两部分?(2) 当t= 时,CP把△ABC的面积分成相等的两部分?(3) 当t为何值时,△BCP的面积为12?【答案】(1)6;(2)6.5;(3)2或6.5.【解析】试题分析: (1)由△ABC周长为24时,当CP把△ABC的周长分成相等的两部分时,点C所以过的路程为12cm,再求时间即可;(2)由的面积等于的一半;设为的高,则,则,所以点应为的中点,所以点运动的路程为,再求时间即可;(3)分两种情况讨论,当点P在AC上时,由12×6×CP=12,得出CP=4,此时运动时间为2秒;当当P在AB上时,P运动到AB的中点,运动路程为13cm,求时间即可;试题解析:(1)△ABC中,∵AC=8cm,BC=6cm,AB=10cm,∴△ABC的周长=8+6+10=24cm,∴当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,∴2t=12,t=6;(2)当点P在AB 中点时,CP把△ABC的面积分成相等的两部分,此时CA+AP=8+5=13(cm),∴2t=13,t=6.5;(3)分两种情况: ①当P在AC上时,∵△BCP的面积=12,即12×6×CP=12,∴CP=4,∴2t=4,t=2;②当P在AB上时,∵△BCP的面积=12=△ABC面积的一半,∴P为AB中点,∴2t=13,t=6.5.故答案为6秒;6.5秒.26. 在△ABC中,∠ACB=90°,BD是△ABC的角平分线,P是射线..AC上任意一点(不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交线段..BD于E.(1) 如图①,当点P在线段AC上时,说明∠PDE=∠PED.(2) 画出∠CPQ的角平分线交线段..AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由. 【答案】(1)、证明过程见解析;(2)、平行和垂直.【解析】试题分析: (1)、根据∠C=90°,PD⊥AB,BD为角平分线可得∠CDB=∠QEB,根据对顶角的性质可得结论;(2)、根据图示得出线段之间的关系.试题解析: (1)、∵∠C=90°∴∠CDB+∠CBD=90°∵PD⊥AB ∴∠EBQ+∠QEB=90°∵BD平分∠ABC ∴∠CBD=∠EBQ ∴∠CDB=∠QEB ∵∠QEB=∠PED ∴∠CDB=∠PED即∠PDE=∠PED(2)、平行和垂直.考点: (1)、角度之间的关系;(2)、角平分线的性质;(3)、垂直的性质.。
【苏教版】七年级下学期数学《期中测试卷》含答案解析

苏教版七年级下学期数学期中测试卷一、选择题(本大题共有8小题,每小题3分,共24分)1. 下列运算正确的是( )A. 235a b ab +=B. 523a a a -=C. 236a a a ⋅=D. ()222a b a b +=+ 2. 在人体血液中,红细胞直径约为0.00077cm ,数据0.00077用科学记数法表示为( )A. 0.77×10-5B. 7.7×10-5C. 7.7×10-4D. 77×10-7 3. 现有两根木棒,它们的长分别为30cm 和40cm ,若要钉成一个三角形木架,则在下列四根木棒中应选取( )A. 10cm 的木棒B. 60cm 的木棒C. 70cm 的木棒D. 100cm 的木棒 4. 在等式a 2·a 4·( )=a 12,括号里面的代数式应当是( )A. a 5B. a 6C. a 7D. a 3 5. 多项式2ax 3+10ax 2−4ax 各项的公因式是( )A. 2ax 2B. 2ax 3C. axD. 2ax 6. 下列各式不能用平方差公式计算的是( )A . (x +y )(x −y ) B. (x +y )(−x −y )C. (−x +y )(−x −y )D. (a +m )(m −a ) 7. 定义: 若有一条公共边的两个三角形称为一对”共边三角形”,则图中以BC 为公共边的”共边三角形”有( )A. 1对B. 2对C. 3对D. 4对8. 有一条直的等宽纸带,按如图折叠时,纸带重叠部分中的∠α=( )行的,转动刀片时会形成∠1、∠2,则12∠+∠=__________.13. 若代数式x2+ax+16是一个完全平方式,则a=_____.14. 若12xy=⎧⎨=⎩是方程2x-ay=−2的一个解,则a的值是________.15. 如图,已知AB∥CD,BC∥DE.若∠A=30︒,∠C=110°,则∠AED的度数是________.16. 我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为”杨辉三角”,这个三角形给出了(a+b)n (n=1,2,3,4,…)的展开式的系数规律(按n的次数由大到小的顺序):1 1 (a+b)1=a+b1 2 1 (a+b)2=a2+2ab+b21 3 3 1 (a+b)3=a3+3a2b+3ab2+b31 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4…… ……请依据上述规律,写出(x−1)2019展开式中含x2018项的系数是________.三、解答题(本大题共10小题,共102分。
苏教版七年级数学下册期中考试卷(完整版)

苏教版七年级数学下册期中考试卷(完整版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是( )A .0x =B .3x =C .3x =-D .2x =5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠47.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm 8.计算()22b a a -⨯ 的结果为( ) A .b B .b - C . ab D .b a9.估计10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块。
苏教版七年级数学下册期中考试卷及答案【完整版】

苏教版七年级数学下册期中考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120202.下列各图中a 、b 、c 为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙3.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°4.下列图形具有稳定性的是( )A .B .C .D .5.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0a b<6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角 8.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm10.x=1是关于x 的方程2x ﹣a=0的解,则a 的值是( )A .﹣2B .2C .﹣1D .1二、填空题(本大题共6小题,每小题3分,共18分)1.若32m x =+,278m y =-,用x 的代数式表示y ,则y =__________.2.如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC ,∠BAD =70°,∠BCD =40°,则∠BED 的度数为________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.已知:如图,∠C=∠1,∠2和∠D 互余,BE ⊥FD 于点G .试说明:AB ∥CD .4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、A5、D6、B7、A8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、3(2)8x --2、55°3、724、45、0.6、1三、解答题(本大题共6小题,共72分)1、(1);(2).2、-3≤a <-23、略4、略.5、(1)40;(2)72;(3)280.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学第八章幂的运算
一、选择题:
1.下列图形中,不能通过其中一个四边形平移得到的是( )
A.B.C.D.
2.若A是五次多项式,B是三次多项式,则A+B一定是( )
A.五次整式 B.八次多项式 C.三次多项式 D.次数不能确定
3.下列计算正确的是( )
A.a2•a3=a6 B.a6÷a3=a2C.(a2)3=a6 D.(2a)3=6a3
4.9x2﹣mxy+16y2是一个完全平方式,那么m的值是( )
A.12 B.﹣12 C.±12D.±24
5.下列各式从左到右的变形,是因式分解的是( )
A.x2﹣9+6x=(x+3)(x﹣3)+6x B.x2﹣8x+16=(x﹣4)2
C.(x+5)(x﹣2)=x2+3x﹣10 D.6ab=2a•3b
6.根据篮球比赛规则:赢一场得2分,输一场得1分,在某次中学生篮球联赛中,某球队赛了12场,赢了x场输了y场,得20分,则可以列出方程组( )
A.B. C.D.
7.已知三角形的周长小于13,各边长均为整数且三边各不相等,那么这样的三角形个数共有( )
A.2B.3C.4D.5
8.关于x、y的方程组的解是方程3x+2y=17的一个解,那么m的值是( )
A.2B.﹣1C.1D.﹣2
9.如图,AB∥CD,直线EF分别交AB,CD于E,F两点,∠BEF的平分线交CD于点G,若∠EFG=72°,则∠EGF等于( )
A.36°B.54°C.72°D.108°
10.如图,△ABC,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=132°,∠BGC=118°,则∠A的度数为( )
A.65°B.66°C.70°D.78°
二、填空题:
11.计算: = .
12.遗传物质脱氧核糖核酸(DNA)的分子直径为0.000 0002cm,用科学记数法表示
为 cm.
13.已知一个五边形的4个内角都是100°,则第5个内角的度数是 度.
14.已知2n=a,3n=b,则6n= .
15.已知s+t=4,则s2﹣t2+8t= .
16.如图,小明从点A向北偏东75°方向走到B点,又从B点向南偏西30°方向走到点C,则∠ABC的度数为 .
17.若关于x、y的二元一次方程组的解是,则关于x、y的二元一次方程组
的解是 .
18.将1,2,3,…,100这100个自然数,任意分为50组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是 .
三、解答题:
19.计算:
(1)(﹣3)2﹣2﹣3+30;(2).
20.把下列各式分解因式:
(1)2x2﹣8xy+8y2 (2)4x3﹣4x2y﹣(x﹣y)
21.解方程组:
(1);(2).
22.先化简,再求值(x﹣2)2+2(x+2)(x﹣4)﹣(x﹣3)(x+3),其中x=﹣1.
23.如图:在正方形网格中有一个△ABC,按要求进行下列作图(只能借助于网格):
(1)画出△ABC中BC边上的高(需写出结论);
(2)画出先将△ABC向右平移6格,再向上平移3格后的△DEF;
(3)画一个锐角△MNP(要求各顶点在格点上),使其面积等于△ABC的面积.
24.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.我们刚学过的《从面积到乘法公式》就很好地体现了这一思想方法,你能利用数形结合的思想解决下列问题吗?
如图,一个边长为1的正方形,依次取正方形的,根据图示我们可以知道:第一次取走
后还剩,即=1﹣;前两次取走+后还剩,即+=1﹣;前三次取走++后还剩,即++=1﹣;…前n次取走后,还剩 ,即 = .
利用上述计算:
(1)= .
(2)= .
(3)2﹣22﹣23﹣24﹣25﹣26﹣…﹣22011+22012(本题写出解题过程)
25.某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?
(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?
26.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM 交于点D和点B.
(1)填空:∠OBC+∠ODC= ;
(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:
(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.
27.某次初中数学竞赛试题中,有16道5分题和10道7分题,满分为150分.批改时每道题若答对得满分,答错得0分,没有其它分值.
(1)如果晓敏同学答对了m道7分题和n道5分题,恰好得分为70分,列出关于m、n的方程,并写出这个方程符合实际意义的所有的解.
(2)假设某同学这份竞赛试卷的得分为k(0≤k≤150),那么k的值有多少种不同大小?请直接写出答案.
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。