弯曲与扭转组合实验
扭弯组合主应力测定实验

扭弯组合主应力测定实验在工程领域中,材料的强度是一个非常重要的参数。
为了能够更好地了解材料的强度特性,科学家们开展了各种各样的实验研究。
其中,扭弯组合主应力测定实验是一种非常常见的实验方法。
扭弯组合主应力测定实验是一种通过对材料进行扭转和弯曲加载,来测定材料主应力的实验方法。
在这种实验中,材料会同时受到扭转和弯曲的作用,从而产生多个主应力。
通过测定这些主应力的大小和方向,可以得到材料的强度特性。
在扭弯组合主应力测定实验中,需要使用一些特殊的实验设备。
其中,最常见的设备是扭转弯曲试验机。
这种试验机可以通过旋转和弯曲两个方向对材料进行加载,从而产生扭转和弯曲的作用。
同时,试验机还可以测定材料的应变和应力,从而计算出材料的主应力。
在进行扭弯组合主应力测定实验时,需要注意一些实验细节。
首先,需要选择合适的试样形状和尺寸。
通常情况下,试样的形状为圆柱形或矩形,尺寸要足够大,以保证实验结果的准确性。
其次,需要选择合适的加载方式和加载速度。
加载方式可以是单向加载或多向加载,加载速度要适当,以避免试样破坏过快。
最后,需要对实验数据进行处理和分析,以得出材料的主应力特性。
扭弯组合主应力测定实验在工程领域中有着广泛的应用。
例如,在航空航天领域中,需要对飞机和航天器的材料进行强度测试,以确保其安全可靠。
在汽车工业中,需要对汽车零部件的材料进行强度测试,以确保其能够承受各种复杂的力学作用。
在建筑领域中,需要对建筑材料进行强度测试,以确保其能够承受各种自然灾害和人为破坏。
扭弯组合主应力测定实验是一种非常重要的实验方法,可以帮助科学家们更好地了解材料的强度特性。
通过这种实验方法,可以为工程领域中的各种应用提供可靠的数据支持,从而保障人们的生命财产安全。
弯扭组合变形主应力的测定实验报告

弯扭组合变形主应力的测定是一种重要的实验方法,可以用于材料的力学性质和变形特性的研究。
以下是一份弯扭组合变形主应力的测定实验报告,供参考。
1. 实验目的通过弯扭组合变形实验,测定材料在三轴应力状态下的主应力大小和方向。
2. 实验原理弯扭组合变形是一种三轴应力状态下的变形方法。
它是将拉伸和剪切两种应力作用于材料上,使其产生弯曲和扭转的复合变形。
在弯扭组合变形中,主应力的大小和方向可通过计算与测量获得。
3. 实验装置和材料实验装置包括弯曲扭转试验机、电子称量仪、应变计等设备。
试验材料为直径为10mm、长度为50mm的圆柱形铝合金试样。
4. 实验步骤(1) 根据试验要求,调整试验机工况参数,如加载速度、加载次数等。
(2) 将试样装入试验机,并进行预紧力的加载。
(3) 开始弯曲扭转试验,记录下相应的载荷、位移、时间等数据。
(4) 在试验过程中,及时采集应变计的数据,并进行数据处理和分析。
5. 实验结果通过弯扭组合变形实验,得到了试样的应力-应变曲线和主应力大小和方向的测量结果。
试验结果表明,在三轴应力状态下,铝合金试样的主应力大小和方向与加工方向有关。
6. 结论弯扭组合变形主应力的测定实验结果表明,铝合金试样在三轴应力状态下的主应力大小和方向与其加工方向有关。
该方法可以用于材料的力学性质和变形特性的研究,并具有一定的应用价值。
7. 实验总结弯扭组合变形主应力的测定实验需要选用适当的试验装置和材料,并按照标准操作程序进行实验。
在数据处理和分析过程中,要注意准确性和可靠性。
该实验方法对于材料力学性质和变形特性的研究具有重要意义和应用价值。
弯扭实验报告-最终版

【实验名称】弯扭组合受力下的圆管应力和内力测定实验【实验背景】在工程中受弯扭复合作用的构件比比皆是。
现仅举几例加以说明:1. 工厂中用于机械加工的车床、铳床等主轴就是一种典型的复合受力形式,主轴的内力弯矩、扭矩、轴力等。
内力图3. 自行车的拐臂,由于脚踏板的受力点与拐臂不在同一中心线上,拐臂的内力既有弯矩, 又有扭矩。
一般来说,对复合受力的构件,其截面上的内力既有弯矩和剪力又有扭矩,有时还有轴力。
所以,复合受力条件下的构件属于平面应力状态。
对于这类构件,工程中一般要解决下列两类问题。
1. 强化校核:测定危险点的应力状态,确定主应力值和主方向。
2. 优化设计:分离截面上的内力,确定各内力的贡献大小。
【实验目的】1 .学习电测实验的全过程。
本实验从按实验要求制定贴片方案,粘贴电阻片、引线、编号到测量所贴电阻片的应变,以及用不同组桥方式分离内力的一整套实验过程都由同学自己来完成。
2. 学习测定一点应力状态的方法。
3. 学习利用各种组桥方式测量内力的方法。
4. 学习电阻片的粘贴方法。
5. 进一步熟悉电测法的基本原理与操作方法。
【实验仪器】1. 电子万能实验机2. 静态电阻应变仪3. 弯矩复合受力实验装置一套4. 钢板尺、游标卡尺【实验原理】一. 测主应变的大小及方向为了用实验的方法测定薄壁圆筒弯曲和扭转时表面一点处的主应力大小和方向,首先要测量该点处的主应变£ 1和£ 3的大小和方向,然后用广义胡克定律算得一点处的主应力b 1和b 3。
根据平面应变状态分析原理,要确定一点处的主应变,需要知道该点处沿X和两个互相垂直方向的3个应变分量£ X, & y和丫xyo由于在实验中测量剪应变很困难,而用电阻应变片测量线应变比较简便,所以通常采用一点处沿X轴成3个不同方向且已知夹角的线应变。
为了简化计算,实际上采用互成特殊角的三片应变片组成的应变花,中间的应变片与X 轴成0°,另外2个应变片分别与X轴成±45°。
弯扭组合变形实验报告

弯扭组合变形实验报告在科学研究领域中,变形实验是一种常见的实验方法,用于研究物体在外力作用下的变形规律。
而在变形实验中,弯扭组合变形实验是一种常见且重要的实验方法,可以用来研究材料的弯曲和扭转变形特性。
本报告将对弯扭组合变形实验进行详细的描述和分析。
我们需要了解弯扭组合变形实验的基本原理。
在弯扭组合变形实验中,试样将同时受到弯曲和扭转的作用,这种双重变形方式会导致试样表面和内部的变形状态复杂多样。
通过对试样进行弯扭组合变形实验,可以得到材料在不同变形模式下的力学性能参数,如弯曲强度、扭转强度等,从而更全面地了解材料的力学性能。
弯扭组合变形实验的操作步骤也非常关键。
首先,需要选择合适的试样形状和尺寸,然后将试样固定在试验机上,施加合适的弯曲和扭转载荷,同时记录试样的变形情况和载荷大小。
在实验过程中,需要确保试样受力均匀,避免出现局部过载或集中变形的情况,以保证实验结果的准确性和可靠性。
在进行弯扭组合变形实验时,需要注意一些实验技巧。
首先,应该根据试样的材料和形状特性合理选择试验条件,如载荷大小、加载速度等,以确保实验结果具有代表性。
其次,在实验过程中应及时观察试样的变形情况,注意是否出现裂纹或变形不均匀的现象,及时调整实验条件以保证实验的顺利进行。
在实验结束后,需要对实验数据进行分析和处理。
通过对试样在弯扭组合变形过程中的力学性能参数进行计算和统计,可以得到材料的弯曲和扭转性能指标,如弯曲模量、扭转刚度等。
这些数据对于材料的设计和应用具有重要的参考价值,可以帮助工程师更好地选择和使用材料。
总的来说,弯扭组合变形实验是一种重要的材料力学性能测试方法,通过该实验可以全面了解材料在弯曲和扭转载荷下的性能表现。
在进行弯扭组合变形实验时,需要注意选择合适的试验条件、掌握实验技巧,并对实验数据进行准确分析和处理。
希望本报告对弯扭组合变形实验有所帮助,能够促进材料力学性能研究的进展。
扭弯组合变形实验报告

扭弯组合变形实验报告1. 实验目的本次实验的目的是通过对材料进行组合和扭弯变形的实验,研究材料在扭弯应力下的变形以及不同组合方式对其性能的影响。
2. 实验器材和材料2.1 实验器材- 扭弯试验机:用于施加扭弯应力的设备;- 计量设备:包括游标卡尺、称重器等,用于测量变形和质量。
2.2 材料本次实验使用的材料为金属棒,包括钢材、铝材和铜材。
它们分别具有不同的强度和韧性,适用于研究材料的变形特性。
3. 实验方法3.1 组合方式本次实验将材料按照不同组合方式连接起来,包括以下几种方式:1. 单材料组合:使用相同材料的连续棒材进行实验;2. 不同材料组合:使用不同材料的连续棒材进行实验。
3.2 实验步骤1. 准备材料:切割并准备不同材料的棒材,保证长度一致;2. 连接材料:按照所选组合方式,将相应的材料连接起来;3. 放置样品:将组合好的材料放置在扭弯试验机上,保证材料处于水平位置;4. 施加负载:通过扭弯试验机施加负载,使材料扭弯变形;5. 记录数据:实验过程中记录扭弯角度和对应的负载;6. 分析数据:根据实验数据,分析材料的变形特性和组合方式对其性能的影响。
4. 实验结果经过实验获得的数据如下表所示:负载(N)扭曲角度(度)100 10200 20300 30400 40500 505. 结果分析根据实验结果可以得出以下结论:1. 钢材的强度较高,在扭弯过程中能够承受更大的负载;2. 铝材的强度较低,容易发生塑性变形;3. 而铜材具有较好的韧性,能够承受较大的变形。
通过对不同组合方式的比较,发现单材料组合的强度和变形特性较为一致,而不同材料组合则会产生不同的效果。
例如,钢材与铝材组合后,由于钢材的强度较高,能够承受更大的负载,因此整体变形较小;而铜材的韧性能够在变形过程中吸收部分能量,使得整体变形较为均匀。
6. 实验结论通过本次实验,得出以下结论:1. 材料的强度和韧性对扭弯变形有显著影响;2. 不同材料的组合方式会使材料的变形特性发生变化;3. 单材料组合更加一致,而不同材料组合能够发挥各自的优势。
实验六弯扭组合应力测定实验

实验六弯扭组合应力测定实验一、实验目的1. 理解弯扭组合应力的概念和计算方法;2. 掌握应力测量仪器的使用方法;3. 学会进行弯扭组合应力测量实验。
二、实验原理弯曲和扭转同时作用在同一构件上时,构件上就存在着同时作用的弯矩和扭矩,由此产生的应力称为弯扭组合应力。
弯扭组合应力的计算公式为:τmax=T/(J/2)*r+W/(b*h)其中,τmax为弯扭组合应力,T为扭矩,J为极振系数,r为截面离中心轴的距离,W 为弯矩,b为宽度,h为高度。
三、实验器材1. 弯扭试验机;2. 应变计;3. 测力计;4. 转角计;5. 计算机等。
四、实验流程1. 将试件固定在试验机上,并根据实验要求调整试验机的参数;2. 根据试验要求,在试件上粘贴应变计;3. 用测力计分别测量试件上的弯矩和扭矩;5. 结合试验数据,在计算机上进行弯扭组合应力的计算;6. 根据计算得到的结果,确定试件的最大应力值。
五、实验注意事项1. 在进行试验前,应仔细检查试件和试验机的状态,确保没有任何损伤和故障;2. 试件在安装时必须保持平衡,避免产生偏心或错位;3. 对于应变计的粘贴,应事先了解其粘贴方法和位置,保持粘贴位置的一致性;4. 在进行测力计和转角计测量时,应严格按照操作要求进行;6. 在试验进行过程中,如发现任何异常情况,应及时停止试验,并排查故障及原因。
六、实验结果与分析根据实验测量值和计算值,确定试件的最大应力值,并进行对比分析。
七、实验结论由实验所得到的结果,得出试件的最大应力值。
同时,根据实验得出的数据和对比分析,得到实验结论。
弯扭组合变形实验报告数据

实验名称:弯扭组合变形实验一、实验目的:1. 通过实验,了解和掌握材料在弯扭组合变形下的力学性能。
2. 熟悉和掌握弯扭组合变形的测量方法和数据处理技巧。
3. 通过实验,验证理论知识和计算方法的正确性。
二、实验设备:1. 材料试验机2. 弯曲和扭转加载装置3. 千分尺4. 数据记录仪三、实验材料:1. 实验材料为Q235钢,其化学成分和力学性能如下:-碳(C)含量:0.12%-锰(Mn)含量:0.3%-硅(Si)含量:0.3%-磷(P)含量:0.035%-硫(S)含量:0.035%-屈服强度:235MPa-抗拉强度:375MPa-伸长率:26%四、实验步骤:1. 将试样安装在试验机上,确保试样与加载装置之间的接触良好。
2. 设置试验机的弯曲和扭转加载参数,包括加载速度、加载时间等。
3. 开始加载,同时记录试样的弯曲和扭转角度以及载荷大小。
4. 当试样发生断裂时,停止加载,记录断裂载荷和断裂角度。
5. 清理实验现场,整理实验数据。
五、实验数据:1. 试样尺寸:长度100mm,宽度10mm,厚度2mm。
2. 弯曲加载参数:加载速度1mm/min,加载时间1min。
3. 扭转加载参数:加载速度1r/min,加载时间1min。
4. 实验数据记录如下:-弯曲角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-扭转角度:0°,15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°,180°。
-弯曲载荷:0N,2.5N,5N,7.5N,10N,12.5N,15N,17.5N,20N,22.5N,25N,27.5N,30N。
弯扭组合变形实验报告_2

弯扭组合变形实验报告
学院系专业班试验日期
姓名学号同组者姓名
一、实验目的
二、实验设备
仪器名称及型号精度
弯扭组合实验装置编号
三、试件尺寸及有关数据
试件材料:弹性模量E= MPa
泊松比μ= 应变片灵敏系数K=
试件外径D= mm 试件内径d= mm
自由端端部到测点的距离L= mm 臂长a= mm 试件弯曲截面系数W Z= cm3
试件扭转截面系数W P= cm3
四、实验数据与整理
2、实测主应变、主应力的计算
主应变:εεⅠⅡ
=0
090+2εε±主方向:000
450900090
22tan εεεϕεε--=
-
(式中00045090
εεε按平均增量计算) 主应力:2=
+1-E σεμεμⅠⅠⅡ(), 2
=+1-E
σεμεμⅡⅡⅠ() 计算结果:=εⅠ =εⅡ 0=ϕ
=σⅠ =σⅡ
3、弯曲正应力计算:w W E σε=⋅∆=
4、扭转剪应力计算:||1n n E
τεμ
=
∆=- 5、根据材料力学理论公式计算以下几个参数的理论值: 弯矩M = 扭矩T =
=σⅠ =σⅡ
0=ϕ w σ= n τ=
五、回答思考题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ
x
y
2
x
y
2
cos 2
1
2
xy sin 2
为了简 化计算,往往采用互成特殊角度的三片应变片组成的应 变花,本实验用了 45°应变花。
三个选定方向上的线应变
A点 1 0o
2 45o
0o
x
y
2
x
y
2
45o
x
y
2
xy
2
y
90o
45o
3 90o
90o
x
y
2
x
y
2
0o
x
B点 1 0o
3.本实验取初始载荷P0=0.2KN(200N),Pmax=1KN(1000N), ΔP=0.2KN(200N),以后每增加载荷200N,记录应变读数εi, 共加载五级,然后卸载。再重复测量,共测三次。 取数值较好的一组,记录到数据列表中。
4.实验完毕,卸载。实验台和仪器恢复原状。
7.实验记录表格
与实验值进行比较。
0o
x
y
2
x
y
2
2 45o
45o
x
y
2
xy
2
3 -45o
45o
x
y
2
+ xy
2
6.实验步骤
1.将传感器连接到BZ2208-A测力部分的信号输入端,打开仪 器,设置仪器的参数,测力仪的量程和灵敏度设为传感器量 程、灵敏度。
2.主应力测量:将两个应变花的公共导线分别接在仪器前任意 两个通道的A端子上,其余各导线按顺序分别接至应变仪的1-6 通道的B端子上,设置应变仪参数。
根据弯矩引起的正应力和扭转引起
的剪应力在该截面上的分布规律,
从A点取单元体,其中
W
M W
,
T
T WT
显然,A点处于平面应力状 态。根据应力状态理论,其 主应力大小和方向由下式决 定
max min
x
y
2
(
x
2
y
)2
2 xy
W
2
(
W
2
)2
2 T
tan 20
2 xy x y
2T W
为了用实验的方法测定薄壁圆管弯曲和扭转时表面上一点 处的主应力大小和方向,首先要在该点处测量应变,确定 该点处的主应变ε1、ε3 的数值和方 向,然后利用广义虎克 定律算得主应力 σ1,σ 3.
掌握利用应变实测和广义胡克定律求主应力
3.实验仪器和设备
力学实验装置 静态应变测力仪
4.实验梁的安装示意图
该装置用的试件采用无缝钢管制 成-空心轴。实验时将7.拉压力 传感器安装在8.蜗杆升降机构上 拧紧,顶部装上6.钢丝接头。观 察加载中心线是否与扇形加力架 相切,如不相切调整1.紧固螺钉 (共四个),调整好后用扳手将 紧固螺钉拧紧。将5钢丝一端挂 入4.扇形加力杆的凹槽内,摇动 4.手轮至适当位置,把钢丝的另 一端插入传感器上方的钢丝接头 内。
1
E
1
2
(1
3 )
3
E
1 2
( 3
1)
平面应力状态
σα
σx
2
σy
σx
2
σy
cos 2
xy
sin
2
σx
2
σy
sin 2
xy cos 2
2
平面应变状态
2 2
x
y
2
x
y
2
cos 2
1
2
xy sin 2
2
x
y
2
sin 2
1 2
xy
cos
2
εmax εmin
1[(ε 2
x
εy)
(εx
εy )2
γ
2 xy
]
tan20
x
xy y
要确定一点处的主应变,需要知道该点处沿X,Y两个相互垂直方向
的三个应变分量εx,εy,Υxy。由于在实验中测量剪应变很困难, 而用电阻应变片测量线应变比较方便,所以通常采用测量一点处
沿着与轴成三个已知方向的线应变εa,εb, εc的方法,按下列方 程组联立求得εx,εy,Υxy。
载荷 P(N)
0
应变仪读数ε[单位:μ(10-6) ] ε1 △ε1 ε2 △ε2 ε3 △ε3 ε4 △ε4 ε5 △ε5 ε6 △ε6
—
—
—
—
—
—
-200
-400
-600
-800
-1000 —
—
—
—
—
—
实
8.实验报告要求
实验目的 实验仪器与设备 实验原理简述 计算弯扭组合变形时测点的主应力和主方向,将理论值
弯曲与扭转组合变形实验
1. 概 述
在机械工程中,常会遇到承受组 合变形的构件,例如:摇臂钻床 机架承受拉伸和弯曲组合变形, 曲轴承受弯曲和扭转组合变形。
弯曲扭转组合变形时的主应力测 定实验,是以产生弯曲和扭转组 合变形的构件为例,介绍用电测 法确定构件一点应力状态的方法。
2. 实验目的
用电测法测定构件在静定条件下弯扭组合变形时一 点主应力的大小和方向,并将实验值与理论值进行 比较。
注意:扇形加力杆不与加载中心 线相切,将导致实验结果有误差, 甚至错误。
弯扭组合梁的贴片
5.实验原理
当竖向荷载P作用时,薄壁圆管发生
弯曲与扭转组合变形。A点所在截
面的内力有弯矩M、剪力Q、扭矩
MT.因此该截面同时存在弯曲引起的 正应力σW,扭转引起的剪应力τT (弯曲引起的剪应力比扭转引起的
剪应力小得多,故在此不予考虑)。