2021年八年级上学期数学期末考试试卷分析
2021-2022学年八上学期期末数学试题(含解析)

A. B.
C. D. 或
10.如图,在四边形 中,连接 、 ,已知 , , , ,则四边形 的面积为()
A. B.3C. D.4
二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)
答案与解析
一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)
1.第24届冬季奥林匹克运动会将于2022年2月4日至2月20日在中国北京市和张家口市联合举办.以下是历届的冬奥会会徽设计的部分图形,其中不是轴对称图形的是()
A. B. C. D.
6.下列函数中,属于正比例函数的是()
A. B. C. D.
7.已知 , , 分别是 的三边,根据下列条件能判定 为直角三角形的是()
A. , , B. , ,
C. , , D. , ,
8.等腰三角形的周长为21cm,其中一边长为5cm,则该等腰三角形的底边长为()
A.5cmB.11cmC.8cm或5cmD.11cm或5cm
17.如图, 中, , 为 中点, 在 上,且 ,若 , ,则边 的长度为______.
18.如图,在边长为2的等边 中,射线 于点 ,将 沿射线 平移,得到 ,连接 、 ,则 的最小值为______.
三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
【答案】A
【解析】
【分析】题目给出等腰三角形一条边长为5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
精品解析:福建省厦门第一中学2021-2022学年八年级上学期期末数学试题(解析版)

∴ .
∵AC为公共边,
∴只需AD=CB,即可利用“边角边”证明△ABC≌△CDA.
故选:C.
【点睛】本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.
5.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=108°则∠BAE的度数为( )
即正方形A、B的面积之和为19.
故选C.
【点睛】本题主要考查了完全平方公式在几何图形中的应用和整体代入的数学思想,根据图形得出数量关系是解题的关键.
10.如图,在 中, , 平分 ,将 连续翻折两次,C点 对应点E点落在边 上,B点的对应点F点恰好落在边 上,则下列结论正确的是()
A. B.
C. D.
【详解】解:将这个工程总量看成“1”,
则建筑一队的施工效率为 ,建筑二队的施工效率为 ,
由题意可列方程为 ,
故选:C.
【点睛】本题考查了列分式方程,正确找出题干中的等量关系是解题关键.
7.如图, ( )
A.180°B.360°C.270°D.300°
【答案】A
【解析】
【分析】利用三角形外角定理及三角形内角和公式求解即可.
【详解】解:要使式子 有意义,
则
故选B
【点睛】本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.
4.如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )
A.AB=CDB.∠B=∠DC.AD=CBD.∠BAC=∠DCA
【答案】C
【解析】
【分析】由平行线的性质可知 ,再由AC为公共边,即要想利用“边角边”证明△ABC≌△CDA,可添加AD=CB即可.
2021-2022学年河北省唐山市路北区八年级(上)期末数学试卷(解析版)

2021-2022学年河北省唐山市路北区八年级第一学期期末数学试卷一、选择题(本大题共14个小题,每题2分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知,正多边形的一个外角是30°,则这个正多边形是()A.六边形B.九边形C.十边形D.十二边形2.在,,,,,中,分式有()A.2B.3C.4D.53.若分式有意义,则x的取值范围是()A.x≠﹣2B.x≠2C.x≥﹣2D.x≥24.已知△ABC的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3B.3,4,7C.1,π,4D.4,5,105.下列图形中,是轴对称图形的是()A.B.C.D.6.下列各式从左到右的变形中,是因式分解的为()A.ax+bx+c=x(a+b)+cB.x2﹣1=(x+1)(x﹣1)C.x(a﹣b)=ax+bxD.x2﹣1+y2=(x+1)(x﹣1)+y27.点M(﹣3,﹣5)关于x轴的对称点的坐标为()A.(﹣3,5)B.(﹣3,﹣5)C.(3,5)D.(3,﹣5)8.如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=6,CF=2,则AC的长度为()A.6B.7C.8D.99.要使x2+kx+是完全平方式,那么k的值是()A.k=±1B.k=1C.k=﹣1D.k=±10.若(2a+3b)()=9b2﹣4a2,则括号内应填的代数式是()A.﹣2a﹣3b B.2a+3b C.2a﹣3b D.3b﹣2a11.如图,把一张长方形的纸,按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形12.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务,设这个工程队原计划每天要铺建x米管道,则依题意所列方程正确的是()A.+2=B.﹣2C.=2D.=213.如图,四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,垂足是D且∠ADB =∠C,点P是边BC上的一动点,则DP的最小值是()A.1B.2C.3D.414.已知在一个凸多边形中,和一个内角相邻的外角与其余内角度数总和为600°,则这个多边形的边数是()A.5B.6C.7D.5或6二、填空题(本大题共4个小题;每小题3分,共12分。
2021-2022学年湖南省邵阳市邵东县八年级(上)期末数学试题及答案解析

2021-2022学年湖南省邵阳市邵东县八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列各数是无理数的是( )3 C. −√4 D. −√8A. 3.14B. √82.下列计算正确的是( )A. √2+√3=√5B. √(−2)2=2C. x6÷x3=x2D. (x3)2=x53.世卫组织对新冠毒株进行命名,到目前已命名11种变异毒株,已知某种冠状病毒的直径是120纳米,1纳米=10−9米,则这种冠状病毒的直径是米.( )A. 120×10−9B. 1.2×10−8C. 1.2×10−7D. 1.2×10−64.m−1与3−2m是某正数的两个平方根,则实数m的值是( )A. 4B. 2C. −2D. −435.若不等式(n−3)x>2的解集是x<2,则n的取值范围是( )n−3A. n<3B. n>3C. n≠3D. n≤36.如果一个三角形的两边长分别为4和7,则第三边的长可能是( )A. 3B. 4C. 11D. 127.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A. (AAS)B. (SAS)C. (ASA)D. (SSS)8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A. 1B. 2C. 3D. 49.若分式2xy中的x和y都扩大3倍,且分式的值不变,则□可以是( )x2+▫A. 2B. yC. y2D. 3y10. 若二次根式√2−m 有意义,且关于x 的分式方程m 1−x +2=3x−1有正数解,则符合条件的整数m 的和是( ) A. −7B. −6C. −5D. −4二、填空题(本大题共8小题,共24.0分)11. “三角形的一个外角大于任何一个内角”是______命题(填“真”或“假”).12. 分式1a+b ,2a a 2−b 2,b a−b的最简公分母是______. 13. 有一个数值转换器,原理如下:当输入的数是16时,则输出的数是______.14. 如图是由四个相同的小正方形组成的网格图,则∠1+∠2=______.15. 如果将一副三角板按如图方式叠放,那么∠1=______.16. 已知a ,b 在数轴上位置如图,化简√(a −b)2−√a 2= ______ .17. 如图,设m =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则m 的取值范围是______.18. 若关于x 的不等式3x +1<m 的正整数解是1,2,3,则整数m 的最大值是______ .三、解答题(本大题共8小题,共66.0分。
2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试题及答案解析

2021-2022学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四幅图形中,是轴对称图形的是( )A. B. C. D.2.点P(1,−2)关于x轴对称的点的坐标是( )A. (−1,2)B. (−2,1)C. (−1,−2)D. (1,2)3.2021年5月7日IBM公司宣布推出全球首个2nm芯片,其中1nm=0.000000001m,将2nm用科学记数法可表示为( )A. 2×10−10mB. 2×10−9mC. 2×1010mD. 2×109m4.若分式x−1x−2有意义,则x的取值范围是( )A. x≠1B. x=2C. x≠2D. x>25.分式13x2y2,14xy2的最简公分母是( )A. 12x2y2B. 12x3y4C. xyD. xy26.下列因式分解最后结果正确的是( )A. x2−2x−3=(x−1)(x+3)B. x(x−y)+y(y−x)=(x−y)2C. x3−x=x(x2−1)D. 6x−9−x2=(x−3)27.下列等式中,从左向右的变形正确的是( )A. a−ba+b =b−ab+aB. 22a+b=1a+bC. abab−b2=aa−bD. a−a+b=−aa+b8.某同学借了一本书,共140页,要在一周内读完.当他读了这本书的一半时,发现平均每天要多读21页才能刚好在借期内读完,他读这本书的前一半时,平均每天读多少页?设他读这本书的前一半时,平均每天读x页,则下列方程中正确的是( )A. 70x +70x−21=7 B. 70x+70x+21=7C. 140x +140x−21=7 D. 140x+140x+21=79.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为点H,若BC=6,AB=8,AC=10,那么IH的值为( )A. 2B. 3C. 4D. 510.如图,AD是等边三角形ABC的边BC上的高,点E是AD上的一个动点(点E不与点A重合),连接CE.将线段CE绕点E顺时针旋转60°得到EF,连接DF、CF,若AB=6,则线段DF长度的最小值是( )A. 3B. √3C. 1.5D. 1二、填空题(本大题共6小题,共18.0分)11.计算:(a2)3=______,(3a)2=______,3−2=______.12.若分式x2−1x+1的值为0,则x=______.13.已知一个等腰三角形的一个外角为100°,则它的顶角的度数是______.14.如图,△ABC中,AB=6,BC=5,将△ABC沿折痕AD折叠,使点B恰好落在AC边上的点E处,若△DEC的周长为7,则AC的长为______.15.如果关于x的方程axx−1+11−x=2无解,则a的值为______.16.如图,在等腰直角三角形ABC中,∠ABC=90°,O是AC的中点,点F、D分别在AB、BC上(点F、D与点A、B、C都不重合)运动,其中OF⊥OD、OE⊥AD交AB于点E.下列结论:①BD=BE ;②AF =BD ;③点E 是BF 的中点;④CDEF的值为定值.其中正确的结论是______(填写序号).三、计算题(本大题共2小题,共16.0分)17. 计算:(1)3a(5a −2);(2)(7x 2y 3−8x 3y 2z)÷8x 2y 2.18. 因式分解:(1)x 2−9;(2)ax 2+2a 2x +a 3.四、解答题(本大题共6小题,共56.0分。
2021-2022学年八年级数学第一学期期末测试试题及参考答案

2021-2022学年八年级第一学期期末数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.﹣8的立方根是()A.4B.2C.﹣2D.±2【分析】根据立方根的定义即可求解.解:﹣8的立方根是﹣2.故选:C.2.下列数是无理数的是()A.B.πC.0D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.是分数,属于有理数,故本选项不合题意;B.π是无理数,故本选项符合题意;C.0是整数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意;故选:B.3.计算(x2)3的结果是()A.x5B.x6C.x8D.3x2【分析】根据幂的乘方和积的乘方的运算法则求解.解:(x2)3=x6.故选:B.4.计算的结果为()A.10B.5C.3D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.解:=5.故选:B.5.运用乘法公式计算(4+x)(x﹣4)的结果是()A.x2﹣16B.x2+16C.16﹣x2D.﹣x2﹣16【分析】用平方差公式直接得出结果.解:(4+x)(x﹣4)=(x+4)(x﹣4)=x2﹣42=x2﹣16,故选:A.6.如图所示,在△ABC中,∠ACB=90°,分别以AB、BC、AC为边向外作正方形,若三个正方形的面积分别为225、400、S,则S的值为()A.25B.175C.600D.625【分析】由勾股定理得:AC2+BC2=AB2,直接代入即可.解:在△ABC中,∠ACB=90°,由勾股定理得:AC2+BC2=AB2,∴225+400=S,∴S=625.故选:D.7.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=()A.28°B.59°C.60°D.62°【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=28°,求出∠CAB的度数,然后即可求出∠AEC的度数.解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,∴△CAE≌△DAE,∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=28°,∴∠CAB=90°﹣28°=62°,∵∠AEC=90°﹣∠CAB=90°﹣31°=59°.故选:B.8.在△ABC中,∠BAC=90°,AB>AC,∠B≠30°,用无刻度的直尺和圆规在BC边上找一点D,使AD=BD,下列作法正确的是()A.B.C.D.【分析】根据“要在BC边上找一点D,使AD=BD”知点D应该是线段AB垂直平分线与BC的交点,据此求解即可.解:若要在BC边上找一点D,使AD=BD,则点D应该是线段AB垂直平分线与BC的交点,故选:D.二、填空题(本大题共6小题,每小题3分,共18分)9.二次根式有意义,则x的取值范围是x≤3.【分析】直接利用二次根式有意义的条件,即二次根式中的被开方数是非负数,进而得出答案.解:二次根式有意义,则9﹣3x≥0,故x的取值范围是x≤3.故答案为:x≤3.10.比较大小:﹣3 <0(填“>”、“=”或“<”).【分析】首先求出介于2和3之间,从而得最后答案.解:∵2<<3,∴﹣3<0.故答案为:<.11.计算:2x•(﹣3xy)=﹣6x2y.【分析】根据单项式乘单项式的运算法则计算.解:2x•(﹣3xy)=﹣6x2y,故答案为:﹣6x2y.12.若一个三角形的三边长分别为5、12、13,则此三角形的面积为30.【分析】先根据勾股定理的逆定理判定三角形是直角三角形,再利用面积公式求得面积.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.13.如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=2,AB=5,则△ABD的面积为5.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再利用三角形的面积公式列式计算即可得解.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=2,∴△ABD的面积=AB•DE=×5×2=5.故答案为:5.14.如图,在△ABC中,AB=AC,D为BC边上一点,且∠BAD=30°,若AD=DE,∠DAE=72°,则∠EDC的度数为33°.【分析】利用等腰三角形两底角相等和三角形内角和定理可得.解:∵∠BAD=30°,∠DAE=72°,AB=AC,∴∠B=∠C==39°,∵AD=DE,∴∠DAE=∠DEA=72°,∵∠AED=∠C+∠EDC,∴∠EDC=∠AED﹣∠C=72°﹣39°=33°,故答案为:33°.三、解答题(本大题共10小题,共78分)15.计算:﹣﹣﹣|﹣6|.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.解:原式=4﹣+0.5﹣6=﹣2.16.因式分解:(1)4m2﹣36;(2)2a2b﹣8ab2+8b3.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2b,再利用完全平方公式分解因式即可.解:(1)原式=4(m2﹣9)=4(m+3)(m﹣3);(2)原式=2b(a2﹣4ab+4b2)=2b(a﹣2b)2.17.图①、图②均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、点B均在格点上,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图①中,以线段AB为腰画一个等腰三角形.(2)在图②中,以线段AB为底画一个等腰三角形.【分析】(1)根据要求作出图形即可;(2)根据要求作出图形即可.解:(1)如图1中,△ABC即为所求;(2)如图2中,△ABC即为所求.18.先化简,再求值:(x﹣3)2﹣x(2x+1)+x2,其中x=.【分析】直接利用乘法公式、单项式乘多项式化简,合并同类项,再把已知数据代入得出答案.解:原式=x2﹣6x+9﹣2x2﹣x+x2=﹣7x+9,当x=时,原式=﹣7×=﹣1.19.如图,点B、F、C、E四点在同一条直线上,∠B=∠E,AB=DE,BF=CE.求证:AC=DF.【分析】根据题意得出BC=EF,即可利用SAS证明△ABC和△DEF,再利用全等三角形的性质即可得解.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.20.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度沿北偏东40°方向航行,乙船沿南偏东50°方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问:乙船的航速是多少?【分析】根据方向角的概念求出∠CAB=90°,根据勾股定理求出AC的长,得到答案.解:∵甲船沿北偏东40°方向航行,乙船沿南偏东50°方向航行,∴∠CAB=90°,∵AB=16×3=48,BC=60,∴AC==36,∴乙船的航速是36÷3=12海里/时,答:乙船的航速是36÷3=12海里/时.21.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形.(1)图2中间空白的部分的面积是(a﹣b)2;(2)观察图2,请你写出代数式(a+b)2、(a﹣b)2、ab之间的等量关系式(a﹣b)2=(a+b)2﹣4ab;(3)根据你得到的关系式解答下列问题:若x+y=﹣4,xy=3,求x﹣y的值.【分析】(1)由图形面积间和差关系可得此题结果为(a﹣b)2;(2)由图形面积间关系可得:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy,就能求得最后结果.解:(1)由题意得,图2中间空白的部分的面积是(a﹣b)2,故答案为:(a﹣b)2;(2)由图2中间空白的部分的面积的不同表示方法可得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a﹣b)2=(a+b)2﹣4ab;(3)由(2)题关系式可得,(x﹣y)2=(x+y)2﹣4xy=(﹣4)2﹣4×3=4∴x﹣y=±2,即x﹣y的值是±2.22.2021年央视春晚,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》(记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:(1)求本次接受调查的学生人数.(2)求扇形统计图中D所在扇形的圆心角度数.(3)将条形统计图补充完整.【分析】(1)根据B的人数除以所占的百分比得到接受调查的学生人数;(2)用360°乘以D节目男、女生人数和占被调查人数的比例即可;(3)先求出D所占百分比,再求出C所占百分比,继而可以求出C的人数,进而得出C中男生人数;用总人数乘A占的百分比得出A的人数进而得出A中女生人数,然后补全条形统计图即可;解:(1)本次接受调查的学生人数为(12+8)÷40%=50(名);(2)扇形统计图中D所在扇形的圆心角度数为360°×=36°;(3)D占的百分比为×100%=10%,C占的百分比为1﹣(20%+40%+10%)=30%,∴C的人数为50×30%=15(人),即C中男生为15﹣8=7(人);A的人数为50×20%=10(人),A中女生人数为10﹣6=4(人),补全条形统计图,如图所示:23.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图(3)的位置时,请直接写出DE,AD,BE之间的等量关系.【分析】(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD =∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE﹣CD=AD﹣BE;(3)运用(2)中的方法即可得出DE,AD,BE之间的等量关系是:DE=BE﹣AD.解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE﹣CD=AD﹣BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE ﹣AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD﹣CE=BE﹣AD.24.如图,在Rt△ABC中,∠ABC=90°,BC=AB,AC=8,点D是边AC的中点,动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动.同时,动点Q从点D出发,沿DC以每秒1个单位长度的速度向终点C匀速运动.当点P到达终点时,点Q也随之停止运动.过点Q作QE⊥AC,使QE=QD,且点E落在直线AC的上方,当点P不与点D重合时,以PQ、QE为邻边作长方形PQEF.设长方形PQEF与△ABC 的重叠部分的面积为S,点P的运动时间为t(秒).(1)用含t的代数式表示线段AP的长度为4﹣2t.(2)当点F落在线段AB上时,求t的值.(3)用含t的代数式表示S.(4)连结AF、DF.当△AFD是等腰三角形时,直接写出t的值.【分析】(1)由AC=8,点D是边AC的中点求出AD的长为4,再由动点P从点D出发,沿DA以每秒2个单位长度的速度向终点A匀速运动,且运动的时间为t得PD=2t,则AP=4﹣2t;(2)当点F落在线段AB上时,可证明△APF是等腰直角三角形,则AP=FP=QE=t,可列方程t=4﹣2t,解方程求出t的值即可;(3)先确定当点P到达终点A时,则点E恰好落在BC边上,再分两种情况进行讨论,一是当0<t≤时,长方形PQEF与△ABC的重叠部分的面积S为长方形PQEF本身,二是当<t≤2时,则长方形PQEF与△ABC的重叠部分的面积S为S长方形PQEF﹣S△FGH,分别求出用含t的代数式表示S的等式即可;(4)△AFD是等腰三角形存在两种情况,一是AF=DF,则PD=PA=AD=2,列方程求出t的值;二是FD=AD=4,在Rt△PDF中根据勾股定理列方程求出t的值即可.解:(1)∵AC=8,点D是边AC的中点,∴AD=AC=4,∵PD=2t,故答案为:4﹣2t.(2)当点F落在线段AB上时,如图1,∵四边形PQEF是长方形,∴∠QPF=90°,FP=QE,∴∠APF=180°﹣∠QPF=90°,∵∠ABC=90°,BC=AB,∴∠A=∠C=45°,∴∠PFA=∠A=45°,∴AP=FP=QE,∵QE=QD=t,∴AP=t,∴t=4﹣2t,解得t=,∴当点F落在线段AB上时,t的值为.(3)当点P与点A重合时,则2t=4,解得t=2,此时QD=QE=QC=2,∴点E恰好落在BC边上,当0<t≤时,如图2,∵PD=2t,QE=QD=t,∴PQ=2t+t=3t,∵S=S长方形PQEF=PQ•QE,∴S=3t•t=3t2;当<t≤2时,如图3,PF交AB于点G,EF交AB于点H,∵∠PGA=∠A=45°,∴∠FGH=∠PGA=45°,∵∠F=90°,∴∠FHG=∠FGH=45°,∵FP=QE=t,GP=AP=4﹣2t,∴FH=FG=t﹣(4﹣2t)=3t﹣4,∵S=S长方形PQEF﹣S△FGH,∴S=3t2﹣(3t﹣4)2=﹣t2+12t﹣8,综上所述,S=.(4)如图4,△AFD是等腰三角形,且AF=DF,∵PF⊥AD,∴PD=PA=AD=2,∴2t=2,解得t=1;如图5,△AFD是等腰三角形,且FD=AD=4,∵∠DPF=90°,∴PD2+FP2=FD2,∵PD=2t,FP=t,∴(2t)2+t2=42,解得t=或t=﹣(不符合题意,舍去),综上所述,t的值为1或.。
四川省成都市成华区2021-2022学年八年级上学期期末考试数学试卷(解析版)

2021-2022学年四川省成都市成华区八年级(上)期末数学试卷答案与解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)9的平方根是()A.±81B.±3C.﹣3D.3【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:B.2.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.3B.4C.5D.7【分析】直接根据勾股定理求解即可.【解答】解:在直角三角形中,勾为3,股为4,∴弦为√32+42=5.故选:C.3.(3分)下列计算正确的是()A.√22=2B.√(−2)2=−2C.√22=±2D.√(−2)2=±2【分析】求出√22=2,√(−2)2=2,再逐个判断即可.【解答】解:A.√22=2,故本选项符合题意;B.√(−2)2=2,故本选项不符合题意;C.√22=2,故本选项不符合题意;D.√(−2)2=2,故本选项不符合题意;故选:A.4.(3分)下列命题是假命题的是()A.两直线平行,内错角相等B.三角形的外角和为360°C.无限不循环小数是无理数D.同旁内角相等,两直线平行【分析】理由平行线的性质、三角形的外角和定理、无理数的定义及平行线的判定分别判断即可确定正确的选项.【解答】解:A、两直线平行,内错角相等,正确,是真命题,不符合题意;B 、三角形的外角和为360°,正确,是真命题,不符合题意;C 、无限不循环小数是无理数,正确,是真命题,不符合题意;D 、同旁内角互补,两直线平行,故原命题错误,是假命题,符合题意. 故选:D .5.(3分)若a =√73,b =√5,c =2,则a ,b ,c 的大小关系为( ) A .b <c <aB .b <a <cC .a <c <bD .a <b <c【分析】根据算术平方根、立方根的意义估算出a 、b 的近似值,再进行比较即可. 【解答】解:∵√13<√73<√83, ∴1<√73<2, 即1<a <2, 又∵2<√5<3, ∴2<b <3, ∴a <c <b , 故选:C .6.(3分)在正比例函数y =kx 中,y 的值随着x 值的增大而减小,则点A (﹣3,k )在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】因为在正比例函数y =kx 中,y 的值随着x 值的增大而减小,所以k <0,所以点A (﹣3,k )在第二象限.【解答】解:∵在正比例函数y =kx 中,y 的值随着x 值的增大而减小, ∴k <0,∴点A (﹣3,k )在第二象限. 故选:B .7.(3分)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是( )时间/小时 7 8 9 10 人数 6 9114A .9,8.5B .9,9C .10,9D .11,8.5【分析】根据中位数、众数的意义求解即可.【解答】解:抽查学生的人数为:6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时, 将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5小时, 故选:A .8.(3分)如图,已知直线m∥n,∠1=40°,∠2=30°,则∠3的度数为()A.80°B.70°C.60°D.50°【分析】由两直线平行,同位角相等得到∠4=40°,再根据三角形的外角性质即可得解.【解答】解:如图,∵直线m∥n,∠1=40°,∴∠4=∠1=40°,∵∠3=∠2+∠4,∠2=30°,∴∠3=30°+40°=70°,故选:B.9.(3分)某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修.如图所示的图象反映了他骑车上学的整个过程,则下列结论正确的是()A.修车花了10分钟B.小明家距离学校1000米C.修好车后花了25分钟到达学校D.修好车后骑行的速度是110米/分钟【分析】根据横坐标,可得时间;根据函数图象的纵坐标,可得路程.【解答】解:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项不符合题意;B .由纵坐标看出,小明家离学校的距离2100米,故本选项不合题意;C .由横坐标看出,小明修好车后花了30﹣20=10(分钟)到达学校,故本选项不合题意;D .小明修好车后骑行到学校的平均速度是:(2100﹣1000)÷10=110(米/分钟),故本选项符合题意; 故选:D .10.(3分)如图是用三块正方形纸片设计的“毕达哥拉斯”图案,其中三块正方形围成的三角形是直角三角形.现有若干块正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,则下列选取中,围成的直角三角形面积最大的是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4【分析】根据题意可知,三块正方形的面积中,两个较小的面积之和等于最大的面积,围成的三角形是直角三角形,再根据三角形的面积,分别计算出几个较大的正方形纸片围成的直角三角形的面积,比较大小,即可解答本题. 【解答】解:∵五种正方形纸片,面积分别是1,2,3,4,5, ∴五种正方形纸片的边长分别是1,√2,√3,√4,√5, 由题意可得,三角形各边的平方是对应的各个正方形的面积,当选取的三块纸片的面积分别是1,4,5时,1+4=5,围成的三角形是直角三角形,面积是1×√42=1, 当选取的三块纸片的面积分别是2,3,5时,2+3=5,围成的三角形是直角三角形,面积是√2×√32=√62; 当选取的三块纸片的面积分别是2,2,4时,2+2=4,围成的三角形是直角三角形,面积是√2×√22=1, ∵√62>1, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二.填空题(本大题4个小题,每小题4分,共16分)11.(4分)已知{x =2y =m是方程3x +2y =10的一个解,则m 的值是 2 .【分析】把二元一次方程的解代入到方程中,得到关于m 的一元一次方程,解方程即可. 【解答】解:把{x =2y =m 代入方程得:3×2+2m =10,∴m =2, 故答案为:2.12.(4分)如图,点A (4,0),C (﹣1,0),以点A 为圆心,AC 长为半径画弧,交y 轴的正半轴于点B ,则点B 的坐标为 (0,3) .【分析】根据已知可得AB =AC =5,OA =4.利用勾股定理即可求解. 【解答】解:根据已知可得:AB =AC =5,OA =4. 在Rt △ABO 中,OB =√AB 2−OA 2=3. ∴B (0,3). 故答案为:(0,3).13.(4分)将直线y =﹣6x +2向下平移4个单位,平移后的直线解析式为 y =﹣6x ﹣2 . 【分析】直接根据“上加下减”的平移规律求解即可.【解答】解:将直线y =﹣6x +2向下平移4个单位,平移后的直线解析式为y =﹣6x +2﹣4=﹣6x ﹣2, 故答案为:y =﹣6x ﹣2.14.(4分)《九章算术》中有一题,大意是:甲乙二人,不知其钱包里各有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?设甲持钱数为x ,乙持钱数为y ,则可列二元一次方程组为 {x +12y =5023x +y =50 . 【分析】根据“若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50”,即可得出关于x ,y 的二元一次方程组,此题得解. 【解答】解:∵若乙把自己一半的钱给甲,则甲的钱数为50, ∴x +12y =50;又∵若甲把自己三分之二的钱给乙,则乙的钱数也为50,∴23x +y =50.∴根据题意,可列二元一次方程组为{x +12y =5023x +y =50.故答案为:{x +12y =5023x +y =50.三.解答题(本大题共6个小题,满分54分) 15.(10分)(1)计算:(π﹣3)0+|1−√2|−√8; (2)计算:√32−√24+√65×√45.【分析】(1)先利用零指数幂、绝对值的意义计算,再把√8化简,然后合并即可; (2)先利用二次根式的乘法公式计算,然后化简后合并即可. 【解答】解:(1)原式=1+√2−1﹣2√2 =−√2;(2)原式=√62−2√6+√65×45 =√62−2√6+3√6=3√62.16.(10分)(1)解方程组:{2x +y =3①x −2y =−1②;(2)解方程组:{3x −2y +20=0①2x +15y −3=0②.【分析】(1)由②得出x =﹣1+2y ③,把③代入①得出2(﹣1+2y )+y =3,求出y ,再把y =1代入③求出x 即可;(2)②×3得出6x +45y =9③,①×2得出6x ﹣4y =﹣40④,③﹣④得出﹣49y =﹣49,求出y ,再把y =1代入①求出x 即可. 【解答】解:(1){2x +y =3①x −2y =−1②,由②,得x =﹣1+2y ③,把③代入①,得2(﹣1+2y )+y =3, 解得:y =1,把y =1代入③,得x =﹣1+2×1=1, 所以原方程组的解是{x =1y =1;(2){3x −2y +20=0①2x +15y −3=0②,②×3,得6x +45y =9③, ①×2,得6x ﹣4y =﹣40④, ③﹣④,得﹣49y =﹣49, 解得:y =1,把y =1代入①,得3x ﹣2+20=0, 解得:x =﹣6,所以原方程组的解是{x =−6y =1.17.(6分)已知m +n ﹣5的算术平方根是3,m ﹣n +4的立方根是﹣2,试求√3m −n +22m+1的值.【分析】根据算术平方根和立方根的定义得到m +n ﹣5=9①,m ﹣n +4=﹣8②,解方程组可求m ,n 的值,再代入计算可求√3m −n +22m+1的值.【解答】解:根据题意得{m +n −5=9m −n +4=−8.,解得{m =1n =13.,所以3m ﹣n +2=﹣8,2m +1=3, 所以√3m −n +22m+1=−2.18.(8分)如图,在平面直角坐标系xOy 中,△ABC 的顶点坐标分别为A (1,﹣1),B (4,1),C (2,2),CD 为AB 边上的高.(1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1; (2)请填出下列线段的长度:AB = √13 ,BC = √5 ,AC = √10 ,CD =7√1313.【分析】(1)利用轴对称的性质作出A ,B ,C 的对应点A 1,B 1,C 1即可; (2)利用勾股定理以及三角形的面积求解即可. 【解答】解:(1)如图,△A 1B 1C 1即为所求;(2)AB =√22+32=√13,BC =√12+22=√5,AC =√12+32=√10, ∵S △ABC =12×AB ×CD =3×3−12×1×3−12×1×2−12×2×3, ∴CD =7√1313. 故答案为:√13,√5,√10,7√1313.19.(10分)某通讯公司就手机流量套餐推出A ,B ,C 三种方案(如表),三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数图象如图.结合表格和图象解答下列问题:A 方案B 方案C 方案 每月基本费用(元) 2056266每月兔费使用流量(兆) 1024m无限超出后每兆收费(元)nn(1)填空:表中m = 3072 ,n = 0.3 ;(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式;(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?【分析】(1)根据题意可得m =3072,n =(56﹣20)÷(1144﹣1024)=0.3; (2)利用待定系数法解答即可;(3)利用B 方案当每月使用的流量不少于3072兆时的函数关系式即可得到答案. 【解答】解:(1)根据题意,m =3072,n =(56﹣20)÷(1144﹣1024)=0.3; 故答案为:3072,0.3;(2)设在A 方案中,当每月使用的流量不少于1024兆时,每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式为y =kx +b (k ≠0), 把(1024,20),(1144,56)代入,得:{1024k +b =201144k +b =56,解得:{k =0.3b =−287.2,∴y 关于x 的函数关系式为y =0.3x ﹣287.2(x ≥1024); (3)在B 方案中,当每月使用的流量不少于3072兆时, 根据题意得:y =56+0.3(x ﹣3072), 令56+0.3(x ﹣3072)=266, 解得x =3772,由图象得,当每月使用的流量超过3772兆时,选择C 方案最划算.20.(10分)已知:△ABC 中,∠CAB =60°,D 是BC 的中点,延长AB 到点E ,使BE =AC ,连结CE ,AD .(1)如图1,若△ABC 是等边三角形,AD =√3,则CE 的长等于 2√3 ; (2)如图2,过点B 作AC 的平行线交AD 的延长线于点F ,连接EF . ①求证:△BEF 是等边三角形; ②求证:CE =2AD .【分析】(1)由△ABC 是等边三角形,AC =BE ,先证明∠ACE =90°,因为D 是BC 的中点,所以∠ADB =90°,∠BAD =12∠CAB =30°,则BD =12AB ,根据勾股定理可以求出AB 的长,再求出AC 、AE 的长,再根据勾股定理求出CE 的长;(2)①由BE ∥AC 得∠FBE =∠CAB =60°,∠DFB =∠DAC ,再证明△DFB ≌△DAC ,得FB =AC ,则FB =BE ,则△BEF 是等边三角形; ②证明△ACE ≌△EF A ,则CE =F A =2AD .【解答】(1)解:如图1,∵△ABC 是等边三角形,BE =AC , ∴AB =BC =AC =BE ,∠ABC =∠ACB =∠CAB =60°, ∴∠BCE =∠E , ∵∠BCE +∠E =∠ABC , ∴2∠E =60°, ∴∠BCE =∠E =30°, ∴∠ACE =60°+30°=90°, ∵D 是BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =12∠CAB =30°, ∴∠ADB =90°, ∴BD =12AB ,∴AB 2﹣(12AB )2=AD 2=(√3)2,∴AB =2,∴AC =BE =AB =2, ∴AE =AB +BE =4,∴CE =√AE 2−AC 2=√42−22=2√3, 故答案为:2√3.(2)①证明:如图2,∵BE ∥AC , ∴∠FBE =∠CAB =60°,∠DFB =∠DAC , 在△DFB 和△DAC 中,{∠DFB =∠DAC ∠FDB =∠ADC BD =CD,∴△DFB ≌△DAC (AAS ),∴FB =AC ,FD =AD ,∴FB =BE ,∴△BEF 是等边三角形.②证明:如图2,∵∠FEA =60°,∠CAE =60°,∴∠CAE =∠FEA ,∵EF =BE ,BE =AC ,∴AC =EF ,在△ACE 和△EF A 中,{AC =EF ∠CAE =∠FEA AE =EA,∴△ACE ≌△EF A (SAS ),∴CE =F A =2AD .一.填空题(每小题4分,共20分)21.(4分)若x =√2+1,则代数式x 2﹣2x +2的值为 3 .【分析】利用完全平方公式将原式进行变形,然后代入求值.【解答】解:原式=x 2﹣2x +1+1=(x ﹣1)2+1,当x =√2+1时,原式=(√2+1﹣1)2+1=(√2)2+1=2+1=3,故答案为:3.22.(4分)已知△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线交于点O ,则∠BOC 的度数为 120 度.【分析】利用角平分线的性质计算.【解答】解:∵∠A =60°∴∠ABC +∠ACB =120°∴∠BOC =180°−12(∠ABC +∠ACB )=120°.23.(4分)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a ,较短直角边为b ,若ab =8,大正方形的面积为25,则小正方形的边长为 3 .【分析】由题意可知:中间小正方形的边长为:a ﹣b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a ﹣b ,∵每一个直角三角形的面积为:12ab =12×8=4, ∴4×12ab +(a ﹣b )2=25,∴(a ﹣b )2=25﹣16=9,∴a ﹣b =3,故答案是:324.(4分)如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是 84 .【分析】先分析出点P 在BC 和CA 上运动时BP 的大小变化,再结合函数图象得到相应线段长.【解答】解:由图象分析可得:当点P 在BC 上运动时,BP 不断增大,到达C 点时,BP 达到最大值,此时BP =BC =15;当P 在CA 上运动时,BP 先减小再增大,在此过程中,BP ⊥AC 时,此位置记为P ',BP 有最小值为BP '=12,由勾股定理可得CP '=9,P 点到达C 点时,可得BA =13,由勾股定理可得AP '=5,∴AC =AP '+CP '=5+9=14,∴S △ABC =12×14×12=84. 故答案为84.25.(4分)某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个.其中A 盒中有2个耳机,3个优盘,1个音箱;B 盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C 盒中有1个耳机,3个优盘,2个音箱.经核算,A 盒的价值为145元,B 盒的价值为245元,则C 盒的价值为 155 元.【分析】设1个耳机的价值为x 元,1个优盘的价值为y 元,1个音箱的价值为z 元,B 盒中耳机的数量为3n (n 为正整数)个,则音箱的数量为2n 个,优盘的数量为5n 个,根据A ,B 盒的价值,即可得出关于x ,y ,z 的三元一次方程组,分析两盒价值间的关系可得出n 只能为1,进而可得出方程②为3x +5y +2z =245③,再利用3×③﹣4×②即可求出C 盒的价值.【解答】解:设1个耳机的价值为x 元,1个优盘的价值为y 元,1个音箱的价值为z 元,B 盒中耳机的数量为3n (n 为正整数)个,则音箱的数量为2n 个,优盘的数量为5n 个, 依题意得:{2x +3y +z =145①3nx +5ny +2nz =245②. 若n =2,则B 盒的价值至少是A 盒价值的3倍,∴n =2不合适,∴n 只能为1,∴方程②为3x +5y +2z =245③.3×③﹣4×②得:x +3y +2z =155,即C 盒的价值为155元.故答案为:155.二、解答题(本大题有3个小题,共30分)26.(8分)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A 型消毒液数量不少于30瓶但不超过70瓶.设购进这两种消毒液所需费用为w 元,购进A 型消毒液m 瓶,求w 与m 之间的函数关系式,并求出学校最少所需费用多少元?【分析】(1)设A 型消毒液单价是x 元,B 型消毒液单价是y 元,根据已知得{2x +3y =415x +2y =53,即可解得答案;(2)由已知得w =﹣2m +810(30≤m ≤70),再根据一次函数性质可得答案.【解答】解:(1)设A 型消毒液单价是x 元,B 型消毒液单价是y 元,根据题意得:{2x +3y =415x +2y =53, 解得{x =7y =9, 答:A 型消毒液单价是7元,B 型消毒液单价是9元;(2)根据题意得:w =7m +9(90﹣m )=﹣2m +810(30≤m ≤70),∵﹣2<0,∴w 随m 的增大而减小,∴m =70时,w 最小,w 的最小值是﹣2×70+810=670(元),答:w 与m 之间的函数关系式是w =﹣2m +810,学校最少所需费用670元.27.(10分)如图,在△ABC 中,∠ACB =90°,CA =CB ,点M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F ,连接ME ,MF .(1)求证:CE =BF ;(2)求证:△EFM 是等腰直角三角形;(3)试判断线段DE ,DF ,DM 之间有何数量关系?写出你的结论并证明.【分析】(1)由“AAS ”可证△BCF ≌△CAE ,即可得出结论;(2)由“SAS ”可证△BFM ≌△CEM ,得FM =EM ,∠BMF =∠CME ,再证∠EMF =90°,即可得出结论;(3)设AE 与CM 交于点N ,连接DN ,证△BFD ≌△CEN (ASA ),得DF =NE ,BD =CN ,再证△DMN 是等腰直角三角形,得DN 2=DM 2+NM 2=2DM 2,然后在Rt △DEN 中,由勾股定理得DN 2=DE 2+NE 2=DE 2+DF 2,即可得出结论.【解答】(1)证明:∵∠ACB =90°,∴∠BCF +∠ACE =90°,∵AE ⊥CD ,BF ⊥CD ,∴∠CEA =∠BFC =90°,∴∠BCF +∠CBF =90°,∴∠ACE =∠CBF ,又∵AC =CB ,∴△CAE≌△BCF(AAS),∴CE=BF;(2)证明:∵△CAE≌△BCF,∴AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,∵点M是AB中点,∴CM=12AB=BM=AM,CM⊥AB,∴∠CMB=90°,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∴∠BMF+∠DME=∠CME+∠DME=∠BMC=90°,即∠EMF=90°,∴△EFM为等腰直角三角形;(3)解:DE2+DF2=2DM2,理由如下:设AE与CM交于点N,连接DN,∵∠BFD=∠CMD=90°,∠BDF=∠CDM,∴∠DBF=∠NCE,又∵BF=CE,∠BFD=∠CEN=90°,∴△BFD≌△CEN(ASA),∴DF=NE,BD=CN,∵CM=BM,∴CM﹣CN=BM﹣BD,即DM=NM,∴△DMN是等腰直角三角形,∴DN2=DM2+NM2=2DM2,∵AE⊥CD,∴∠AED=90°,在Rt△DEN中,由勾股定理得:DN2=DE2+NE2,∴DN2=DE2+DF2,∴DE2+DF2=2DM2.28.(12分)如图,在平面直角坐标系中,一次函数y =kx +b 经过A (a ,0),B (0,b )两点,且a ,b 满足(a +8)2+√b +6=0,∠ABO 的平分线交x 轴于点E .(1)求直线AB 的表达式;(2)求直线BE 的表达式;(3)点B 关于x 轴的对称点为点C ,过点A 作y 轴的平行线交直线BE 于点D ,点M 是线段AD 上一动点,点P 是直线BE 上一动点,则△CPM 能否为不以点C 为直角顶点的等腰直角三角形?若能,请直接写出点P 的坐标;若不能,说明理由.【分析】(1)求出点A 与点B 的坐标,再由待定系数法求直线AB 的解析式即可;(2)过点E 作EH ⊥AB 于点H ,求出点E 的坐标,再由再由待定系数法求直线BE 的解析式即可;(3)①当∠MPC =90°时,P 点在C 点下,过点P 作GH ⊥y 轴交AD 于点G ,交y 轴于点H ,证明△PMG ≌△CPH (AAS ),可得8+t =2t +12,求出t 即可求P (﹣4,2);②当∠MPC =90°,P 点在C 点上时,由①得8+t =﹣2t ﹣12,求出t 即可求P (﹣,223);③当∠PMC =90°时,过点M 作KL ⊥y 轴交y 轴于点L ,过P 点作PK ⊥KL 交于K ,证明△PKM ≌△MLC (AAS ),由8=﹣2t ﹣6﹣(14+t ),求出t =−283,即可求P (−283,383). 【解答】解:(1)∵(a +8)2+√b +6=0,∴a =﹣8,b =﹣6,∴A (﹣8,0),B (0,﹣6),∵一次函数y =+b 经过A (﹣8,0),B (0,﹣6), ∴{0=−8k +b b =−6, ∴{k =−34b =−6, ∴直线AB 的表达式y =−34x ﹣6;(2)∵A (﹣8,0),B (0,﹣6),∴OA =8,OB =6,∴在Rt △AOB 中AB =10,过点E 作EH ⊥AB 于点H ,∵∠ABO 的平分线交x 轴于点E ,∴EH =EO ,AE =8﹣EO ,AH =10﹣6=4,在Rt △AEH 中,(8﹣EO )2=42+EO 2,解得:EO =3,∴E (﹣3,0),设直线BE 的表达式为y =k 1x +b 1,∴{0=−3k 1+b 1b 1=−6, ∴{k 1=−2b 1=−6, ∴直线BE 的表达式为y =﹣2x ﹣6;(3)设P (t ,﹣2t ﹣6),①如图1,当∠MPC =90°时,P 点在C 点下,过点P 作GH ⊥y 轴交AD 于点G ,交y 轴于点H ,∵∠MPC =90°,∴∠MPG +∠CPH =90°,∵∠MPG +∠GMP =90°,∴∠CPH =∠GMP ,∵PM =PC ,∴△PMG ≌△CPH (AAS ),∴MG =PH ,CH =GP ,∵PH =﹣t ,CH =6﹣(﹣2t ﹣6)=2t +12,∴GP =8﹣(﹣t )=8+t =2t +12,∴t =﹣4,∴P (﹣4,2);②如图2,当∠MPC =90°,P 点在C 点上时,由①得,HC =﹣2t ﹣6﹣6=﹣2t ﹣12,GP =8﹣(﹣t )=8+t , ∴8+t =﹣2t ﹣12,∴t =−203,∴P (﹣,223);③如图3,当∠PMC =90°时,过点M 作KL ⊥y 轴交y 轴于点L ,过P 点作PK ⊥KL 交于K , ∵∠PMC =90°,∴∠PMK +∠CML =90°,∵∠PMK +∠MPK =90°,∴∠CML =∠MPK ,∵PM =CM ,∴△PKM ≌△MLC (AAS ),∴KM =CL ,PK =ML ,∴ML =PK =8,CL =KM =﹣8﹣t ,∴LO =6﹣(﹣8﹣t )=14+t ,∴PK =8=﹣2t ﹣6﹣(14+t ),∴t =−283, ∴P (−283,383); 综上所述:点P 的坐标为:(﹣4,2)或(−203,223)或(−283,383).。
2021-2022学年山东省菏泽市单县八年级(上)期末数学试卷(解析版)

2021-2022学年山东省菏泽市单县八年级第一学期期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填涂在答题卡相应的位置上)1.袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为()A.甲B.乙C.甲、乙均可D.无法确定2.如图,已知AB=DC,BE⊥AD于点E,CF⊥AD于点F,有下列条件,其中,选择一个就可以判断Rt△ABE≌Rt△DCF的是()①∠B=∠C②AB∥CD③BE=CF④AF=DEA.①②B.①②③C.①③④D.①②③④3.在庆祝中国共产党成立100周年的“红色记忆”校园歌咏比赛中,15个参赛班级按照成绩(成绩各不相同)取前7名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这15个参赛班级成绩的()A.平均数B.中位数C.众数D.方差4.下列条件中,能构成钝角△ABC的是()A.∠A=∠B=∠C B.∠A+∠C=∠BC.∠B=∠C=∠A D.∠A=∠B=∠C5.下列命题是真命题的是()A.若ab=0,则P(a,b)为坐标原点B.若A(﹣1,﹣2),且AB平行于x轴,AB=5,则B点坐标为(4,﹣2)C.斜边相等的两个等腰直角三角形全等D.绝对值等于它本身的数是06.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹,判断以下结论错误的是()A.∠BDE=∠BAC B.∠BAD=∠B C.DE=DC D.AE=AC7.方程=的解是()A.x=﹣2B.x=﹣1C.x=1D.x=38.如图,在△ABC中,AD平分∠BAC,AB=10,AC=8,BC=4,则△ABD与△ACD的面积比是()A.5:4B.1:1C.4:5D.4:39.如图是一款手推车的平面示意图,其中AB平行CD,则下列结论正确的是()A.∠3=∠1+∠2B.∠3=∠2+2∠1C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°10.某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.二、填空题(本大题共10个小题,每小题3分,共30分,只要求把结果填写在答题卡的相应区域内)11.如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为.12.某学校生物课把学生的笔试、实验操作两项成绩分别按60%、40%的比例计入学生的学期总成绩,小亮的实验操作这一项成绩是81分,要想学期总成绩不低于90分,那么他的笔试成绩至少要达到分.13.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=cm.14.已知一组数据:5,2,5,6,7,则这组数据的方差是.15.如图,△ABC中,∠B=90°,∠A=30°,E,F分别是边AB,AC上的点,连接EF,将△AEF沿着EF折叠,得到△A′EF,当边A′F∥BC时,∠AEF的度数为.16.已知,则的值为.17.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B=.18.若关于x的方程+=2无解,则m=.19.如图,△ABD≌△EBC,则下列结论中:①CD⊥AE;②AD⊥CE;③∠EAD=∠ECD;正确的有(只填序号).20.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分别交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为三、解答题(本题共60分,把解答过程写在答题卡的相应区域内)21.如图,A、E、F、B在同一条直线上,AE=BF,∠A=∠B,∠CEB=∠DFA,求证:OC=OD.22.解答下列各题(1)解分式方程:;(2)化简:.23.某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查,在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表序号1234567甲种西瓜(分)75858688909696乙种西瓜(分)80838790909294甲、乙两种西瓜得分统计表平均数中位数众数甲种西瓜a b96乙种西瓜8890c (1)a=,b=,c=;(2)从离散程度看,种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.24.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.25.菏泽牡丹机场已经实现通航,游客从浮龙湖景区乘车到牡丹机场,有两条路线可供选择,路线一全程是100千米,但交通拥堵;路线二全程是105千米,平均速度是线路一的倍,因此到达牡丹机场的时间比走路线一少用30分钟,求走路线二到达牡丹机场需要多少小时?26.如图,点C为线段AB上一点,AD∥EB,AC=BE,AD=BC,过点C作CF⊥DE于点F,CF所在直线交DA延长线于点G.(1)求证:CF垂直平分DE;(2)若BC=4,BE=2,求DG的长度.参考答案一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填涂在答题卡相应的位置上)1.袁隆平院士被誉为“世界杂交水稻之父”,他研究的水稻,不仅高产,而且抗倒伏.在某次实验中,他的团队对甲、乙两种水稻品种进行产量稳定实验,各选取了8块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为1200千克/亩,方差为S甲2=186.9,S乙2=325.3.为保证产量稳定,适合推广的品种为()A.甲B.乙C.甲、乙均可D.无法确定【分析】根据方差的意义求解即可.解:∵S甲2=186.9,S乙2=325.3,∴S甲2<S乙2,∴为保证产量稳定,适合推广的品种为甲,故选:A.2.如图,已知AB=DC,BE⊥AD于点E,CF⊥AD于点F,有下列条件,其中,选择一个就可以判断Rt△ABE≌Rt△DCF的是()①∠B=∠C②AB∥CD③BE=CF④AF=DEA.①②B.①②③C.①③④D.①②③④【分析】根据BE⊥AD,CF⊥AD,可得∠AEB=∠CFD,然后再利用全等三角形的判定定理分别进行分析即可.解:∵BE⊥AD,CF⊥AD,AB=DC,∴∠AEB=∠CFD,选择①可利用AAS定理证明Rt△ABE≌Rt△DCF;选择②可得∠A=∠D,可利用AAS定理证明Rt△ABE≌Rt△DCF;选择③可利用HL定理证明Rt△ABE≌Rt△DCF;选择④可得AE=DF,可利用HL定理证明Rt△ABE≌Rt△DCF.故选:D.3.在庆祝中国共产党成立100周年的“红色记忆”校园歌咏比赛中,15个参赛班级按照成绩(成绩各不相同)取前7名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这15个参赛班级成绩的()A.平均数B.中位数C.众数D.方差【分析】由于比赛取前7名进入决赛,共有15个参赛班级,根据中位数的意义分析即可.解:15个不同的成绩按从小到大排序后,中位数之后的共有7个数,故只要知道自己的班级成绩和中位数就可以知道自己的班级能否进入决赛.故选:B.4.下列条件中,能构成钝角△ABC的是()A.∠A=∠B=∠C B.∠A+∠C=∠BC.∠B=∠C=∠A D.∠A=∠B=∠C【分析】根据三角形内角和定理解决此题.解:A.根据三角形内角和定理,由∠A=∠B=∠C,得∠A=∠B=∠C=60°,故△ABC 是锐角三角形,那么A不符合题意.B.根据三角形内角和定理,由∠A+∠B+∠C=180°,得2∠B=180°,故∠B=90°,即△ABC是直角三角形,那么B不符合题意.C.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠B=∠C=∠A,得∠A+=180°,故∠A=120°,此时△ABC是钝角三角形,那么C符合题意.D.根据三角形内角和定理,由∠A+∠B+∠C=180°,∠A=∠B=∠C,得∠A=30°,∠B=60°,∠C=90°,此时△ABC是直角三角形,那么D不符合题意.故选:C.5.下列命题是真命题的是()A.若ab=0,则P(a,b)为坐标原点B.若A(﹣1,﹣2),且AB平行于x轴,AB=5,则B点坐标为(4,﹣2)C.斜边相等的两个等腰直角三角形全等D.绝对值等于它本身的数是0【分析】根据坐标轴上点的坐标特征对A进行判断;利用B(﹣6,﹣2)满足条件可对B 进行判断;根据等腰直角三角形的性质和全等三角形的判定方法对C进行判断;根据绝对值的意义对D进行判断.解:A.若ab=0,则P(a,b)为坐标轴上的点,此命题为假命题,所以A选项不符合题意;B.若A(﹣1,﹣2),且AB平行于x轴,AB=5,则B点坐标为(4,﹣2)或(﹣6,﹣2),此命题为假命题,所以B选项不符合题意;C.两斜边相等的两个等腰直角三角形全等,此命题为真命题,所以C选项符合题意;D.绝对值等于它本身的数是非负数,此命题为假命题,所以D选项不符合题意.故选:C.6.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹,判断以下结论错误的是()A.∠BDE=∠BAC B.∠BAD=∠B C.DE=DC D.AE=AC【分析】由尺规作图的痕迹可得,DE⊥AB,AD是∠BAC的平分线,根据同角的余角相等可判断A,根据角平分线的性质可判断C,证得Rt△AED≌Rt△ACD可判定D,由于DE不是AB的垂直平分线,不能证明∠BAD=∠B.解:根据尺规作图的痕迹可得,DE⊥AB,AD是∠BAC的平分线,∵∠C=90°,∴DE=DC,∠B+∠BDE=∠B+∠BAC=90°,∴∠BDE=∠BAC,在Rt△AED和Rt△ACD中,,∴Rt△AED≌Rt△ACD(HL),∴AE=AC,∵DE不是AB的垂直平分线,故不能证明∠BAD=∠B,综上所述:A,C,D不符合题意,B符合题意,故选:B.7.方程=的解是()A.x=﹣2B.x=﹣1C.x=1D.x=3【分析】通过分式方程两边乘3x(x﹣1)化为整式方程进而求解.解:∵=,∴.去分母,得3(x﹣1)=2x.去括号,得3x﹣3=2x.移项,得3x﹣2x=3.合并同类项,得x=3.经检验:当x=3时,3x(x﹣1)≠0.∴这个分式方程的解为x=3.故选:D.8.如图,在△ABC中,AD平分∠BAC,AB=10,AC=8,BC=4,则△ABD与△ACD的面积比是()A.5:4B.1:1C.4:5D.4:3【分析】先根据角平分线的性质得到点D到AB和AC的距离相等,然后根据三角形面积公式得到S△ABD:S△ACD=AB:AC.解:∵AD平分∠BAC,∴点D到AB和AC的距离相等,∴S△ABD:S△ACD=AB:AC=10:8=5:4.故选:A.9.如图是一款手推车的平面示意图,其中AB平行CD,则下列结论正确的是()A.∠3=∠1+∠2B.∠3=∠2+2∠1C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°【分析】根据三角形外角和平行线性质得出三个角的关系即可.解:如下图:∵AB∥CD,∴∠1=∠A,∵∠2=∠A+∠4,∴∠2=∠1+∠4,即∠4=∠2﹣∠1,∵∠3+∠4=180°,∴∠2+∠3﹣∠1=180°,故选:C.10.某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.解:设班级共有x名学生,依据题意列方程得,.故选:B.二、填空题(本大题共10个小题,每小题3分,共30分,只要求把结果填写在答题卡的相应区域内)11.如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为5.【分析】证明△AOB≌△COD推出OA=OC,OB=OD=3,即可解决问题.解:∵∠AOC=∠BOD,∴∠AOB=∠COD,在△AOB和△COD中,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD=3,∵AD=8,∴OA=AD﹣OD=8﹣3=5,∴OC=OA=5.故答案为:5.12.某学校生物课把学生的笔试、实验操作两项成绩分别按60%、40%的比例计入学生的学期总成绩,小亮的实验操作这一项成绩是81分,要想学期总成绩不低于90分,那么他的笔试成绩至少要达到96分.【分析】设小亮的笔试成绩是x分,利用总成绩=60%×笔试成绩+40%×实验操作成绩,结合总成绩不低于90分,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.解:设小亮的笔试成绩是x分,依题意得:60%x+40%×81≥90,解得:x≥96,∴小亮的笔试成绩至少要达到96分.故答案为:96.13.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=6cm.【分析】首先证明△ABC为等边三角形,然后依据SSS证明△ABD全等△ACD,从而可得到∠BAD=∠CAD,然后依据等腰三角形三线合一的性质可得到BE=CE,从而可求得BC的长,故此可得到AB的长.解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠ABC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.14.已知一组数据:5,2,5,6,7,则这组数据的方差是 2.8.【分析】根据题意,先求出数据的平均数,由方差的计算公式计算可得答案.解:根据题意,数据:其平均数==5,则其方差s2=[(5﹣5)2+(2﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.8;故答案为:2.8.15.如图,△ABC中,∠B=90°,∠A=30°,E,F分别是边AB,AC上的点,连接EF,将△AEF沿着EF折叠,得到△A′EF,当边A′F∥BC时,∠AEF的度数为120°.【分析】由∠B=90°,∠A=30°,推出∠C=60°,因为A′F∥BC,∠B=90°,所以∠FHA=∠B=90°,∠HFA=∠C=60°,由折叠可知,∠HFE=∠AFE=∠HFA =30°,利用外角性质即可求出∠AEF的度数.解:∵∠B=90°,∠A=30°,∴∠C=60°,∵A′F∥BC,∠B=90°,∴∠FHA=∠B=90°,∠HFA=∠C=60°由折叠可知,∠HFE=∠AFE=∠HFA=30°,∴AEF=∠EHF+∠HFE=90°+30°=120°,故答案为:120°.16.已知,则的值为.【分析】根据已知条件得出a=b,再代入要求的式子进行计算即可得出答案.解:∵=,∴a=b,∴===.故答案为:.17.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B=36°.【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,设∠B=α,则∠BDA=∠BAD=2α,又∵∠B+∠BAD+∠BDA=180°,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,故答案为36°.18.若关于x的方程+=2无解,则m=﹣1.【分析】分式方程无解,即化成整式方程时无解,或者求得的x能令最简公分母为0,据此进行解答.解:方程两边都乘以(x﹣3)得,2﹣m﹣x=2(x﹣3),∵分式方程无解,∴x﹣3=0,∴x=3,代入整式方程得,2﹣m﹣3=2(3﹣3),解得m=﹣1.故答案为:﹣1.19.如图,△ABD≌△EBC,则下列结论中:①CD⊥AE;②AD⊥CE;③∠EAD=∠ECD;正确的有①②③(只填序号).【分析】根据全等三角形的性质和等腰直角三角形的性质可以判断各个小题中的结论是否成立,从而可以解答本题.解:延长AD交EC于点N,延长CD交AE于点M,∵△ABD≌△EBC,∴∠ABD=∠EBC,AB=EB,BD=BC,∠DAB=∠CEB,∵∠ABD+∠EBC=180°,∠BAE=∠BEA,∠BDC=∠BCD,∴∠ABD=∠EBC=90°,∴∠BAE=∠BEA=45°,∠BDC=∠BCD=45°,∴∠BAE+∠BCD=90°,∴∠AMC=90°,∴CD⊥AE,故①正确;∵∠CEB+∠ECB=90°,∠BAD=∠BEC,∴∠BAD+∠ECB=90°,∴∠ANC=90°,∴AD⊥CE,故②正确;∵∠ADB=∠EAD+∠AED=∠EAD+45°,∠ECB=∠ECD+∠BCD=∠ECD+45°,∠ADB=∠ECB,∴∠EAD=∠ECD,故③正确;故答案为:①②③.20.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分别交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为115°【分析】根据三角形内角和定理得到∠BMN+∠BNM=130°,根据线段垂直平分线的性质得到MA=MP,根据等腰三角形的性质,三角形的外角的性质计算.解:∵∠B+∠BMN+∠BNM=180°,∴∠BMN+∠BNM=180°﹣50°=130°,∵M在PA的中垂线上,∴MA=MP,∴∠MAP=∠MPA,同理,∠NCP=∠NPC,∵∠BMN=∠MAP+∠MPA,∠BNM=∠NPC+∠NCP,∴∠MPA+∠NPC=×130°=65°,∴∠APC=180°﹣65°=115°,故答案为:115°.三、解答题(本题共60分,把解答过程写在答题卡的相应区域内)21.如图,A、E、F、B在同一条直线上,AE=BF,∠A=∠B,∠CEB=∠DFA,求证:OC=OD.【分析】首先利用ASA证明△AFD≌△BEC,得BC=AD,再由等角对等边得OA=OB,从而证明结论.【解答】证明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE,在△AFD和△BEC中,,∴△AFD≌△BEC(ASA),∴BC=AD,∵∠A=∠B,∴OA=OB,∴AD﹣OA=BC﹣OB,∴OC=OD.22.解答下列各题(1)解分式方程:;(2)化简:.【分析】(1)首先原方程可化为,,再根据解分式方程的步骤求出x,最后一定要检验;(2)先分解因式,再通分,算出括号内的结果,再算乘法,最后化为最简形式.解:(1)原方程可化为,,方程两边都乘(x﹣2)2,得x(x﹣2)﹣(x﹣2)2=4,整理,得2x=8,解这个方程,得x=4,经检验,x=4是原方程的根;(2)====.23.某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查,在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表序号1234567甲种西瓜(分)75858688909696乙种西瓜(分)80838790909294甲、乙两种西瓜得分统计表平均数中位数众数甲种西瓜a b96乙种西瓜8890c (1)a=88,b=88,c=90;(2)从离散程度看,乙种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.【分析】(1)根据中位数、众数的意义求解即可;(2)根据数据大小波动情况,直观可得答案;(3)从中位数、众数的比较得出答案.解:(1)a==88,将甲种西瓜得分重新排列为:75,85,86,88,90,96,96,其中位数b=88,乙种西瓜得分的众数c=90,故答案为:88、88、90;(2)由甲、乙两种西瓜得分的大小波动情况,直观可得s甲2>s乙2,∴乙种西瓜的得分较稳定,故答案为:乙;(3)甲种西瓜的品质较好些,理由为:甲种西瓜得分的众数比乙种的高.乙种西瓜的品质较好些,理由为:乙种西瓜得分的中位数比甲种的高.24.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.【分析】①由平行线的性质得∠ADB=∠DBC,再由角平分线的定义得∠ABD=∠DBC,则∠ABD=∠ADB,然后由等腰三角形的判定即可得到AB=AD;②由平行线的性质得∠ADC=∠DCE,再由①知AB=AD,则AC=AD,然后由等腰三角形的性质得∠ACD=∠ADC,则∠ACD=∠DCE,即可得到结论.【解答】证明:①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知,AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE.25.菏泽牡丹机场已经实现通航,游客从浮龙湖景区乘车到牡丹机场,有两条路线可供选择,路线一全程是100千米,但交通拥堵;路线二全程是105千米,平均速度是线路一的倍,因此到达牡丹机场的时间比走路线一少用30分钟,求走路线二到达牡丹机场需要多少小时?【分析】根据题意列出等量关系式:路线一的平均速度×=路线二的平均速度,再根据等量关系式列出方程,求解检验即可.解:设走路线二到达牡丹机场需要x小时,因为走路线二比走路线一少用30分钟,即少用0.5小时,所以走路线一的时间为(x+0.5)小时,依题意可得,,解这个方程得,x=1.5,经检验可知,x=1.5是原分式方程的根,并符号题意,所以,走路线二到达牡丹机场需要1.5小时.26.如图,点C为线段AB上一点,AD∥EB,AC=BE,AD=BC,过点C作CF⊥DE于点F,CF所在直线交DA延长线于点G.(1)求证:CF垂直平分DE;(2)若BC=4,BE=2,求DG的长度.【分析】(1)根据平行线的性质得∠DAC=∠CBE,然后利用SAS证明△ADC≌△BCE,可得CD=CE.从而证明结论;(2)根据等腰三角形的性质得∠DCF=∠ECF,而∠DCF=∠G+∠GDC,∠FCE=∠FCB+∠BCE,可证明∠AGC=∠ACG,从而有AC=AG,从而得出答案.【解答】(1)证明:∵AD∥EB,∴∠DAC=∠CBE,又∵AC=BE,AD=BC,∴△ADC≌△BCE(SAS),∴CD=CE,∵CF⊥DE,即CF垂直平分DE,(2)解:∵∠DCF为△DCG的外角,∴∠DCF=∠G+∠GDC,由(1)知,CF是等腰△CDE底边上的高,∴CF平分∠DCE,∴∠DCF=∠FCE,∵∠FCE=∠FCB+∠BCE,∴∠G+∠GDC=∠FCB+∠BCE,又由(1)知,△ADC≌△BCE,∴∠GDC=∠BCE,∴∠G=∠FCB,又∵∠FCB=∠ACG,∴∠G=∠ACG,∴AG=AC=BE,∴DG=AD+AG,=BC+BE=4+2=6,∴DG的长为6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年八年级上学期数学期末考试试卷分析
一、试卷结构和考情详解
这次考试卷考试时间120分钟,满分120分,试题由选择题、填空题和解答题组成,选择题一共有10小题,共30分,填空题共6小题,共18分,解答题有7小题,共72分。
试题结构是按照中考的结构来安排的,试卷结构比较合理,知识点覆盖全面。
注重了基础知识的考察和基本技能与解题技巧的考察,能够联系实际生活,体现了数学的应用价值。
二、试题分布
本次符合新课标要求,试题能扣紧教材,难度掌握得很好,试卷的知识覆盖面大,注重考查学生对知识和技能的理解与应用能力,其中也涉及到了作图题目。
下面是题目所涉及到的知识的情况:
(一)选择题30分
1题是考查分式有意义的条件,2题是三角形三线,3题整式运算的考查,4题是格点等腰,5题是三角形内角和、外角的导角,6题考查因式分解,7题是考查全等三角形的判定方法,8题考查分式方程的应用,9题是考查轴对称最值,10.考查几何多结论。
在选择题的几个小题中,各个方面的知识也都涉及到了,考查相对全面。
(二)填空题15分
11题考查因式分解,12题考查分式的通分,13题考查的是三角形形状的判断,14线段垂直平分线的性质和三角形中线的综合应用,15题考查将军饮马最值,16.几何求值。
(三)解答题,72分。
17题考查因式分解,18题考查分式的化简求值,本题略有瑕疵,考了八下的分母有理化,有点超纲,19题考查对全等三角形的判定定理,20题考查无刻度直尺作图。
21.手拉手模型。
22题考查分式应用题综合。
23、24题都是全等和等腰三角形的综合应用。
三、考情分析
本人分析如下
第一大题(选择题1~10小题):
第1、2、3、5、7、8、9、题学生完成得很好,第4、6、10题学生答题较差,主要错因缺少分析问题的能力。
尤其是第6题审题不清。
第二大题(填空题11~20小题):
第11、12、13、14、16题完成得很好。
完成得较差的有:第15题,由于对完全平方公式综合应用能力差,大多数学生不会做。
第14题考虑问题不全面。
第三大题:解答题
第17.18.19.20题:得分较差,运算能力差,法则公式掌握不熟练。
第21题:失分多。
原因:缺少对问题的分析能力,读不懂题意。
第22(1)题:对题分析理解不全面不能按照尺规作图要求去做。
四、失分原因
1、学生的基础知识不扎实是失分的主要原因。
本次试题基础题所占比例大,容易题占60分左右,从答题情况看,计算题失分较多,导致成绩普遍偏低,主要原因是基础不扎实,对课本知识生疏,或不能熟练运用,相当一部分后进生表现尤为突出。
2、审题不仔细是造成失分的又一主要原因。
3、平时学习过程中,学习方法过死,灵活解决和处理问题的能力不足。
尤其表现在对课本上的一些变式问题缺乏分析和解决问题的能力,死搬硬套,照猫画虎,因而得分率较低。
4、整体表现为缺乏良好的思考和解题的习惯。
在考试过程中,发现仍有部分同学解题不用演草纸,直接在试卷上答题,缺乏对解题过程的布局和设计,解题思路混乱,涂改现象严重,答题结束不能认真检查。
5、转差工作不够细致,效率不高,往往事倍而功半,只注重了对学生的辅导而忽略了对学习效果的检测,方法不灵活,反而降低了学习效率。
五、后续采取措施
通过检测的阅卷分析和表现出来的问题,在今后教学中,需要作好以下工作:(1)、在平时教学中要进一步把握好具体目标要求,深入分析教材,重视基础知识与技能的落实,重视过程与方法的学习,注重数学与实际生活的联系,通过多种方法,突出培养学生理解分析、操作探究、表述能力和灵活应用知识解决问题的能力,发展学生的数学素养。
(2)、教学要面向全体学生,充分利用和挖掘丰富的课程资源,重视激发学习兴趣和不断提高课堂教学的实际效果。
(3)、在平时教学中重视对学生良好的学习习惯和学习方法的养成教育,教师还需在教给学生“严谨、勤学、善思、好问”等方面的发展多做探究。
(4)、重视课本,夯实基础,进一步改变教学内容和过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、勤于动手动脑,乐于探究,尽量要求学生在学习过程中学会自我反思和矫正,变被动学习为主动学习。
(5)、进一步细化课堂结构,强化课堂管理,提高课堂教学效率,重视课堂转差。
转差工作要进一步细化,尤其作好差生的思想教育工作,从培养自尊心、自信心和学习兴趣入手,避免学生心理抵触情绪的产生。
(6)、精心备课,力求每一堂课新颖且有创新,努力改变以往沉闷、呆板的课堂气氛,力争使教学方法灵活多样,且有较强的教学效益,充分利用多媒体手段,调动学生学习的积极性和兴趣。