基于ANSYS的复合材料仿真分析
基于ANSYS有限元的复合材料传动轴失效分析

基于ANSYS有限元的复合材料传动轴失效分析基于ANSYS有限元的复合材料传动轴失效分析1. 引言复合材料在传动轴应用中越来越广泛,其具有较高的强度和刚度,以及较低的密度和惯性矩。
然而,由于其复杂的结构和复杂的加载条件,传动轴在运行过程中可能会发生失效。
因此,基于有限元分析的复合材料传动轴失效分析显得尤为重要。
2. 传动轴结构和材料传动轴主要有轴状结构,通常由多个复合材料组件组成,如纤维增强聚合物复合材料(FRP)和碳纤维增强复合材料(CFRP)。
这些材料的组合可以提供较高的轴向和环向强度,从而提供更好的传递力矩和转速。
3. 复合材料传动轴的失效模式复合材料传动轴的失效模式包括弯曲破坏、蠕变破坏、疲劳破坏和环剪切破坏等。
这些失效模式通常是由不同的应力和应变引起的,并在不同的加载条件下发生。
4. 有限元模型的建立基于ANSYS有限元软件,可以建立复合材料传动轴的三维有限元模型。
模型的几何形状和材料属性可以根据实际情况进行设定。
5. 材料参数的输入复合材料的性能参数需要根据实际测试数据进行输入。
这些参数包括纤维体积分数、纤维方向的弹性模量和剪切模量,基体材料的弹性模量和剪切模量等。
这些参数的准确性对于分析结果的准确性至关重要。
6. 边界条件和加载条件的设定在进行有限元分析之前,需要确定边界条件和加载条件。
边界条件通常包括固定支撑和固定约束等,以保证模型的稳定性。
加载条件通常包括径向和环向的力矩和转速等。
7. 模型分析和结果评价通过对复合材料传动轴模型进行有限元分析,可以得到应力和应变的分布图,以及轴的变形情况。
利用这些结果可以评估轴的失效模式和强度。
8. 参数敏感性分析和优化设计在分析过程中,可以对模型的几何形状和材料参数进行敏感性分析。
通过调整这些参数,可以优化设计,提高传动轴的性能和可靠性。
9. 模型验证和实验验证为了验证有限元模型的准确性,可以进行实验验证。
将有限元分析结果与实验结果进行对比和验证,以确定模型的准确性和可靠性。
ANSYS复合材料仿真分析

ANSYS复合材料仿真分析在ANSYS 中可以定义多种材料属性:主菜单-> preprocesser -> Material Prop -> Material Models -> 打开Define Material Model Behavior 对话框-> 顶部菜单中:Material -> New Model ... -> 弹出Define Material ID 对话框-> 定义更多的材料ANSYS复合材料仿真分析2009-05-23 23:31复合材料,是由两种或两种以上性质不同的材料组成。
主要组分是增强材料和基体材料。
复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。
复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。
目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。
飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。
板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。
此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。
一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。
采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。
在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。
复合材料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。
这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。
基于ANSYS铺层方向对复合材料的力学影响分析

基于ANSYS铺层方向对复合材料的力学影响分析本文首先建立了一个复合材料的层合板模型,并利用ansys研究了不同铺层方向对其力学性能的影响,研究表明:5/-45/45/-45的等效应力最大;铺层方向为0/90/90/0的等效应力最小,为复合材料的优选提供了一种途径。
1 引言复合材料是一种多相材料,由多种性质极不相同的材料组成。
先进的复合材料在本世纪60年代初才发明,最具代表性的为聚合物为基的高性能的碳纤维和硼纤维复合材料。
纤维和基体的力学性能有很大的差异,他们组合起来构成的纤维增强复合材料在弹性常数、线膨胀系数及强度特性方面必然会表现出明显的各向异性。
通过对纤维取向的设计制成的复合材料结构会出现程度不同的各向异性,复合材料性能的可设计性,是复合材料所特有的主要优点。
纤维复合材料是由两种或两种以上不同强度和模量的材料所构成,在纤维和基体材料选定后,尚有许多材料参数和几何参数可变动,而且形成层合结构时每一层的铺设方向又可随意安排,这样就可以人为的改变组分材料的种类、含量,以及铺层方向和顺序。
在一定范围内满足设计中对材料强度、刚度和方向性的要求,可是结构的性能、重量和经济指标等都做到合理的优化组合。
为设计人员提供了一种在一定范围内可随意设计的材料,达到结构设计与材料设计高度统一的优化设计的目的。
冲击现象的共同特点是载荷强度高,作用时间短,尤其作用时间短是区别于其他一般力学现象的重要特征。
在冲击现象中,作用时间一般为毫秒、微秒,甚至毫微秒数量级,在这么短时间内完成施加高强度载荷,以及在被作用物体内造成极高的压力或应力,引起被作用物体内介质运动和材料破坏,这是一系列随时间变化的动态过程。
与冲击效应有关的主要复合材料层合板的材料参数,是层合板的密度和硬度等。
密度越大、硬度越高,由地面冲击反射所造成的层合板破坏程度越严重,对于小质量、高速撞击的弹体来说,高强度合金钢、钨合金和铀合金才是制作弹体的理想材料。
本文研究了不同铺层方式对其力学性能的影响规律。
Ansys复合材料结构分析总结

Ansys复合材料结构分析总结说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感他呀目录1# 复合材料结构分析总结(一)——概述篇5# 复合材料结构分析总结(二)——建模篇10# 复合材料结构分析总结(三)——分析篇13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。
(一)概述篇复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。
笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的容。
在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。
ansys_复合材料分析介绍

SOLID95 是 20 节点的结构实体单元,在 KEYOPT(1)=1 时,其作用与单
层的 SOLID191 单元类似,包括应用方位角和失效准则,还允许非线性材料和大
◆ 料。
5.2.2
BEAM188 和 BEAM189 为三维有限应变梁单元,其截面可以包含多种材
定义材料的叠层结构
复合材料最重要的特征就是其叠层结构。每层材料都有可能由不同的正交各 向异性材料构成,并且其主方向也可能各不相同。对于叠层复合材料,纤维的方 向决定了层的主方向。 有两种方法可用来定义材料层的配置: 通过定义各层材料的性质; 通过定义表示宏观力、力矩与宏观应变、曲率之间相互关系的本构矩阵(只 适合于 SOLID46 和 SHELL99)。
5.2.2.1 定义各层材料的性质
这种方法由下到上一层一层定义材料层的配置。底层为第一层,后续的层沿 单元坐标系的 Z 轴正方向自底向上叠加。如果叠层结构是对称的,可以只定义一 半的材料层。 有时,某个物理层可能只延伸到模型的一部分。为了建立连续的层,可以把 这些中断的层的厚度设置为零,图 5-1 显示了一个四层模型,其中第二层在某处 中断了。
1
及一个特殊的“三明治”选项, 而 SHELL99 则不能。另外 SHELL91 更适用于大 变形的情况。 3、SHELL181—有限应变壳单元 SHELL181 是四节点三维壳单元,每个节点有六个自由度。该单元支持所有 的非线性功能(包括大应变),允许有多达 250 层材料层。应该通过截面命令, 而不是实常数来定义层的信息,可以通过 FC 命令来指定失效准则。 4、SOLID46—三维层状结构体单元 SOLID46 是八节点三维实体单元 SOLID45 的一种叠层形式,其每个节点有 三个自由度(UX, UY, UZ)。它可用来建立叠层壳或实体的有限元模型,每个单元 允许有多达 250 层的等厚材料层, 或者 125 层的厚度在单元面内呈现双线性变 化的不等厚材料层。 该单元的另一个优点是可以用叠加几个单元的方式来对多于 250 层的复合材料建立模型,并允许沿厚度方向的变形斜率连续。用户也可输入 自己的本构矩阵。SOLID46 调整横向的材料特性,以允许在横向上为常应力。与 八节点壳单元相比较,SOLID46 的阶次要低些,因此,如在壳结构应用中要得到 与 SHELL91 或 SHELL99 相同的求解精度,需要更密的网格。 5、SOLID191--层状结构体单元 SOLID191 是 20 节点三维实体单元 SOLID95 的一种叠层形式,其每个节点 有三个自由度(UX, UY, UZ)。它可用以建立厚的叠层壳或实体的有限元模型,每 个单元允许有多达 100 层的材料层。与 SOLID46 类似,SOLID191 可以模拟厚度 上的不连续。SOLID46 可以调整横向的材料特性,以允许在横向上为常应力。这 个单元不支持非线性材料或大挠度。 6、其他 除上述层单元外,还有其它的一些具有层功能的单元: ◆ 挠度。 ◆ SHELL63 是四节点壳单元,可用于对“三明治”壳结构作粗糙、近似 的计算。 象两块金属片之间夹有一层聚合物的问题就很典型,此时聚合物的弯曲 刚度相对于金属片的弯曲刚度来说是一个小量。用户可以用实常数 RMI 来修正 单元的弯曲刚度, 使其等效于由金属片引起的弯曲刚度。从中面到外层纤维的距 离(实常数 CTOP 和 CBOT)可用来获得“三明治”壳的表层输出应力。这种单元 不如 SHELL91 、SHELL99 和 SHELL181 那样用得频繁,故后面不再论述。 ◆ SOLID65 是三维钢筋混凝土实体单元,可以模拟在三个用户指定方向 配筋的各向同性介质。
基于 ANSYS的复合材料层合板单钉连接件参数化结构仿真

3累积损伤过程可视化仿真模拟
在复合材料层合板机械连接结构中,挤压破坏 是一种局部破坏,在设计中属合理情况。在层合板 几何参数满足挤压破坏要求的情况下,铺层类型是 影响其机械连接性能的重要因素。本文选择表3 中所列的2种铺层,对M6试件进行了累积损伤过 程的可视化仿真模拟,对比情况如图5所示,图中 不同颜色代表着发生不同损伤类型的单元,检查各 个载荷步下发生各类型损伤的单元可对复合材料 层合板机械连接结构的设计起指导作用。
①输入层合板几何参数,建立复合材料层合 板单钉连接结构三维有限元模型;
②采用网格密度控制技术对整个结构划分 密度渐变的六面体网格;
③定义材料性能参数,选择复合材料单元损 伤准则和材料性能衰减准则;
④创建螺栓表面和层合板孔壁间的表面对 表面接触单元,选择接触算法,定义接触类型、摩 擦类型,设置主要参数,如接触刚度和最小穿透 值;
Fig.4
图4单钉连接挤压强度试验结果 Experimental results of bearing strength of composite single bolted joint
表2单钉连接结构初始挤压破坏强度值
Table 2 InitiaI bearing strength of composite single boIted joint
1参数化结构仿真设计
(1)仿真模块开发概况 通过参数化变量方 式建立有限元分析模型,用建立智能化分析的手 段为用户提供自动完成有限元分析的过程,使用 户实际上对复合材料层合板单钉连接结构设计和
收稿日期:2005一05 26:修订日期:2005 11—30 基金项目:凡舟基金(20030503)资助课题
摘要:应用ANSYS参数化设计语言(APDL)开发复合材料层合板机械连接结构的ANSYS分析模块,实
Ansys的复合材料分析

© 2005 ANSYS, Inc.
8
ANSYS, Inc. Proprietary
SHELL99 Linear Layered Structural Shell Element
• Element Definition
– 8node, 3D shell element with six degrees of freedom at each node – Thin to moderately thick plate and shell structures with a sideto thickness ratio of roughly 10 or greater
© 2005 ANSYS, Inc.
rietary
Benefits of Composites
• Stronger and stiffer than metals on a density basis • Capable of high continuous operating temperatures • Highly corrosion resistant • Electrically insulating/conducting/selectively conducting properties • Tailorable thermal expansion properties • Exceptional formability • Outstanding durability
基于ANSYS Workbench碳纤维复合材料综框的铺层分析与优化设计

o f t h e He al d Fr ame o f Car b o n Fi b er Co mp o s i t e
H AN Bi n b i n , W ANG Yi x u a n , REN S h u a n g n i n g , ZHA NG Qi u x i a
【8 1 ・1 4 0・
Tex t i l e
织器 。 Ac c e s s o r i e s
V O I . 4 4 N O 3
Ma y 201 7
基于 A NS Y S Wo r k b e n c h碳 纤 维 复 合 材 料 综 框 的 铺 层 分 析 与 优 化 设 计
a n d t he pe r f o r ma nc e wi t h a l u mi n i u m a l l o y h e a l d f r a me . I t i S p oi nt e d ou t t ha t t he he a l d f r a me
( 1 . Th e R& D Ce n t e r Be i j i n g Xi n g h a n g Me c h t r o n i c a l Eq u i p me n t Co . , Lt d . , Be i j i n g 1 0 0 0 7 4, Ch i n a ;
动 态特性 的影响 , 并进行 不 同参数 组合优化 , 可确定综框 结构的最佳参数 。