小学奥数知识名师点拨 例题精讲 解题思路 三角形等高模型与鸟头模型(一).教师版
小学奥数-几何五大模型(等高模型)

小学奥数-几何五大模型(等高模型)三角形等高模型与鸟头模型模型一三角形等高模型已经知道三角形面积的计算公式:三角形面积底高2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时1发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的,则三角形面积与原来3的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如图S1:S2a:bABS1aS2bCD③夹在一组平行线之间的等积变形,如右上图S△ACDS△BCD;反之,如果S△ACDS△BCD,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例1】你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形;⑵4个面积相等的三角形;⑶6个面积相等的三角形。
【解析】⑴如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:B【例2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上。
⑴求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?ABDC【解析】因为三角形ABD、三角形ABC和三角形ADC在分别以BD、BC 和DC为底时,它们的高都是从A点向BC边上所作的垂线,也就是说三个三角形的高相等。
角形等高模型与鸟头模型:知识例题精讲

板块一 三角形等高模型我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =baS 2S 1 DC BA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上.⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍?⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍?【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,例题精讲三角形等高模型与鸟头模型CD B A那么图中阴影部分的面积是平方厘米.【例 4】如图,长方形ABCD的面积是56平方厘米,点E、F、G分别是长方形ABCD边上的中点,H为AD 边上的任意一点,求阴影部分的面积.EBA【例 5】长方形ABCD的面积为362cm,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是多少?E【例 6】长方形ABCD的面积为36,E、F、G为各边中点,H为AD边上任意一点,问阴影部分面积是多少?EE【例 7】如右图,E在AD上,AD垂直BC,12AD=厘米,3DE=厘米.求三角形ABC的面积是三角形EBC 面积的几倍?ED CBA【例 8】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与V BEC 等积的三角形一共有哪几个三角形?F DECBA【例 9】 (第四届”迎春杯”试题)如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE的面积是多少?A B E C DC E B A【例 10】 (2008年四中考题)如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC∆的面积是 平方厘米.A【例 11】 如图ABCD 是一个长方形,点E 、F 和G 分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG 的面积是多少个平方单位.FE GDC B A【例 12】 如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成.求阴影部分的面积.【例 13】 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?EDCBA【例 14】 (2009年第七届”希望杯”二试六年级)如图,在三角形ABC 中,已知三角形ADE 、三角形DCE 、三角形BCD 的面积分别是89,28,26.那么三角形DBE 的面积是 .【例 15】 (第四届《小数报》数学竞赛)如图,梯形ABCD 被它的一条对角线BD 分成了两部分.三角形BDC 的面积比三角形ABD 的面积大10平方分米.已知梯形的上底与下底的长度之和是15分米,它们的差是5分米.求梯形ABCD 的面积.DCBA【例 16】图中V AOB 的面积为215cm ,线段OB 的长度为OD 的3倍,求梯形ABCD 的面积. O CB DA【解析】 在ABD V 中,因为215cm AOB S =V ,且3OB OD =,所以有235cm AOD AOB S S =÷=V V .因为ABD V 和ACD V 等底等高,所以有ABD ACD S S =V V .从而215cm OCD S =V ,在BCD V 中,2345cm BOC OCD S S ==V V ,所以梯形面积:2155154580cm +++=().【例 17】如图,把四边形ABCD 改成一个等积的三角形.D BA【例 18】(第三届“华杯赛”初赛试题)一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的15%,黄色三角形面积是221cm .问:长方形的面积是多少平方厘米?红绿黄红【例 19】 O 是长方形ABCD 内一点,已知OBC ∆的面积是25cm ,OAB ∆的面积是22cm ,求OBD ∆的面积是多少?【例 20】 如右图,过平行四边形ABCD 内的一点P 作边的平行线EF 、GH ,若PBD ∆的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米?CH【例 21】如右图,正方形ABCD 的面积是20,正三角形BPC ∆的面积是15,求阴影BPD ∆的面积.BA【例 22】 在长方形ABCD 内部有一点O ,形成等腰AOB ∆的面积为16,等腰DOC ∆的面积占长方形面积的18%,那么阴影AOC ∆的面积是多少?DC【例 23】 (2008年“陈省身杯”国际青少年数学邀请赛六年级)如右图所示,在梯形ABCD 中,E 、F分别是其两腰AB 、CD 的中点,G 是EF 上的任意一点,已知ADG ∆ 的面积为215cm ,而BCG ∆的面积恰好是梯形ABCD 面积的720,则梯形ABCD 的面积是 2cm .A BCDEFG【例 24】如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.GFEB A【例 25】如图,正方形ABCD 的边长为6,AE =,CF =2.长方形EFGH 的面积为 .HGF EDCBA【例 26】 如图,ABCD 为平行四边形,EF 平行AC ,如果V ADE 的面积为4平方厘米.求三角形CDF 的面积.AEBFCD【例 27】图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【例 28】 如图,有三个正方形的顶点D 、G 、K 恰好在同一条直线上,其中正方形GFEB 的边长为10厘米,求阴影部分的面积.K EC BA【例 29】 (2008年”华杯赛”决赛)右图中,ABCD 和CGEF 是两个正方形,AG 和CF 相交于H ,已知CH等于CF 的三分之一,三角形CHG 的面积等于6平方厘米,求五边形ABGEF 的面积.HG F ED CB A【例 30】 (第八届小数报数学竞赛决赛试题)如下图,E 、F 分别是梯形ABCD 的下底BC 和腰CD 上的点,DF FC =,并且甲、乙、丙3个三角形面积相等.已知梯形ABCD 的面积是32平方厘米.求图中阴影部分的面积.BC【例 31】 如图,已知长方形ADEF 的面积16,三角形ADB 的面积是3,三角形ACF 的面积是4,那么三角形ABC 的面积是多少?F EDCA【例 32】如图,在平行四边形ABCD 中,BE EC =,2CF FD =.求阴影面积与空白面积的比.B【例 33】 (第七届”小机灵杯”数学竞赛五年级复赛)如图所示,三角形ABC 中,D 是AB 边的中点,E是AC 边上的一点,且3AE EC =,O 为DC 与BE 的交点.若CEO ∆的面积为a 平方厘米,BDO ∆的面积为b 平方厘米.且b a -是2.5平方厘米,那么三角形ABC 的面积是 平方厘米.E baOD CBA【例 34】 如图,在梯形ABCD 中,:4:3AD BE =,:2:3BE EC =,且BOE ∆的面积比AOD ∆的面积小10平方厘米.梯形ABCD 的面积是 平方厘米.OA B CDE【例 35】 如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?【例 36】 图中是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.将它的短直角边对折到斜边上去与斜边相重合,那么图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?【例 37】 如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?D C【例 38】 (2007年六年级希望杯二试试题)如图,三角形田地中有两条小路AE 和CF ,交叉处为D ,张大伯常走这两条小路,他知道DF DC =,且2AD DE =.则两块地ACF 和CFB 的面积比是_________.FE DCBA【例 39】 (2008年第一届”学而思杯”综合素质测评六年级2试)如图,45BC =,21AC =,ABC ∆被分成9个面积相等的小三角形,那么DI FK += .KJIH GFE DC B A【例 40】 (2007年人大附中分班考试题)已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC)B【例 41】 (2009年四中入学测试题)如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .GFE DC BA【例 42】 (2008年仁华考题)如图,正方形的边长为10,四边形EFGH 的面积为5,那么阴影部分的面积是 .AB【例 43】 (2008年走美六年级初赛)如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .BA【例 44】 (清华附中分班考试题)如图,如果长方形ABCD 的面积是56平方厘米,那么四边形MNPQ 的面积是多少平方厘米?【例 45】 (2008年日本第12届小学算术奥林匹克大赛初赛)如图,阴影部分四边形的外接图形是边长为10cm 的正方形,则阴影部分四边形的面积是 2cm .【例 46】如图,三角形AEF 的面积是17,DE 、BF 的长度分别为11、3.求长方形ABCD 的面积.A B CDEF【例 47】 (2008年第二届两岸四地华罗庚金杯数学精英邀请赛)如图,长方形ABCD 中,67AB =,30BC =.E 、F 分别是AB BC 、边上的两点,49BE BF +=.那么,三角形DEF 面积的最小值是 .ABC D E F【例 48】 (2007首届全国资优生思维能力测试)ABCD 是边长为12的正方形,如图所示,P 是内部任意一点,4BL DM ==、5BK DN ==,那么阴影部分的面积是 .【例 49】 如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是ABCD 各边的中点,求阴影部分与四边形PQRS 的面积之比.【例 50】 如图,四边形ABCD 中,::3:2:1DE EF FC =,::3:2:1BG GH AH =,:1:2AD BC =,已知四边形ABCD 的面积等于4,则四边形EFHG 的面积= .H G F ED C BA【例 51】 (2008年日本小学算数奥林匹克大赛决赛)有正三角形ABC ,在边AB 、BC 、CA 的正中间分别取点L 、M 、N ,在边AL 、BM 、CN 上分别取点P 、Q 、R ,使LP MQ NR ==,当PM 和RL 、PM 和QN 、QN 和RL 的相交点分别是X 、Y 、Z 时,使XY XL =. 这时,三角形XYZ 的面积是三角形ABC 的面积的几分之几?请写出思考过程.AB C N M Q R PLXY Z【例 52】 如图:已知在梯形ABCD 中,上底是下底的23,其中F 是BC 边上任意一点,三角形AME 、三角形BMF 、三角形NFC 的面积分别为14、20、12.求三角形NDE 的面积. CD NFEMBA【例 53】 如图,已知ABCD 是梯形,AD ∥BC ,:1:2AD BC =,:1:3AOF DOE S S ∆∆=,224cm BEF S ∆=,求AOF ∆的面积.OF D EC B A【例 54】 (2009年迎春杯决赛高年级组)如图,ABCD 是一个四边形,M 、N 分别是AB 、CD 的中点.如果ASM ∆、MTB ∆与DSN ∆的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形ABCD 的面积为 .MN TSDC BA板块二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDC BAEDC B A图⑴ 图⑵【例 55】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.EDCB A【例 56】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.EDCB A【例 57】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【例 58】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FE DCBA【例 59】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?A B E C DD CE BA【例 60】 (2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.A【例 61】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.FED C BA【例 62】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.H G AB C DEF【例 63】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积. HG FE DC B A【例 64】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .A BC DE FG H【例 65】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?ABC DE F【例 66】 如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGS S V .S GFE D CB A【例 67】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?A BC DEFG【例 68】 四个面积为1的正六边形如图摆放,求阴影三角形的面积.。
三角形等高模型与鸟头模型(一)

【考点】三角形的等高模型 【难度】2 星 【题型】解答 【解析】根据面积比例模型,可知图中空白三角形面积等于平行四边形面积的一半,所以阴影部分的面积也
等于平行四边形面积的一半,为 50 2 25 平方厘米. 【答案】25
1 (1 22
AB )
(1 BC ) 2
1 36 8
4.5
.
所以阴影部分的面积是: S阴影 18 SEBF 18 4.5 13.5 . 【答案】13.5
【巩固】在边长为 6 厘米的正方形 ABCD 内任取一点 P ,将正方形的一组对边二等分,另一组对边三等分, 分别与 P 点连接,求阴影部分面积.
【解析】 △ABD 与△ ACD,△ABC 与△ DBC,△ ABO 与△ DCO.
【答案】△ ABD 与△ ACD,△ABC 与△DBC,△ABO 与△DCO
【例 8】 如图,三角形 ABC 的面积为 1,其中 AE 3AB , BD 2BC ,三角形 BDE 的面积是多少?
A
B
E
A
B
E
C
C
D
那么阴影部分的面积就是 AEF 与 ADG 的面积之和,而这两个三角形的面积分别为长方形 ABCD
面积的 1 和 1 ,所以阴影部分面积为长方形 ABCD 面积的 1 1 3 ,为 36 3 13.5 .
84
848
8
(法 2)寻找可利用的条件,连接 BH 、 HC ,如右上图.
可得: SEHB
A
E
BDC来自【考点】三角形的等高模型 【难度】2 星 【题型】解答
【解析】3 个,△AEC、△ BED、△ DEC.
小学奥数--几何--五大模型--鸟头模型(共角定理)

例:1 已知三角形 ADE 的面积是 1,AD:AB=2:3,AE:AC=1:4,求三角形 AED 的面积 2 已知三角形 ABC 的面积是 9,AD:AB=1:2,AE:EC=1:1,求三角形 AED 的面积
分析:(1)由鸟头定理: S△ADE
=
AD ×
AE
=
211
× =,
∴ S△ ABCD =
2S △ ABC
= 1:18
S△EFGH (8 + 3 + 8 + 15 + 2)S△ABC
∴ S△HAE = 8S△ ABD ∴ S△FAD = 3S△ ABC ∴ S△HAE = 8S△BCD
∴ S△HAE = 8S△ ADC
超常挑战
分析:图中每相邻两个正方形和其间夹着的两个三角形都是“X 型”鸟头。
方厘米,求 △ABC 的面积.
2 (2005 年第 11 届迎春杯试题)三角形 ABC 被线段 DE 分成三角形 BDE 和四边形 ACDE 两部分,问:
三角形 BDE 的面积是四边形 ACDE 面积的几分之几?
第5页共8页
2011 年 秋季 五年级
第三讲 三角形中的模型(一)
周艳丽
3 图中三角形 ABC 的面积是 180 平方厘米, D 是 BC 的中点, AD 的长是 AE 长的 3 倍, EF 的长是 BF 长
的 3 倍.那么三角形 AEF 的面积是多少平方厘米?
4 如图,将四边形 ABCD 的四条边 AB 、 CB 、 CD 、 AD 分别延长两倍至点 E 、 F 、 G 、 H ,若四边形 ABCD
的面积为 5,则四边形 EFGH 的面积是
.
学案—尖子班 1 已知四边形 ABCD 中,CD=3DF,AE=3ED,三角形 BFC 的面积是 6,四边形 BEDF 的面积为 7,求大四
小学奥数:三角形等高模型与鸟头模型(一).专项练习及答案解析

板块一 三角形等高模型我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =baS 2S 1DCBA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【考点】三角形的等高模型 【难度】1星 【题型】解答 【解析】 ⑴ 如下图,D 、E 是BC 的三等分点,F 、G 分别是对应线段的中点,答案不唯一:例题精讲4-3-1.三角形等高模型与鸟头模型CD BAABFCABDGC⑵ 如下图,答案不唯一,以下仅供参考:(1)(2)(3)(4)(5)⑶如下图,答案不唯一,以下仅供参考:【答案】⑴答案不唯一:CD BAABF CABDGC⑵ 答案不唯一:(1)(2)(3)(4)(5)⑶答案不唯一:【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上. ⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍?DCBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 因为三角形ABD 、三角形ABC 和三角形ADC 在分别以BD 、BC 和DC 为底时,它们的高都是从A 点向BC 边上所作的垂线,也就是说三个三角形的高相等.于是:三角形ABD 的面积12=⨯高26÷=⨯高 三角形ABC 的面积124=+⨯()高28÷=⨯高 三角形ADC 的面积4=⨯高22÷=⨯高所以,三角形ABC 的面积是三角形ABD 面积的43倍;三角形ABD 的面积是三角形ADC 面积的3倍.【答案】43、3【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米.ED CA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 图中阴影部分的面积等于长方形ABCD 面积的一半,即4326⨯÷=(平方厘米). 【答案】6【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是 平方厘米.【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 根据面积比例模型,可知图中空白三角形面积等于平行四边形面积的一半,所以阴影部分的面积也等于平行四边形面积的一半,为50225÷=平方厘米.【答案】25【巩固】如下图,长方形AFEB 和长方形FDCE 拼成了长方形ABCD ,长方形ABCD 的长是20,宽是12,则它内部阴影部分的面积是 .ACDE F【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 根据面积比例模型可知阴影部分面积等于长方形面积的一半,为120121202⨯⨯=.【答案】120【例 4】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.E BAE BA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 本题是等底等高的两个三角形面积相等的应用.连接BH 、CH . ∵AE EB =,∴AEH BEH S S =△△.同理,BFH CFH S S =△△,S =S CGH DGH V V ,∴11562822ABCD S S ==⨯=阴影长方形(平方厘米).【答案】28【巩固】图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是 .E GCBBCG E【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 把另外三个三等分点标出之后,正方形的3个边就都被分成了相等的三段.把H 和这些分点以及正方形的顶点相连,把整个正方形分割成了9个形状各不相同的三角形.这9个三角形的底边分别是在正方形的3个边上,它们的长度都是正方形边长的三分之一.阴影部分被分割成了3个三角形,右边三角形的面积和第1第2个三角形相等:中间三角形的面积和第3第4个三角形相等;左边三角形的面积和第5个第6个三角形相等.因此这3个阴影三角形的面积分别是ABH 、BCH 和CDH 的三分之一,因此全部阴影的总面积就等于正方形面积的三分之一.正方形的面积是144,阴影部分的面积就是48. 【答案】48【例 5】 长方形ABCD 的面积为36,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?EEE【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 (法1)特殊点法.由于H 为AD 边上任意一点,找H 的特殊点,把H 点与A 点重合(如左上图),那么阴影部分的面积就是AEF ∆与ADG ∆的面积之和,而这两个三角形的面积分别为长方形ABCD 面积的18和14,所以阴影部分面积为长方形ABCD 面积的113848+=,为33613.58⨯=.(法2)寻找可利用的条件,连接BH 、HC ,如右上图.可得:12EHB AHB S S ∆∆=、12FHB CHB S S ∆∆=、12DHG DHC S S ∆∆=,而36ABCD AHB CHB CHD S S S S ∆∆∆=++=,即11()361822EHB BHF DHG AHB CHB CHD S S S S S S ∆∆∆∆∆∆++=++=⨯=;而EHB BHF DHG EBF S S S S S ∆∆∆∆++=+阴影,11111()()36 4.522228EBF S BE BF AB BC ∆=⨯⨯=⨯⨯⨯⨯=⨯=.所以阴影部分的面积是:1818 4.513.5EBF S S ∆=-=-=阴影.【答案】13.5【巩固】在边长为6厘米的正方形ABCD 内任取一点P ,将正方形的一组对边二等分,另一组对边三等分,分别与P 点连接,求阴影部分面积.【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 (法1)特殊点法.由于P 是正方形内部任意一点,可采用特殊点法,假设P 点与A 点重合,则阴影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的14和16,所以阴影部分的面积为2116()1546⨯+=平方厘米. (法2)连接PA 、PC .由于PAD ∆与PBC ∆的面积之和等于正方形ABCD 面积的一半,所以上、下两个阴影三角形的面积之和等于正方形ABCD 面积的14,同理可知左、右两个阴影三角形的面积之和等于正方形ABCD 面积的16,所以阴影部分的面积为2116()1546⨯+=平方厘米.【答案】15【例 6】 如右图,E 在AD 上,AD 垂直BC ,12AD =厘米,3DE =厘米.求三角形ABC 的面积是三角形EBC 面积的几倍?ED CBA【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 因为AD 垂直于BC ,所以当BC 为三角形ABC 和三角形EBC 的底时,AD 是三角形ABC的高,ED 是三角形EBC 的高,于是:三角形ABC 的面积1226BC BC =⨯÷=⨯三角形EBC 的面积32 1.5BC BC =⨯÷=⨯所以三角形ABC 的面积是三角形EBC 的面积的4倍.【答案】4【例 7】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与△BEC等积的三角形一共有哪几个三角形?F DECBA【考点】三角形的等高模型 【难度】3星 【题型】解答 【解析】 △AEC 、△AFC 、△ABF . 【答案】△AEC 、△AFC 、△ABF .【巩固】如图,在△ABC 中,D 是BC 中点,E 是AD 中点,连结BE 、CE ,那么与△ABE 等积的三角形一共有哪几个三角形?ED C BA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 3个,△AEC 、△BED 、△DEC . 【解析】 【答案】3个,△AEC 、△BED 、△DEC .【巩固】如图,在梯形ABCD 中,共有八个三角形,其中面积相等的三角形共有哪几对?ODC B A【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 △ABD 与△ACD ,△ABC 与△DBC ,△ABO 与△DCO . 【答案】△ABD 与△ACD ,△ABC 与△DBC ,△ABO 与△DCO【例 8】 如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE 的面积是多少?AB ECD DCEB A【考点】三角形的等高模型 【难度】2星 【题型】解答 【关键词】迎春杯 【解析】 连接CE ,∵3AE AB =,∴2BE AB =,2BCE ACB S S =V V又∵2BD BC =,∴244BDE BCE ABC S S S ===V V V .【答案】4【例 9】 如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC ∆的面积是 平方厘米.AA【考点】三角形的等高模型 【难度】2星 【题型】解答 【关键词】2008年,四中考题【解析】 连接CD .根据题意可知,DEF ∆的面积为DAC ∆面积的13,DAC ∆的面积为ABC ∆面积的12,所以DEF ∆的面积为ABC ∆面积的111236⨯=.而DEF ∆的面积为5平方厘米,所以ABC ∆的面积为15306÷=(平方厘米).【答案】30【巩固】图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?CB【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 ABD V ,ABC V 等高,所以面积的比为底的比,有12ABD ABC S BD S BC ==V V , 所以ABDS V =111809022ABC S ⨯=⨯=V (平方厘米).同理有190303ABE ABD AE S S AD =⨯=⨯=V V (平方厘米),34AFE ABE FE S S BE =⨯=V V 3022.5⨯= (平方厘米).即三角形AEF 的面积是22.5平方厘米. 【答案】22.5【巩固】如图,在长方形ABCD 中,Y 是BD 的中点,Z 是DY 的中点,如果24AB =厘米,8BC =厘米,求三角形ZCY 的面积. ABC DZ Y【考点】三角形的等高模型 【难度】2星 【题型】解答【解析】 ∵Y 是BD 的中点,Z 是DY 的中点,∴1122ZY DB =⨯⨯,14ZCY DCB S S =V V ,又∵ABCD 是长方形,∴11124442ZCY DCB ABCD S S S ==⨯=V V Y (平方厘米).【答案】24【巩固】如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FED CBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 三角形ADC 的面积是三角形ABC 面积的一半24212÷=, 三角形ADE 又是三角形ADC 面积的一半1226÷=.三角形FED 的面积是三角形ADE 面积的一半,所以三角形FED 的面积623=÷=. 【答案】3【巩固】如图,在三角形ABC 中,8BC =厘米,高是6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF 的面积是多少平方厘米?FE CBA【考点】三角形的等高模型 【难度】2星 【题型】解答 【解析】 ∵F 是AC 的中点 ∴2ABC ABF S S =V V 同理2ABF BEF S S =V V∴486246BEF ABC S S =÷=⨯÷÷=V V (平方厘米).【答案】6【例 10】 如图所示,A 、B 、C 都是正方形边的中点,△COD 比△AOB 大15平方厘米。
小学奥数知识点拨 精讲试题 题库 三角形等高模型与鸟头模型(一).学生版

4-3-1.三角形等高模型与鸟头模型例题精讲板块一三角形等高模型我们已经知道三角形面积的计算公式:三角形面积底高=⨯2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的,则三角形面积与原来的一13样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论:①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如左图12::S S a b=baS2S1DCBA③夹在一组平行线之间的等积变形,如右上图;ACD BCDS S=△△反之,如果,则可知直线平行于.ACD BCDS S=△△AB CD④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例 1】你有多少种方法将任意一个三角形分成:⑴3个面积相等的三角形;⑵4个面积相等的三角形;⑶6个面积相等的三角形.【例 2】如图,BD长12厘米,DC长4厘米,B、C和D在同一条直线上.⑴求三角形ABC的面积是三角形ABD面积的多少倍?⑵求三角形ABD的面积是三角形ADC面积的多少倍?DCBA【例 3】如右图,和都是矩形,的长是厘米,的长是厘米,那么图中阴影部分的ABFE CDEF AB 4BC 3面积是平方厘米.【巩固】(2009年四中小升初入学测试题)如图所示,平行四边形的面积是50平方厘米,则阴影部分的面积是 平方厘米.【巩固】如下图,长方形和长方形拼成了长方形,长方形的长是20,宽是12,则AFEB FDCE ABCD ABCD 它内部阴影部分的面积是.【例 4】如图,长方形的面积是平方厘米,点、、分别是长方形边上的中点,为ABCD 56E F G ABCD H 边上的任意一点,求阴影部分的面积.ADE F G ABCD12【巩固】图中的、、分别是正方形三条边的三等分点,如果正方形的边长是,那么阴影部分的面积是.ABCD E F G H AD【例 5】长方形的面积为36,、、为各边中点,为边上任意一点,问阴影部分面积是多少?【巩固】在边长为6厘米的正方形内任取一点,将正方形的一组对边二等分,另一组对边三等分,ABCD PP分别与点连接,求阴影部分面积.【例 6】如右图,E在AD上,AD垂直BC,厘米,厘米.求三角形ABC的面积是三角形EBC12AD=3DE=面积的几倍?EDCBA【例 7】如图,在平行四边形ABCD中,EF平行AC,连结BE、AE、CF、BF那么与BEC等积的三角形△一共有哪几个三角形?F DECBA【巩固】如图,在ABC中,D是BC中点,E是AD中点,连结BE、CE,那么与ABE等积的三角形一△△共有哪几个三角形?ED CBA【巩固】如图,在梯形ABCD中,共有八个三角形,其中面积相等的三角形共有哪几对?ODBA【例 8】如图,三角形的面积为1,其中,,三角形 的面积是多少?ABC 3AE AB =2BD BC =BDE A B E C DDC E B A【例 9】如右图,,,已知阴影部分面积为5平方厘米,的面积是AD DB =AE EF FC ==ABC ∆平方厘米.【巩固】图中三角形的面积是180平方厘米,是的中点,的长是长的3倍,的长是ABCD BC AD AE EF 长的3倍.那么三角形的面积是多少平方厘米?BF AEF 【巩固】如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求ABCD Y BD Z DY 24AB =8BC =三角形的面积.ZCY ABC DZ Y【巩固】如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FE DCBA【巩固】如图,在三角形ABC 中,厘米,高是6厘米,E 、F 分别为AB 和AC 的中点,那么三角形EBF8BC 的面积是多少平方厘米?FE CBA 【例 10】如图所示,、、都是正方形边的中点,△比△大平方厘米。
4-2-2_三角形等高模型与鸟头模型:知识例题精讲

板块一 三角形等高模型我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【例 2】 如图,BD 长12厘米,DC 长4厘米,B 、C 和D 在同一条直线上.⑴ 求三角形ABC 的面积是三角形ABD 面积的多少倍? ⑵ 求三角形ABD 的面积是三角形ADC 面积的多少倍?DC BA 例题精讲三角形等高模型与鸟头模型【例 3】 如右图,ABFE 和CDEF 都是矩形,AB 的长是4厘米,BC 的长是3厘米,那么图中阴影部分的面积是 平方厘米.【例 4】 如图,长方形ABCD 的面积是56平方厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD边上的任意一点,求阴影部分的面积.【例 5】 长方形ABCD 的面积为362cm ,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?【例 6】 长方形ABCD 的面积为36,E 、F 、G 为各边中点,H 为AD 边上任意一点,问阴影部分面积是多少?EEECDBA【例 7】 如右图,E 在AD 上,AD 垂直BC ,12AD =厘米,3DE =厘米.求三角形ABC 的面积是三角形EBC面积的几倍?【例 8】 如图,在平行四边形ABCD 中,EF 平行AC ,连结BE 、AE 、CF 、BF 那么与V BEC 等积的三角形一共有哪几个三角形?【例 9】 (第四届”迎春杯”试题)如图,三角形ABC 的面积为1,其中3AE AB =,2BD BC =,三角形BDE的面积是多少?【例 10】 (2008年四中考题)如右图,AD DB =,AE EF FC ==,已知阴影部分面积为5平方厘米,ABC∆的面积是 平方厘米.【例 11】 如图ABCD 是一个长方形,点E 、F 和G 分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG 的面积是多少个平方单位.E EDCBAF DECBA AB EC DC E BAAF E GDC BA【例 12】 如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成.求阴影部分的面积.【例 13】 如图,三角形ABC 中,2DC BD =,3CE AE =,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?【例 14】 (2009年第七届”希望杯”二试六年级)如图,在三角形ABC 中,已知三角形ADE 、三角形DCE 、三角形BCD 的面积分别是89,28,26.那么三角形DBE 的面积是 .【例 15】 (第四届《小数报》数学竞赛)如图,梯形ABCD 被它的一条对角线BD 分成了两部分.三角形BDC 的面积比三角形ABD 的面积大10平方分米.已知梯形的上底与下底的长度之和是15分米,它们的差是5分米.求梯形ABCD 的面积.【例 16】图中V AOB 的面积为215cm ,线段OB 的长度为OD 的3倍,求梯形ABCD 的面积.【解析】 在ABD V 中,因为215cm AOB S =V ,且3OB OD =,所以有235cm AOD AOB S S =÷=V V .因为ABD V 和ACD V 等底等高,所以有ABD ACD S S =V V .EDCBADCBA O CB DA从而215cm OCD S =V ,在BCD V 中,2345cm BOC OCD S S ==V V ,所以梯形面积:2155154580cm +++=().【例 17】如图,把四边形ABCD 改成一个等积的三角形.【例 18】(第三届“华杯赛”初赛试题)一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的15%,黄色三角形面积是221cm .问:长方形的面积是多少平方厘米?【例 19】 O 是长方形ABCD 内一点,已知OBC ∆的面积是25cm ,OAB ∆的面积是22cm ,求OBD ∆的面积是多少?【例 20】 如右图,过平行四边形ABCD 内的一点P 作边的平行线EF 、GH ,若PBD ∆的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米?【例 21】如右图,正方形ABCD 的面积是20,正三角形BPC ∆的面积是15,求阴影BPD ∆的面积.【例 22】 在长方形ABCD 内部有一点O ,形成等腰AOB ∆的面积为16,等腰DOC ∆的面积占长方形面积的18%,那么阴影AOC ∆的面积是多少?D BA红绿黄红CHBA【例 23】 (2008年“陈省身杯”国际青少年数学邀请赛六年级)如右图所示,在梯形ABCD 中,E 、F分别是其两腰AB 、CD 的中点,G 是EF 上的任意一点,已知ADG ∆ 的面积为215cm ,而BCG ∆的面积恰好是梯形ABCD 面积的720,则梯形ABCD 的面积是 2cm .【例 24】如图所示,四边形ABCD 与AEGF 都是平行四边形,请你证明它们的面积相等.【例 25】如图,正方形ABCD 的边长为6,AE =1.5,CF =2.长方形EFGH 的面积为 .【例 26】 如图,ABCD 为平行四边形,EF 平行AC ,如果V ADE 的面积为4平方厘米.求三角形CDF 的面积.DA BCDEFGGFEDB AHGF EDCBA AEBFCD【例 27】 图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【例 28】 如图,有三个正方形的顶点D 、G 、K 恰好在同一条直线上,其中正方形GFEB 的边长为10厘米,求阴影部分的面积.【例 29】 (2008年”华杯赛”决赛)右图中,ABCD 和CGEF 是两个正方形,AG 和CF 相交于H ,已知CH等于CF 的三分之一,三角形CHG 的面积等于6平方厘米,求五边形ABGEF 的面积.【例 30】 (第八届小数报数学竞赛决赛试题)如下图,E 、F 分别是梯形ABCD 的下底BC 和腰CD 上的点,DF FC ,并且甲、乙、丙3个三角形面积相等.已知梯形ABCD 的面积是32平方厘米.求图中阴影部分的面积.【例 31】 如图,已知长方形ADEF 的面积16,三角形ADB 的面积是3,三角形ACF 的面积是4,那么三角形ABC 的面积是多少?K EBA HG F ED CBABC【例 32】如图,在平行四边形ABCD 中,BE EC =,2CF FD =.求阴影面积与空白面积的比.【例 33】 (第七届”小机灵杯”数学竞赛五年级复赛)如图所示,三角形ABC 中,D 是AB 边的中点,E是AC 边上的一点,且3AE EC =,O 为DC 与BE 的交点.若CEO ∆的面积为a 平方厘米,BDO ∆的面积为b 平方厘米.且b a -是2.5平方厘米,那么三角形ABC 的面积是 平方厘米.【例 34】 如图,在梯形ABCD 中,:4:3AD BE =,:2:3BE EC =,且BOE ∆的面积比AOD ∆的面积小10平方厘米.梯形ABCD 的面积是 平方厘米.【例 35】 如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是13,35,49.那么图中阴影部分的面积是多少?【例 36】 图中是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.将它的短直角边对折到斜边上去与斜边相重合,那么图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?F EDCA BE baOD CBAOAB CDE【例 37】 如图,长方形ABCD 的面积是2平方厘米,2EC DE =,F 是DG 的中点.阴影部分的面积是多少平方厘米?【例 38】 (2007年六年级希望杯二试试题)如图,三角形田地中有两条小路AE 和CF ,交叉处为D ,张大伯常走这两条小路,他知道DF DC =,且2AD DE =.则两块地ACF 和CFB 的面积比是_________.【例 39】 (2008年第一届”学而思杯”综合素质测评六年级2试)如图,45BC =,21AC =,ABC ∆被分成9个面积相等的小三角形,那么DI FK += .【例 40】 (2007年人大附中分班考试题)已知ABC 为等边三角形,面积为400,D 、E 、F 分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形HBC )【例 41】 (2009年四中入学测试题)如图,已知5CD =,7DE =,15EF =,6FG =,线段AB 将图形分成两部分,左边部分面积是38,右边部分面积是65,那么三角形ADG 的面积是 .D CFE DCBAKJIH GFE DC BAB【例 42】 (2008年仁华考题)如图,正方形的边长为10,四边形EFGH 的面积为5,那么阴影部分的面积是 .【例 43】 (2008年走美六年级初赛)如图所示,长方形ABCD 内的阴影部分的面积之和为70,8AB =,15AD =,四边形EFGO 的面积为 .【例 44】 (清华附中分班考试题)如图,如果长方形ABCD 的面积是56平方厘米,那么四边形MNPQ 的面积是多少平方厘米?【例 45】 (2008年日本第12届小学算术奥林匹克大赛初赛)如图,阴影部分四边形的外接图形是边长为10cm 的正方形,则阴影部分四边形的面积是 2cm .GFE DC BAABBA【例 46】如图,三角形AEF 的面积是17,DE 、BF 的长度分别为11、3.求长方形ABCD 的面积.【例 47】 (2008年第二届两岸四地华罗庚金杯数学精英邀请赛)如图,长方形ABCD 中,67AB =,30BC =.E 、F 分别是AB BC 、边上的两点,49BE BF +=.那么,三角形DEF 面积的最小值是 .【例 48】 (2007首届全国资优生思维能力测试)ABCD 是边长为12的正方形,如图所示,P 是内部任意一点,4BL DM ==、5BK DN ==,那么阴影部分的面积是 .【例 49】 如图所示,在四边形ABCD 中,E ,F ,G ,H 分别是ABCD 各边的中点,求阴影部分与四边形PQRS 的面积之比.A B CDEFABC D EF【例 50】 如图,四边形ABCD 中,::3:2:1DE EF FC =,::3:2:1BG GH AH =,:1:2AD BC =,已知四边形ABCD 的面积等于4,则四边形EFHG 的面积= .【例 51】 (2008年日本小学算数奥林匹克大赛决赛)有正三角形ABC ,在边AB 、BC 、CA 的正中间分别取点L 、M 、N ,在边AL 、BM 、CN 上分别取点P 、Q 、R ,使LP MQ NR ==,当PM 和RL 、PM 和QN 、QN 和RL 的相交点分别是X 、Y 、Z 时,使XY XL =.这时,三角形XYZ 的面积是三角形ABC 的面积的几分之几?请写出思考过程.【例 52】如图:已知在梯形ABCD 中,上底是下底的23,其中F 是BC 边上任意一点,三角形AME 、三角形BMF 、三角形NFC 的面积分别为14、20、12.求三角形NDE 的面积.【例 53】 如图,已知ABCD 是梯形,AD ∥BC ,:1:2AD BC =,:1:3AOF DOE S S ∆∆=,224cm BEF S ∆=,求AOF ∆的面积.HG F EDCBAA BCN M QR P L XYZ【例 54】 (2009年迎春杯决赛高年级组)如图,ABCD 是一个四边形,M 、N 分别是AB 、CD 的中点.如果ASM ∆、MTB ∆与DSN ∆的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形ABCD 的面积为 .板块二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图⑴ 图⑵【例 55】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平方厘米,求ABC △的面积.O FDECBA MNTSDC BAEDCBAEDCB AEDCBA【例 56】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.【例 57】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【例 58】已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.【例 59】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?【例 60】(2007年”走美”五年级初赛试题)如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.EDCBAFEDCBAAB ECDDC EBAA【例 61】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.【例 62】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.【例 63】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.【例 64】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .【例 65】如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?FEDCB A HGAB CD EFH GFED CB A A B CD EF GH【例 66】如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGS S V .【例 67】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?【例 68】四个面积为1的正六边形如图摆放,求阴影三角形的面积.A BCDEFSGF E DCBA ABCDEFG。
小学数学 三角形等高模型与鸟头模型(一).教师版

∵ AE EB ,
∴ S△AEH S△BEH . 同理, S△BFH S△CFH , SCGH =SDGH ,
∴
S阴影
1 2
S长方形ABCD
1 2
56
28
(平方厘米).
【答案】28
【巩固】图中的 E 、 F 、 G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 ,那么阴影部分的面
23 6
6
米).
【答案】30
7
【巩固】图中三角形 ABC 的面积是 180 平方厘米, D 是 BC 的中点, AD 的长是 AE 长的 3 倍, EF 的长是 BF 长 的 3 倍.那么三角形 AEF 的面积是多少平方厘米?
【考点】三角形的等高模型 【难度】2 星 【题型】解答
【解析】 V ABD , V ABC 等高,所以面积的比为底的比,有 SV ABD BD 1 , SV ABC BC 2
1
【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3 个面积相等的三角形;⑵ 4 个面积相等的三角形;⑶6 个 面积相等的三角形.
【考点】三角形的等高模型 【难度】1 星 【题型】解答 【解析】⑴ 如下图,D、E 是 BC 的三等分点,F、G 分别是对应线段的中点,答案不唯一:
⑵ 如下图,答案不唯一,以下仅供参考: ⑶如下图,答案不唯一,以下仅供参考: 【答案】⑴答案不唯一: ⑵ 答案不唯一: ⑶答案不唯一:
A
E
B
D
C
【考点】三角形的等高模型 【难度】2 星 【题型】解答
【解析】3 个,△ AEC、△ BED、△ DEC.
【解析】【答案】3 个,△ AEC、△ BED、△ DEC.
【巩固】如图,在梯形 ABCD 中,共有八个三角形,其中面积相等的三角形共有哪几对?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考点】三角形的等高模型 【难度】3 星 【题型】解答
【解析】(法 1)特殊点法.由于 P 是正方形内部任意一点,可采用特殊点法,假设 P 点与 A 点重合,则阴
影部分变为如上中图所示,图中的两个阴影三角形的面积分别占正方形面积的 1 和 1 ,所以阴影部 46
分的面积为 62 (1 1) 15 平方厘米. 46
4-3-1.三角形等高模型与鸟头模型 题库
page 5 of 37
A
E
B
D
C
【考点】三角形的等高模型 【难度】2 星 【题型】解答 【解析】3 个,△ AEC、△ BED、△ DEC. 【解析】【答案】3 个,△ AEC、△ BED、△ DEC.
【巩固】如图,在梯形 ABCD 中,共有八个三角形,其中面积相等的三角形共有哪几对?
A
D
O
B
C
【考点】三角形的等高模型 【难度】2 星 【题型】解答
【解析】 △ ABD 与△ ACD,△ ABC 与△ DBC,△ ABO 与△ DCO.
【答案】△ ABD 与△ ACD,△ ABC 与△ DBC,△ ABO 与△ DCO
【例 8】 如图,三角形 ABC 的面积为 1,其中 AE 3AB , BD 2BC ,三角形 BDE 的面积是多少?
4-3-1.三角形等高模型与鸟头模型
例题精讲
板块一 三角形等高模型
我们已经知道三角形面积的计算公式:三角形面积 底 高 2 从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小); 这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生
∵ AE EB ,
∴ S△AEH S△BEH .
同理, S△BFH S△CFH , SACGH =SA DGH ,
∴
S阴影
1 2
S长方形ABCD
1 2
56
28 (平方厘米).
【答案】28
4-3-1.三角形等高模型与鸟头模型 题库
page 3 of 37
【巩固】图中的 E 、 F 、 G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 ,那么阴影部
一共有哪几个三角形?
A
FD
E
B
【考点】三角形的等高模型 【难度】3 星 【解析】 △ AEC、△ AFC、△ ABF. 【答案】△ AEC、△ AFC、△ ABF.
C 【题型】解答
【巩固】如图,在△ ABC 中,D 是 BC 中点,E 是 AD 中点,连结 BE、CE,那么与△ ABE 等积的三角形一 共有哪几个三角形?
【例 5】 长方形 ABCD 的面积为 36, E 、 F 、 G 为各边中点, H 为 AD 边上任意一点,问阴影部分面积是 多少?
【考点】三角形的等高模型 【难度】3 星 【题型】解答
【解析】(法 1)特殊点法.由于 H 为 AD 边上任意一点,找 H 的特殊点,把 H 点与 A 点重合(如左上图),
1 2 SAHB
、 SFHB
1 2
SCHB
、 SDHG
1 2 SDHC
,而 SABCD
SAHB
SCHB
SCHD
36 ,
即 SEHB
SBHF
SDHG
1 2 (SAHB
SCHB
SCHD )
1 36 2
18 ;
而 SEHB
SBHF
SDHG
S阴影
SEBF
, SEBF
1 BE BF 2
1 (1 22
【例 1】 你有多少种方法将任意一个三角形分成:⑴ 3 个面积相等的三角形;⑵ 4 个面积相等的三角形;⑶6
个面积相等的三角形. 【考点】三角形的等高模型 【难度】1 星 【题型】解答 【解析】⑴ 如下图,D、E 是 BC 的三等分点,F、G 分别是对应线段的中点,答案不唯一:
A
A
A
F
G
B DE C B D
那么阴影部分的面积就是 AEF 与 ADG 的面积之和,而这两个三角形的面积分别为长方形 ABCD
面积的 1 和 1 ,所以阴影部分面积为长方形 ABCD 面积的 1 1 3 ,为 36 3 13.5 .
84
848
8
(法 2)寻找可利用的条件,连接 BH 、 HC ,如右上图.
可得: SEHB
AB
S1 S2
ab
CD
③夹在一组平行线之间的等积变形,如右上图 S△ACD S△BCD ;
反之,如果 S△ACD S△BCD ,则可知直线 AB 平行于 CD .
④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半; ⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.
【巩固】如下图,长方形 AFEB 和长方形 FDCE 拼成了长方形 ABCD ,长方形 ABCD 的长是 20,宽是 12,则
它内部阴影部分的面积是
.
A
B
F
E
D
C
【考点】三角形的等高模型 【难度】2 星 【题型】解答
【解析】根据面积比例模型可知阴影部分面积等于长方形面积的一半,为 1 20 12 120 . 2
是三角形 EBC 的高,
于是:三角形 ABC 的面积 BC 12 2 BC 6
三角形 EBC 的面积 BC 3 2 BC 1.5
所以三角形 ABC 的面积是三角形 EBC 的面积的 4 倍.
【答案】4
【例 7】 如图,在平行四边形 ABCD 中,EF 平行 AC,连结 BE、AE、CF、BF 那么与△ BEC 等积的三角形
5 1 30 (三角形 ABC 的面积是 180 平方厘米, D 是 BC 的中点, AD 的长是 AE 长的 3 倍, EF 的长是 BF 长的 3 倍.那么三角形 AEF 的面积是多少平方厘米?
4-3-1.三角形等高模型与鸟头模型 题库
page 6 of 37
【答案】 4 、3 3
【例 3】 如右图, ABFE 和 CDEF 都是矩形, AB 的长是 4 厘米, BC 的长是 3 厘米,那么图中阴影部分的
面积是
平方厘米.
4-3-1.三角形等高模型与鸟头模型 题库
page 2 of 37
A
B
E
F
D
C
【考点】三角形的等高模型 【难度】2 星 【题型】解答 【解析】图中阴影部分的面积等于长方形 ABCD 面积的一半,即 4 3 2 6 (平方厘米). 【答案】6
CB D
C
⑵ 如下图,答案不唯一,以下仅供参考:
4-3-1.三角形等高模型与鸟头模型 题库
page 1 of 37
( 1(
( 2(
( 3(
⑶如下图,答案不唯一,以下仅供参考:
( 4(
( 5(
【答案】⑴答案不唯一:
A
A
F B DE C B D
⑵ 答案不唯一:
A G
CB D
C
( 1(
⑶答案不唯一:
( 2(
(法 2)连接 PA 、 PC .
由于 PAD 与 PBC 的面积之和等于正方形 ABCD 面积的一半,所以上、下两个阴影三角形的面积
之和等于正方形 ABCD 面积的 1 ,同理可知左、右两个阴影三角形的面积之和等于正方形 ABCD 面 4
积的
1
,所以阴影部分的面积为
62
1 (
1 )
15
平方厘米.
分的面积是
.
【考点】三角形的等高模型 【难度】2 星 【题型】解答 【解析】把另外三个三等分点标出之后,正方形的 3 个边就都被分成了相等的三段.把 H 和这些分点以及正
方形的顶点相连,把整个正方形分割成了 9 个形状各不相同的三角形.这 9 个三角形的底边分别是 在正方形的 3 个边上,它们的长度都是正方形边长的三分之一.阴影部分被分割成了 3 个三角形,右 边三角形的面积和第1第 2 个三角形相等:中间三角形的面积和第 3 第 4 个三角形相等;左边三角形 的面积和第 5 个第 6 个三角形相等. 因此这 3 个阴影三角形的面积分别是 ABH 、 BCH 和 CDH 的三分之一,因此全部阴影的总面积就等 于正方形面积的三分之一.正方形的面积是144 ,阴影部分的面积就是 48 . 【答案】48
点向 BC 边上所作的垂线,也就是说三个三角形的高相等. 于是:三角形 ABD 的面积 12 高 2 6 高 三角形 ABC 的面积 (12 4) 高 2 8 高 三角形 ADC 的面积 4 高 2 2 高
所以,三角形 ABC 的面积是三角形 ABD 面积的 4 倍; 3
三角形 ABD 的面积是三角形 ADC 面积的 3 倍.
【答案】120
【例 4】 如图,长方形 ABCD 的面积是 56 平方厘米,点 E 、 F 、 G 分别是长方形 ABCD 边上的中点, H 为 AD 边上的任意一点,求阴影部分的面积.
【考点】三角形的等高模型 【难度】2 星 【题型】解答
【解析】本题是等底等高的两个三角形面积相等的应用.
连接 BH 、 CH .
【考点】三角形的等高模型 【难度】2 星 【题型】解答
【关键词】2008 年,四中考题
【解析】连接 CD .根据题意可知, DEF 的面积为 DAC 面积的 1 , DAC 的面积为 ABC 面积的 1 ,所
3
2
以 DEF 的面积为 ABC 面积的 1 1 1 .而 DEF 的面积为 5 平方厘米,所以 ABC 的面积为 23 6