广东省梅州市中考数学试卷及解析

合集下载

2023年广东省梅州市中考数学试卷含答案解析

2023年广东省梅州市中考数学试卷含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A. −5元B. 0元C. +5元D. +10元2.下列出版社的商标图案中,是轴对称图形的为( )A. B.C. D.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A. 0.186×105B. 1.86×105C. 18.6×104D. 186×1034.如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A. 43°B. 53°C. 107°D. 137°5.计算3a +2a的结果为( )A. 1a B. 6a2C. 5aD. 6a6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A. 黄金分割数B. 平均数C. 众数D. 中位数7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( ) A. 18B. 16C. 14D. 128.一元一次不等式组{x −2>1x <4的解集为( )A. −1<x <4B. x <4C. x <3D. 3<x <49.如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A. 20°B. 40°C. 50°D. 80°10.如图,抛物线y =ax 2+c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为( ) A. −1 B. −2 C. −3 D. −4二、填空题:本题共5小题,每小题3分,共15分。

2024年广东省中考数学真题卷含答案解析

2024年广东省中考数学真题卷含答案解析

机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。

2022年广东省梅州市中考数学试卷(解析版)

2022年广东省梅州市中考数学试卷(解析版)

2022年广东省梅州市中考数学试卷(真题)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC 9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省梅州市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,∴y4最小.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为 3 .【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20 .【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,故答案为20.【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a= 1 .【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a 的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则PA=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则PA=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=PA•CF﹣PA•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。

历年梅州市初三数学中考试卷及答案

历年梅州市初三数学中考试卷及答案

梅州市高中阶段学校招生考试数学试卷一、填空题(每小题 3分,共30分) 1、 计算:(a — b ) — ( a+b ) = 2、 计算:(a 2b ) 2+ a 4 = 。

3、 函数y 奸右中,自变量x 的取值范围是 。

4、 北京与巴黎两地的时差是一 7小时(带正号的数表示同一时间比北京早的时间数) 如果现在北京时间是 7 : 00,那么巴黎的时间是 5、 求值:sin 230° +cos 230° = 。

6、 根据图1中的抛物线,当x 时,y 随x 的增大而增大, 当x 时,y 随x 的增大而减小,当 x 时,y 有最大值。

7、 如图2,将一副直角三角板叠在一起,使直角顶点重合于点 O,则 / AOB+ / DOC= 0 8、 已知一个三角形的三边长分别是 6 cm, 8 cm, 10 cm,则这个 三角形的外接圆面积等于 cm 2。

9、 如图3,扇子的圆心角为a,余下扇形的圆心角为为了使扇子 的外形美观,通常情况下a 与6的比按黄金比例设计,若取黄金比为 则a =度。

10、如图4是我市城乡居民储蓄存款余额的统计图, 请你根据该图写出两条正确的信息: ① 、选择题(每小题 3分,共15分)11、已知O O 的半径为5 cm,③O 的半径为3 cm, 两圆的圆心距为 7 cm,则它们的位置关系是 ................. A 、相交 B 、外切 C 、相离 D 、内切 212、 万程 x — 5x — 1=0 ........................................................................................ A 、有两个相等实根B、有两个不等实根C 、没有实根D 、无法确定 13、 一组对边平行,并且对角线互相垂相等的四边形是 ............. A C 、 14、设 A 、 菱形或矩形 矩形或等腰梯形 a 是实数,则|a| 可以是负数 必是正数 D 一a 的值 .. BDOO图2图1C0.6, 卤3239.6155.1419.460.461978 年 1990^ 2000 年 2003 年图4300 200150 100 50 0城乡居民储蓄存款余额(亿元、正方形或等腰梯形、菱形或直角梯形 、不可能是负数D 、可以是正数也可以是负数 15、由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州 华城一一河源一一惠州一一东莞一一广州, 那么要为这次列车制作的火车票有 A 、6 种 B 、12 种 C 、21 种 D 、42 种三、解答下列各题(每小题 6分,共24分)16、计算:(2)2 G/2) 1 78 (1 J3)017、在“创优”活动中,我市某校开展收集废电池的活动,该校初二(1)班为了估计四月份收集电池的个数,随机抽取了该月某7天收集废旧电池的个数,数据如下:(单位:个):48, 51, 53, 47, 49, 50, 52。

2020年广东省梅州市中考数学试题(word版含答案)

2020年广东省梅州市中考数学试题(word版含答案)

2020年梅州市初中毕业生学业考试数学说明:本试卷共 4 页,23 小题,满分 120 分.考试用时 90 分钟.一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.(09梅州)12-的倒数为( ) A .12B .2C .2-D .1-2.(09梅州)下列图案是我国几家银行的标志,其中不是..轴对称图形的是( ) 3.(09梅州)数学老师布置10道填空题,测验后得到如下统计表: 答对题数 7 8 9 10 人 数420188根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(09梅州)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(09梅州)一个正方体的表面展开图可以是下列图形中的( )二、填空题:每小题 3分,共 24 分. 6.(09梅州)计算:2()a a -÷= .7.(09梅州)梅州是中国著名侨乡,祖籍在梅州的华侨华人及港澳台同胞超过360万人,360万用科学计数法表示为 . 8.(09梅州)如图1,在O ⊙中,20ACB ∠=°,则AOB ∠=_______度.A .B .C .D . A . B . C . D .O C A O9.(09梅州)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______度. 10.(09梅州)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是 .11.(09梅州)已知一元二次方程22310x x --=的两根为12x x ,,则12x x =___________.12.(09梅州)如图4,把一个长方形纸片沿EF 折叠后,点D C 、分别落在11 D C 、的位置.若65EFB ∠=°,则1AED ∠等于_______度.13.(09梅州) 如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个. 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤. 14.(09梅州)本题满分 7 分. 如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB 长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度;(2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC 的面积等于_________(面积单位).15.(09梅州)本题满分 7 分.星期天,小明从家里出发到图书馆去看书,再回到家.他离家的距离y (千米)与时间t (分钟)的关系如图7所示.图3A E D C FB D 1C 1 图4… … 第1幅 第2幅 第3幅 第n 幅 图5C BD A 图6y (千米)3根据图象回答下列问题:(1)小明家离图书馆的距离是____________千米; (2)小明在图书馆看书的时间为___________小时;(3)小明去图书馆时的速度是______________千米/小时. 16.(09梅州)本题满分 7 分.171819.(09梅州)本题满分 8 分.如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G . (1)求证:CDF BGF △∽△; (2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.D C FE A B G20.(09梅州)本题满分 8 分.“五·一”假期,梅河公司组织部分员工到A 、B 、C 三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往 A 地的车票有_____张,前往C 地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给 100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去 B 地车票的概率为______;(字21C . (((22.(09梅州)本题满分 10 分.如图 11,矩形ABCD 中,53AB AD ==,.点E 是CD 上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G . (1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线;(2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.23.(09梅州)本题满分 11 分.(提示:为了方便答题和评卷,建议在答题卡上画出你认为必须的图形)交((S (2009年梅州市初中毕业生学业考试数学参考答案及评分意见一、选择题:每小题 3分,共 15 分.每小题给出四个答案,其中只有一个是正确的. 1.C 2.B 3.D 4.B 5.C 二、填空题:每小题 3分,共 24 分.6.a 7.63.610⨯ 8.40 9.4(1分),72(2分)C B 图1110.小张 11.12-12.50 13.7(1分),21n -(2分) 三、解答下列各题:本题有 10 小题,共 81 分.解答应写出文字说明、推理过程或演算步骤.14.本题满分7分. (1)90 ········································································································ 2分 (2)30 ········································································································ 4分··································································································· 7分 15( 2分 ( 4分 ( 7分 16 4分 6分 7分 17 2分 由分 分 分 18 3分 2x =- 6分 当32x =时,原式3226322⨯==--. ······································································ 8分19.本题满分8 分.(1)证明:∵梯形ABCD ,AB CD ∥, ∴CDF FGB DCF GBF ∠=∠∠=∠,, ················· 2 分 ∴CDF BGF △∽△. ······················3分DC FE(2) 由(1)CDF BGF △∽△, 又F 是BC 的中点,BF FC = ∴CDF BGF △≌△, ∴DF FG CD BG ==, ······································ 6分 又∵EF CD ∥,AB CD ∥,∴EF AG ∥,得2EF BG AB BG ==+. ∴22462BG EF AB =-=⨯-=, ∴2cm CD BG ==. ···················································································· 8分 20.本题满分 8 分. 解:(1)30;20. ······················································································ 2 分(1)解:令0x =,得y =(0C . ············································ 1分令0y =,得2033x x -+=,解得1213x x =-=,, ∴(10)(30)A B -,,,. ·············································································· 3分(2)法一:证明:因为22214AC =+=,M 1222231216BC AB =+==,, ··················· 4分∴222AB AC BC =+, ····································· 5分 ∴ABC △是直角三角形. ································· 6分法二:因为13OC OA OB ===,, ∴2OC OA OB =, ························································································ 4分5分 分1.5 8分分 6分 EC BC 53x -整理得2590x x -+=. ················································································· 8 分 ∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 法二: 若BE 能与O ⊙相切,因AE 是O ⊙的直径,则90AE BE AEB ∠=⊥,°, 设DE x =,则5EC x =-,由勾股定理得:222AE EB AB +=,即22(9)[(5)9]25x x ++-+=, 整理得2590x x -+=, ······························ 8分∵242536110b ac -=-=-<, ∴该方程无实数根.∴点E 不存在,BE 不能与O ⊙相切. ································· 10分 (法三:本题可以通过判断以AB 为直径的圆与DC 是否有交点来求解,参照前一解法给分) 23.本题满分 11 分.(1)1y x =- ······························································································· 2分 (∴ 3分 ∴∴4分当 6分 (1C ,O 两点关于直线L 对称,所以1AC OA ==,得(11)C ,. ····································· 7 分 下证90PQC ∠=°.连CB ,则四边形OACB 是正方形.法一:(i )当点P 在线段OB 上,Q 在线段AB 上 (Q 与B C 、不重合)时,如图–1.L 1由对称性,得BCQ QOP QPO QOP ∠=∠∠=∠,, ∴ 180QPB QCB QPB QPO ∠+∠=∠+∠=°,∴ 360()90PQC QPB QCB PBC ∠=-∠+∠+∠=°°. ······································ 8分 (ii )当点P 在线段OB 的延长线上,Q 在线段AB 上时,如图–2,如图–3∵12QPB QCB ∠=∠∠=∠,, ∴90PQC PBC ∠=∠=°. ····················· 9分 (1 分C ,O 分 (∴四边形OMNA 和四边形MNCB 都是矩形,AQN △和QBM △都是等腰直角三角形. ∴90NC MB MQ NQ AN OM QNC QMB ====∠=∠=,,°. 又∵OM MP =, ∴MP QN =, ∴QNC QMP △≌△, ∴MPQ NQC ∠=∠,L 1又∵90MQP MPQ ∠+∠=°,∴90MQP NQC ∠+∠=°.∴90CQP ∠=°. ····················································································· 8分(ii )当点Q 与点B 重合时,显然90PQC ∠=°. ···································· 9分 (iii )Q 在线段AB 的延长线上时,如图–5,∵分9分 连∴22222(1)122PC PB BC t t t =+=-+=-+,2222222211222t t t OQ OP CQ OM MQ t ⎛⎫⎛⎫===+=+-=-+ ⎪ ⎪⎝⎭⎝⎭. ∴222PC OP QC =+,∴90CQP ∠=°. ························································ 10分 ∴在1L 上存在点(11)C ,,使得CPQ △是以Q 为直角顶点的等腰直角三角形. ········ 11分。

梅州市数学中考试题含答案

梅州市数学中考试题含答案

第 1 页 共 1 页梅州市初中毕业生学业考试数学试卷说明:1、全卷分二部分,第一部分为选择题,第二部分为非选择题,共 4页。

考试时间90分钟,满分100分。

2、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。

答题卡必须保持清洁,不能折叠。

3、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好。

4、本卷选择题1—10,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题11—22,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内。

5、考试结束,请将本试卷和答题卡一并交回。

第一部分 选择题(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)1.4的算术平方根是A.-4 B.4 C.-2 D.22.下列运算正确的是A.532a a a =+ B.532a a a =⋅ C.532)(a a = D.10a第 2 页 共 2 页÷52a a =3.2008年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位, 用科学记数法表示为A.31022⨯ B.5102.2⨯ C.4102.2⨯ D.51022.0⨯4.如图1,圆柱的左视图是图1 A BC D 5.下列图形中,既是..轴对称图形又是..A B CD6.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误..的是 A.众数是80 B.中位数是75 C.平均数是80第 3 页 共 3 页D.极差是157.今年财政部将证券交易印花税税率由3‟调整为1‟(1‟表示千分之一).某人在调整后购买100000元股票,则比调整前少交证券交易印花税多少元?A.200元 B.2000元 C.100元 D.1000元8.下列命题中错误..的是 A.平行四边形的对边相等 B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等 D.对角线相等的四边形是矩形9.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表 达式是A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y 10.如图2,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点 恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于 A.6πB.4π C.3π D.2π第二部分 非选择题填空题(本题共5小题,每小题3分,共15分)11.有5张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图图 2FE D CBA片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是14.要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图4所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是第4 页共4 页第 5 页 共 5 页15.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a +b 的值为表一表二 表三解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.计算:03)2008(830tan 33π---︒⋅+-17.先化简代数式⎪⎭⎫⎝⎛-++222a a a ÷412-a ,然后选取一个合适..的a 值,代入求值.第 6 页 共 6 页图 5DCBA18.如图5,在梯形ABCD 中,AB ∥DC , DB 平分∠ADC ,过点A 作AE ∥BD ,交CD 的延长线于点E ,且∠C =2∠E . (1)求证:梯形ABCD 是等腰梯形.(2)若∠BDC =30°,AD =5,求CD 的长.19.某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:图 7图 6(1)哪一种品牌粽子的销售量最大?(2)补全图6中的条形统计图.(3)写出A品牌粽子在图7中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.20.如图8,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=32,求△ACF的面积.图 8C第7 页共7 页21.“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部..运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使第8 页共8 页第 9 页 共 9 页运输费最少?最少运输费是多少元?22.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31.(1)求这个二次函数的表达式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN 为直径的圆与x轴相切,求该圆半径的长度.(4)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG 下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.第10 页共10 页深圳市2008年初中毕业生学业考试数学试卷参考答案及评分意见第一部分选择题(本题共10小题,每小题3分,共30分)第二部分非选择题第11 页共11 页第 12 页 共 12 页填空题(本题共5小题,每小题3分,共15分)解答题(本题共7小题,其中第16题6分,第17题7分,第18题7分,第19题8分,第20题8分,第21题9分,第22题10分,共55分)16.解: 原式=123333--⋅+ …………………1+1+1+1分=1213--+ …………………………5分=1 …………………………6分(注:只写后两步也给满分.) 17.解: 方法一: 原式=41)2)(2()2(2)2)(2()2(2-÷⎥⎦⎤⎢⎣⎡-+++-+-a a a a a a a a=)2)(2()2)(2(42-+-++a a a a a =42+a…………………………5分第 13 页 共 13 页(注:分步给分,化简正确给5分.) 方法二:原式=)2)(2(222-+⎪⎭⎫⎝⎛-++a a a a a =)2(2)2(++-a a a =42+a…………………………5分 取a =1,得…………………………6分 原式=5…………………………7分(注:答案不唯一.如果求值这一步,取a =2或-2,则不给分.)18.(1)证明:∵AE ∥BD,∴∠E =∠BDC∵DB 平分∠ADC ∴∠ADC =2∠BDC 又∵∠C =2∠E ∴∠ADC =∠BCD∴梯形ABCD是等腰梯形 …………………………3分(2)解:由第(1)问,得∠C =2∠E =2∠BDC =60°,且BC =AD =5∵ 在△BCD 中,∠C =60°, ∠BDC =30°∴∠DBC=90°∴DC=2BC=10…………………………7分19.解: (1)C品牌.(不带单位不扣分)…………………………2分(2)略.(B品牌的销售量是800个,柱状图上没有标数字不扣分)……4分(3)60°.(不带单位不扣分)…………………………6分(4)略.(合理的解释都给分)…………………………8分20.(1)证明:连接BO,…………………………1分方法一:∵ AB=AD=AO∴△ODB是直角三角形…………………………3分∴∠OBD=90°即:BD⊥BO∴BD是⊙O的切线.…………………………4分第14 页共14 页第 15 页 共 15 页方法二:∵AB =AD , ∴∠D =∠ABD∵AB =AO , ∴∠ABO =∠AOB又∵在△OBD 中,∠D+∠DOB+∠ABO+∠ABD =180°∴∠OBD =90° 即:BD ⊥BO∴BD是⊙O的切线 …………………………4分(2)解:∵∠C =∠E ,∠CAF =∠EBF∴△ACF ∽△BEF …………………………5分 ∵AC 是⊙O 的直径∴∠ABC =90°在Rt △BFA 中,cos ∠BFA =32=AF BF ∴942=⎪⎭⎫ ⎝⎛=∆∆AF BF S S ACF BEF …………………………7分 又∵BEF S ∆=8∴ACFS ∆=18 …………………………8分 21.解:(1)设打包成件的帐篷有x 件,则320)80(=-+x x (或80)320(=--x x ) …………………………2分第 16 页 共 16 页解得200=x ,12080=-x (3)分答:打包成件的帐篷和食品分别为200件和120件. …………………………3分方法二:设打包成件的帐篷有x 件,食品有y 件,则⎩⎨⎧=-=+80320y x y x …………………………2分 解得⎩⎨⎧==120200y x …………………………3分答:打包成件的帐篷和食品分别为200件和120件. …………………………3分 (注:用算术方法做也给满分.)(2)设租用甲种货车x 辆,则⎩⎨⎧≥-+≥-+120)8(2010200)8(2040x x x x …………………………4分 解得42≤≤x …………………第 17 页 共 17 页………5分∴x =2或3或4,民政局安排甲、乙两种货车时有3种方案. 设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆. …………………………6分(3)3种方案的运费分别为: ①2×4000+6×3600=29600;②3×4000+5×3600=30000; ③4×4000+4×3600=30400.…………………………8分∴方案①运费最少,最少运费是29600元. …………………………9分(注:用一次函数的性质说明方案①最少也不扣分.)22.(1)方法一:由已知得:C (0,-3),A (-1,0) …………………………1分将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a 解得:第 18 页 共 18 页⎪⎩⎪⎨⎧-=-==321c b a ………………3分 所以这个二次函数的表达式为:322--=x x y …………………………3分方法二:由已知得:C (0,-3),A (-1,0) …………………………1分 设该表达式为:)3)(1(-+=x x a y …………………………2分将C 点的坐标代入得:1=a…………………………3分 所以这个二次函数的表达式为:322--=x x y …………………………3分(注:表达式的最终结果用三种形式中的任一种都不扣分) (2)方法一:存在,F点的坐标为(2,-3) …………………………4分理由:易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E点的坐标为(-3,0) …………………………4分 由A 、C 、E 、F 四点的坐标得:AE =CF =2,AE ∥CF ∴以A 、C 、E 、F 为顶点的四边形为平行四边形 ∴存在点F,坐标为(2,-第 19 页 共 19 页3) …………………………5分 方法二:易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E点的坐标为(-3,0) …………………………4分 ∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合 ∴存在点F,坐标为(2,-3) …………………………5分 (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),代入抛物线的表达式,解得2171+=R②当直线MN 在x 则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r ∴圆的半径为2171+或2171+-. (4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .……………8分 设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .第 20 页 共 20 页3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG …………………………9分当21=x 时,△APG 的面积最大 此时P点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. …………………………10分。

梅州市中考数学试卷及答案(解析版)

梅州市中考数学试卷及答案(解析版)

广东省梅州市中考数学试卷一、选择题(共5小题,每小题3分,满分15分)1.(•梅州)=()A.﹣2B.2C.1D.﹣12.(•梅州)下列图形中是轴对称图形的是()A.B.C.D.3.(•梅州)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对4.(•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定二、填空题(共8小题,每小题3分,满分24分)6.(•梅州)使式子有意义的最小整数m是_________.7.(•梅州)若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________.8.(•梅州)梅州水资源丰富,水力资源的理论发电量为775000千瓦,这个数据用科学记数法可表示为_________千瓦.9.(•梅州)正六边形的内角和为_________度.10.(•梅州)为参加“梅州市实践毕业生升学体育考试”,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)8,8.5,8.8,8.5,9.2.这组数据的:①众数是_________;②中位数是_________;③方差是_________.11.(•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是_________(写出符合题意的两个图形即可)12.(•梅州)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=_________.13.(•梅州)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了_________cm;②当微型机器人移动了cm时,它停在_________点.三、解答题(共10小题,满分81分)14.(•梅州)计算:﹣+2sin60°+()﹣1.15.(•梅州)解不等式组:,并判断﹣1、这两个数是否为该不等式组的解.16.(•梅州)为实施校园文化公园化,提升校园文化品位,在“回赠母校一颗树”活动中,我市某中学准备在校园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图统计图:请你根据统计图提供的信息,解答以下问题:(直接填写答案)(1)该中学一共随机调查了_________人;(2)条形统计图中的m=_________,n=_________;(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树的概率是_________.17.(•梅州)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为_________;(2)点A1的坐标为_________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为_________.18.(•梅州)解方程:.19.(•梅州)如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.20.(•梅州)一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?21.(•梅州)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.22.(•梅州)(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.23.(•梅州)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是_________;②∠CAO=_________度;③当点Q与点A重合时,点P的坐标为_________;(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.广东省梅州市中考数学试卷参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.(•梅州)=()A.﹣2B.2C.1D.﹣1考点:零指数幂。

【真题汇总卷】2022年广东省梅州市中考数学真题汇总 卷(Ⅱ)(含答案详解)

【真题汇总卷】2022年广东省梅州市中考数学真题汇总 卷(Ⅱ)(含答案详解)

2022年广东省梅州市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、一把直尺与一块直角三角板按下图方式摆放,若237∠=︒,则1∠=( ) A .52°B .53°C .54°D .63° 2、如图,∠BAC 与∠CBE 的平分线相交于点P ,BE =BC ,PB 与CE 交于点H ,PG ∥AD 交BC 于点F ,交AB 于点G .有下列结论:①GA =GP ;②S △PAC :S △PAB =AC :AB ;③BP 垂直平分CE ;④FP =FC ,其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个·线○封○密○外3、如图,任意四边形ABCD 中,E ,F ,G ,H 分别是各边上的点,对于四边形E ,F ,G ,H 的形状,小聪进行了探索,下列结论错误的是( )A .E ,F ,G ,H 是各边中点.且AC =BD 时,四边形EFGH 是菱形B .E ,F ,G ,H 是各边中点.且AC ⊥BD 时,四边形EFGH 是矩形C .E ,F ,G ,H 不是各边中点.四边形EFGH 可以是平行四边形D .E ,F ,G ,H 不是各边中点.四边形EFGH 不可能是菱形4、如图所示,动点P 从第一个数0的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数1的位置,第二次跳动一个单位长度到达数2的位置,第三次跳动一个单位长度到达数3的位置,第四次跳动一个单位长度到达数4的位置,……,依此规律跳动下去,点P 从0跳动6次到达1P 的位置,点P 从0跳动21次到达2P 的位置,……,点1P 、2P 、3P ……n P 在一条直线上,则点P 从0跳动( )次可到达14P 的位置.A .887B .903C .909D .10245、对于新能源汽车企业来说,2021年是不平凡的一年,无论是特斯拉还是中国的蔚来、小鹏、理想都实现了销量的成倍增长,下图是四家车企的标志,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 6(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD 为黄金矩形,宽AD1,则长AB 为( )A .1B .﹣1C .2D .﹣2 7、根据以下程序,当输入3x =时,输出结果为( ) A .1- B .9 C .71 D .81 8、如图,有一条直的宽纸带,按图折叠,则∠α的度数等于( )A .50°B .65°C .75°D .80° 9、在下列运算中,正确的是( ) A .a 3•a 2=a 6 B .(ab 2)3=a 6b 6 C .(a 3)4=a 7 D .a 4÷a 3=a 10、已知2250x x --=的两个根为1x 、2x ,则12x x +的值为( )·线○封○密○外A.-2 B.2 C.-5 D.5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个实数的平方根为3x+3与1x-,则这个实数是________.2、已知圆弧所在圆的半径为36cm.所对的圆心角为60°,则该弧的长度为______cm.3、在平面直角坐标系中,直线l:x=x−1与x轴交于点x1,如图所示依次作正方形x1x1x1x、正方形x2x2x2x1、…、正方形x x x x x x x x−1,使得点x1、A、x3、…在直线21上,点x1、x2、3C、…在y轴正半轴上,则点x x的坐标是________.4、不等式﹣5+x≤0非负整数解是____.5、若a、b为实数,且|x−2|+(x+3)2=0,则x+x的值是____.三、解答题(5小题,每小题10分,共计50分)1、如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR⊥,QP交BD于点E.交线段OC于点P,QP BP(1)求证:APQ DBR;(2)当∠QED 等于60°时,求AQ DR 的值. 2、如图,方格纸上每个小正方形的面积为1个单位. (1)在方格纸上,请你以线段AB 为边画正方形并计算所画正方形的面积,解释你的计算方法; (2)请你在图上画出一个面积为5个单位正方形. 3、已知a +b =5,ab =﹣2.求下列代数式的值:(1)a 2+b 2;(2)2a 2﹣3ab +2b 2.4、计算:()()3211232⎛⎫⎡⎤----÷- ⎪⎣⎦⎝⎭.5、如图,数轴上A 和B . (1)点A 表示 ,点B 表示 . (2)点C 表示最小的正整数,点D 表示38的倒数,点E 表示235,在数轴上描出点C 、D 、E . (3)将该数轴上点A 、B 、C 、D 、E 表示的数用“<”连起来: . -参考答案- 一、单选题 ·线○封○密○外1、B【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴3237∠=∠,∠=∠=︒,14∴490353∠=︒-∠=︒,∠=∠=︒,∴1453故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.2、D【分析】①根据角平分线的性质和平行线的性质即可得到结论;②根据角平分线的性质和三角形的面积公式即可求出结论;③根据线段垂直平分线的性质即可得结果;④根据角平分线的性质和平行线的性质即可得到结果.【详解】解:①∵AP 平分∠BAC ,∴∠CAP =∠BAP ,∵PG ∥AD ,∴∠APG =∠CAP ,∴∠APG =∠BAP ,∴GA =GP ;②∵AP 平分∠BAC , ∴P 到AC ,AB 的距离相等, ∴S △PAC :S △PAB =AC :AB , ③∵BE =BC ,BP 平分∠CBE , ∴BP 垂直平分CE (三线合一), ④∵∠BAC 与∠CBE 的平分线相交于点P ,可得点P 也位于∠BCD 的平分线上, ∴∠DCP =∠BCP , 又∵PG ∥AD ,∴∠FPC =∠DCP ,∴∠FPC =∠BCP ,∴FP =FC ,故①②③④都正确.故选:D .【点睛】·线○封○密○外本题主要考查了角平分线的性质和定义,平行线的性质,垂直平分线的判定,等腰三角形的性质,根据角平分线的性质和平行线的性质解答是解题的关键.3、D【分析】当E F G H ,,,为各边中点,EH BD FG EF AC GH ∥∥,∥∥,11====22EH BD FG EF AC GH ,,四边形EFGH 是平行四边形;A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形,进而可判断正误;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形,进而可判断正误;E ,F ,G ,H 不是各边中点,C 中若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形,进而可判断正误;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形,进而可判断正误.【详解】解:如图,连接AC BD 、当E F G H ,,,为各边中点时,可知EH EF FG GH 、、、分别为ABD ABC BCD ACD 、、、的中位线∴11====22EH BD FG EF AC GH EH BD FG EF AC GH ∥∥,∥∥,, ∴四边形EFGH 是平行四边形A 中AC =BD ,则=EF FG ,平行四边形EFGH 为菱形;正确,不符合题意;B 中AC ⊥BD ,则EF FG ⊥,平行四边形EFGH 为矩形;正确,不符合题意;C 中E ,F ,G ,H 不是各边中点,若四点位置满足==EH FG EF GH EH FG EF GH ∥,∥,,,则可知四边形EFGH 可以是平行四边形;正确,不符合题意;D 中若四点位置满足===EH FG EF GH EH FG EF GH ∥,∥,,则可知四边形EFGH 可以是菱形;错误,符合题意;故选D .【点睛】本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定. 4、B【分析】由题意可得:跳动1236++=个单位长度到1,P 从1P 到2P 再跳动45615++=个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案. 【详解】 解:由题意可得:跳动1236++=个单位长度到1,P 从1P 到2P 再跳动45615++=个单位长度, ······ 归纳可得: 结合143=42, 所以点P 从0跳动到达14P 跳动了: 123404142 1142429032个单位长度. 故选B【点睛】 本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键. 5、C ·线○封○密○外【分析】根据轴对称图形与中心对称图形的概念结合所给图形的特点即可得出答案.【详解】解:A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、既是轴对称图形,又是中心对称图形,故正确;D、既不是轴对称图形,也不是中心对称图形,故错误.故选:C.【点睛】本题考查了中心对称图形及轴对称图形的特点,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.6、C【分析】根据黄金矩形的定义,得出宽与长的比例即可得出答案.【详解】解:,AD∴=ABAB∴==.1)2故选:C.【点睛】本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.7、C【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】解:当输入3x =时,21091011x -=-=-<代入21011091x -=-=-<代入2108110711x -=-=>,则输出71故选C【点睛】 本题考查了程序流程图与代数式求值,正确代入求值是解题的关键. 8、B 【分析】 根据题意得:BG ∥AF ,可得∠FAE =∠BED =50°,再根据折叠的性质,即可求解. 【详解】 解:如图,根据题意得:BG ∥AF , ∴∠FAE =∠BED =50°, ∵AG 为折痕, ·线○封○密○外∴()1180652FAE α=︒-∠=︒ . 故选:B【点睛】本题主要考查了图形的折叠,平行线的性质,熟练掌握两直线平行,同位角相等;图形折叠前后对应角相等是解题的关键.9、D【分析】由325a a a ⋅=;2336()ab a b =;3412()a a =,43a a a ÷=判断各选项的正误即可.【详解】解:A 中3256a a a a ⋅=≠,错误,故本选项不合题意;B 中233666)(ab a b a b ≠=,错误,故本选项不合题意;C 中31274)(a a a ≠=,错误,故本选项不合题意;D 中43a a a ÷=,正确,故本选项符合题意.故选:D .【点睛】本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.10、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】解:∵2250x x --=的两个根为1x 、2x ,∴122=()21x x -+-= 故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若1x 、2x 为一元二次方程20ax bx c ++=的两个实数根,则有12=b x x a +-,12=c x x a . 二、填空题 1、94【分析】根据平方根的性质,一个正数的平方根有两个,互为相反数,0的平方根是它本身,即可得到结果. 【详解】解:根据题意得:①这个实数为正数时:3x +3+x -1=0, ∴x =-12, ∴(x -1)2=94, ②这个实数为0时: 3x +3=x -1, ∴x =-2, ∵x -1=-3≠0, ∴这个实数不为0. ·线○封○密○外故答案为:94.【点睛】本题考查了平方根的性质,分类讨论并进行取舍是本题的关键.2、12x【分析】根据弧长公式直接计算即可.【详解】∵圆的半径为36cm.所对的圆心角为60°,∴弧的长度为:xxx180=60×x×36180=12π,故答案为:12π.【点睛】本题考查了弧长的计算,熟练掌握弧长公式及其使用条件是解题的关键.3、(2x−1,2x−1)【分析】根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“B n(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.【详解】解:当y=0时,有x-1=0,解得:x=1,∴点A1的坐标为(1,0).∵四边形A1B1C1O为正方形,∴点B 1的坐标为(1,1).同理,可得出:A 2(2,1),A 3(4,3),A 4(8,7),A 5(16,15),…,∴B 2(2,3),B 3(4,7),B 4(8,15),B 5(16,31),…,∴B n (2n -1,2n -1)(n 为正整数),故答案为:(2x −1,2x −1) 【点睛】 本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“B n (2n -1,2n -1)(n 为正整数)”是解题的关键.4、0,1,2,3,4,5【分析】 先根据不等式的基本性质求出x 的取值范围,再根据x 的取值范围求出符合条件的x 的非负整数解即可. 【详解】 解:移项得:x ≤5, 故原不等式的非负整数解为:0,1,2,3,4,5. 故答案为:0,1,2,3,4,5. 【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.5、1 【分析】 由|x −2|+(x +3)2=0,可得x −2=0且x +3=0, 再求解x ,x 的值,从而可得答案. 【详解】 ·线○封○密○外解:∵|x−2|+(x+3)2=0,∴x−2=0且x+3=0,解得:x=2,x=−3,∴x+x=2+(−3)=−1,故答案为:1-【点睛】本题考查的是实数的性质,非负数的性质,求解代数式的值,掌握“绝对值与偶次方的非负性”是解本题的关键.三、解答题1、(1)见解析(2【分析】⊥,可得(1)根据正方形的性质,可得∠CAD=∠BDC=45°,∠OBP+∠OPB=90°,再由QP BP∠OBP=∠OPE,即可求证;(2)设OE=a,根据∠QED等于60°,可得∠BEP=60°,然后利用锐角三角函数,可得BD=2OB=6a,(AP OA OP a=+=,然后根据相似三角形的对应边成比例,即可求解.3(1)证明:在正方形ABCD中,∠CAD=∠BDC=45°,BD⊥AC,∴∠BOC=90°,∴∠OBP+∠OPB=90°,⊥,∵QP BP∴∠BPQ =90°,∴∠OPE +∠OPB =90°,∴∠OBP =∠OPE ,∴APQ DBR ; (2)解:设OE =a ,在正方形ABCD 中,∠POE =90°,OA =OB =OD ,∵∠QED 等于60°,∴∠BEP =60°,在Rt OEP △ 中,2cos60OE PE a ==︒,tan 60OP OE =⋅︒=, ∵QP BP ⊥,∠BEP =60°, ∴∠PBE =30°, ∴24BE PE a ==,tan 60BP PE =⋅︒= , ∴OA =OB =BE -OE =3a , ∴BD =2OB =6a ,∴(33AP OA OP a a =+=+= , ∵APQ DBR ,∴(36a AQ AP DR BD a ===. 【点睛】·线○封○密·○外本题主要考查了相似三角形的判定和性质,解直角三角形,熟练掌握相似三角形的判定和性质定理,特殊角锐角三角函数值是解题的关键.2、(1)见解析.(2)见解析.【解析】(1)(1)利用垂直以及格点正方形即可画出图形,如下图所示:正方形的面积为40方法:设点A 下方两格处的点为C ,连接AC 、BC ,由格点正方形性质可知:2AC =,6BC =在Rt ABC ∆中,由勾股定理可知:AB ===故正方形面积为:240AB =.(2)【点睛】本题主要是考查了勾股定理在格点画图问题的应用,熟练根据格点正方形以及勾股定理,求出对应斜边长,这是解决该题的关键. 3、 (1)29; (2)64 【分析】 (1)利用已知得出(a +b )2=25,进而化简求出即可; (2)利用(1)中所求,进而求出即可. (1) 解:(1)∵a +b =5,ab =﹣2,∴(a +b )2=25, 则a 2+b 2+2×(﹣2)=25, 故a 2+b 2=29; (2) (2)2a 2﹣3ab +2b 2 =2(a 2+b 2)﹣3ab =2×29﹣3×(﹣2) =64.·线○封○密○外【点睛】本题考查了完全平方公式的应用,解题的关键是正确利用完全平方公式求出.4、15-【详解】解:原式()11292⎛⎫=---÷- ⎪⎝⎭ 1172⎛⎫ ⎪⎝=-+÷⎭- 114=-- 15=-.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.5、(1)114,112(2)见解析(3)1<114<112<223<235 【分析】(1)根据数轴直接写出A 、B 所表示的数即可;(2)根据最小的正整数是1,38的倒数是223,然后据此在数轴上找到C 、D 、E 即可; (3)将A 、B 、C 、D 、E 表示的数从小到大排列,再用 “<”连接即可.(1)解:由数轴可知A 、B 表示的数分别是:114,112. 故答案为:114,112. (2) 解:∵最小的正整数是1,38的倒数是223 ∴C 表示的数是1,D 表示的数是223, ∴如图:数轴上的点C 、D 、E 即为所求. (3)解:根据(2)的数轴可知,将点A 、B 、C 、D 、E 表示的数用“<”连接如下: 1<114<112<223<235. 【点睛】本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键. ·线○封○·密○外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年广东省梅州市中考数学试卷一、选择题(共5小题,每小题3分,满分15分)1.(2012•梅州)=()A.﹣2B.2C.1D.﹣12.(2012•梅州)下列图形中是轴对称图形的是()A.B.C.D.3.(2012•梅州)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°5.(2012•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定二、填空题(共8小题,每小题3分,满分24分)6.(2012•梅州)使式子有意义的最小整数m是_________.7.(2012•梅州)若代数式﹣4x6y与x2n y是同类项,则常数n的值为_________.8.(2012•梅州)梅州水资源丰富,水力资源的理论发电量为775000千瓦,这个数据用科学记数法可表示为_________千瓦.9.(2012•梅州)正六边形的内角和为_________度.10.(2012•梅州)为参加2012年“梅州市实践毕业生升学体育考试”,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)8,8.5,8.8,8.5,9.2.这组数据的:①众数是_________;②中位数是_________;③方差是_________.11.(2012•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是_________(写出符合题意的两个图形即可)12.(2012•梅州)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=_________.13.(2012•梅州)如图,连接在一起的两个正方形的边长都为1cm,一个微型机器人由点A开始按ABCDEFCGA…的顺序沿正方形的边循环移动.①第一次到达G点时移动了_________cm;②当微型机器人移动了2012cm时,它停在_________点.三、解答题(共10小题,满分81分)14.(2012•梅州)计算:﹣+2sin60°+()﹣1.15.(2012•梅州)解不等式组:,并判断﹣1、这两个数是否为该不等式组的解.16.(2012•梅州)为实施校园文化公园化战略,提升校园文化品位,在“回赠母校一颗树”活动中,我市某中学准备在校园内空地上种植桂花树、香樟树、柳树、木棉树,为了解学生喜爱的树种情况,随机调查了该校部分学生,并将调查结果整理后制成了如图统计图:请你根据统计图提供的信息,解答以下问题:(直接填写答案)(1)该中学一共随机调查了_________人;(2)条形统计图中的m=_________,n=_________;(3)如果在该学校随机抽查了一位学生,那么该学生喜爱的香樟树的概率是_________.17.(2012•梅州)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为_________;(2)点A1的坐标为_________;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为_________.18.(2012•梅州)解方程:.19.(2012•梅州)如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.20.(2012•梅州)一辆警车在高速公路的A处加满油,以每小时60千米的速度匀速行驶.已知警车一次加满油后,油箱内的余油量y(升)与行驶时间x(小时)的函数关系的图象如图所示的直线l上的一部分.(1)求直线l的函数关系式;(2)如果警车要回到A处,且要求警车中的余油量不能少于10升,那么警车可以行驶到离A处的最远距离是多少?21.(2012•梅州)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.22.(2012•梅州)(1)已知一元二次方程x2+px+q=0(p2﹣4q≥0)的两根为x1、x2;求证:x1+x2=﹣p,x1•x2=q.(2)已知抛物线y=x2+px+q与x轴交于A、B两点,且过点(﹣1,﹣1),设线段AB的长为d,当p为何值时,d2取得最小值,并求出最小值.23.(2012•梅州)如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D 且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是_________;②∠CAO=_________度;③当点Q与点A重合时,点P的坐标为_________;(直接写出答案)(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.2012年广东省梅州市中考数学试卷参考答案与试题解析一、选择题(共5小题,每小题3分,满分15分)1.(2012•梅州)=()A.﹣2B.2C.1D.﹣1考点:零指数幂。

专题:常规题型。

分析:根据任何非0数的0次幂等于1解答即可.解答:解:﹣(﹣)0=﹣1.故选D.点评:本题主要考查了零指数幂,熟记任何非0数的0次幂等于1是解题的关键.2.(2012•梅州)下列图形中是轴对称图形的是()A.B.C.D.考点:轴对称图形。

专题:常规题型。

分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选C.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(2012•梅州)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对考点:总体、个体、样本、样本容量。

专题:计算题。

分析:根据总体、个体、样本、样本容量的定义进行解答.解答:解:∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体.故选B.点评:本题考查了总体、个体、样本、样本容量的定义,是基础题.4.(2012•梅州)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC 上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=()A.150°B.210°C.105°D.75°考点:三角形内角和定理;翻折变换(折叠问题)。

分析:先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.解答:解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故选A.点评:本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.(2012•梅州)在同一直角坐标系下,直线y=x+1与双曲线的交点的个数为()A.0个B.1个C.2个D.不能确定考点:反比例函数与一次函数的交点问题。

分析:根据一次函数与反比例函数图象的性质作答.解答:解:y=x+1的图象过一、二、三象限;函数的中,k>0时,过一、三象限.故有两个交点.故选C.点评:本题考查了反比例函数与一次函数的交点问题,只有正确理解性质才能灵活解题.二、填空题(共8小题,每小题3分,满分24分)6.(2012•梅州)使式子有意义的最小整数m是2.考点:二次根式有意义的条件。

专题:常规题型。

分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,m﹣2≥0,解得m≥2,所以最小整数m是2.故答案为:2.点评:本题考查二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.7.(2012•梅州)若代数式﹣4x6y与x2n y是同类项,则常数n的值为3.考点:同类项。

分析:根据同类项的定义得到2n=6解得n值即可.解答:解:∵代数式﹣4x6y与x2n y是同类项,∴2n=6解得:n=3故答案为3.点评:本题考查了同类项的定义:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项.8.(2012•梅州)梅州水资源丰富,水力资源的理论发电量为775000千瓦,这个数据用科学记数法可表示为7.75×105千瓦.考点:科学记数法—表示较大的数。

专题:常规题型。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于775000有6位,所以可以确定n=6﹣1=5.解答:解:775 000=7.75×105.故答案为:7.75×105.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.9.(2012•梅州)正六边形的内角和为720度.考点:多边形内角与外角。

分析:由多边形的内角和公式:180°(n﹣2),即可求得正六边形的内角和.解答:解:正六边形的内角和为:180°×(6﹣2)=180°×4=720°.故答案为:720.点评:此题考查了多边形的内角和公式.此题比较简单,解题的关键是熟记公式.10.(2012•梅州)为参加2012年“梅州市实践毕业生升学体育考试”,小峰同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:m)8,8.5,8.8,8.5,9.2.这组数据的:①众数是8.5;②中位数是8;③方差是0.196.考点:方差;中位数;众数。

相关文档
最新文档