第1课相交线
七年级相交线教案

七年级相交线教案一、教学目标:1. 知识目标:- 掌握相交线的基本概念;- 理解相交线的性质和相关定义。
2. 能力目标:- 能够描绘两条相交线的示意图;- 能够辨认出两条线是否相交;- 能够应用相交线的性质解决问题。
3. 情感目标:- 培养学生的观察力和逻辑思维能力;- 增强学生在数学学习中的自信心。
二、教学重难点:1. 重点:- 相交线的概念和性质;- 判断两条线是否相交。
2. 难点:- 应用相交线的性质解决问题。
三、教学内容与方法:1. 教学内容:- 相交线的基本概念;- 相交线的性质和相关定义。
2. 教学方法:- 教师讲解结合示例演示;- 学生自主探究;- 小组合作讨论。
四、教学过程:1. 导入(5分钟)- 引入相交线的概念:请同学们举例描述一下身边的相交线的例子。
2. 概念讲解(15分钟)- 教师用白板讲解相交线的定义和性质;- 教师通过示意图演示相交线的情况,并让学生观察和描述相交线的特点。
3. 分组探究(20分钟)- 将学生分成小组,每个小组找到至少三组相交线的示意图,并思考它们各自的特点和性质;- 学生通过小组合作讨论,总结相交线的相关定义和性质,并将结果报告给全班。
4. 深化练习(15分钟)- 教师出示一些问题,让学生应用相交线的知识解答;- 学生单独完成,然后与同伴交流和讨论。
5. 归纳总结(10分钟)- 教师与学生一起回顾相交线的定义和性质;- 学生根据所学内容归纳总结相交线的相关知识点。
6. 作业布置(5分钟)- 布置一些练习题作为课后作业,巩固相交线的知识。
五、教学反思:通过本节课的教学,学生对相交线的概念有了初步的了解,并且能够通过观察和描述来判断两条线是否相交。
在小组探究环节中,学生通过合作讨论,巩固了相交线的性质和相关定义。
在问题解答和归纳总结过程中,学生能够运用所学知识解答问题,并巩固对相交线的理解。
在今后的教学中,可以增加一些拓展练习,用更多的实际例子来帮助学生加深对相交线的理解。
沪科版数学七年级下册1相交线课件

P A
BA
P
B
Company Logo
视察
P
视察这些
过点P的
线段,其
中哪一条
最短?
CB
线段PA最短
AE
F
Company Logo
垂线段的定义
连接直线外一点与垂足形成的线段叫做垂线段
区分:垂线是直线,垂线段是线段; 联系:都有垂直关系,垂线段是垂线的一部分。
垂线与垂 线段有何
P
区分和联
垂
系?
线
段
C
记作:“AB⊥CD” C
读作:“直线AB垂直于直线 CD”
A
O
D
垂足
B
Company Logo
图片欣赏
Company Logo
操作
每个图中您能作几条?
1、你会画垂线吗?
01 23 4 5 01 23 4 5
01 23 4 5
P
Pl
01 23 4 5
l
0
在同一平面内,经过一个已知点能画 一条且只能画一条直线和已知直线垂直。
Company Logo
祝
一:
帆同
谢 谢
风
学 们
顺在
!
知
识
的
海
洋
里
Company Logo
A
D
点到直线的距离:
直线外一点与这条直线的垂线段的长度叫做点到直线的距离
!!!注意: 点P到直线CD的距离是垂线段PA的长度,而不是垂线段AB。
Company Logo
垂线的性质2:
P
A
BO
C
在连接直线外一点与直线上各 点的线段中,垂线段最短。
【初中数学】相交线(1)邻补角与对顶角讲练课件 2023—2024学年人教版数学七年级下册

4. 如图,直线AB与CD相交于点O,若∠1+∠2=140°, 则∠1=_7_0__°,∠4=_1_1_0__°.
利用邻补角与对顶角的性质求角度 5. 如图,直线AB,CD相交于点O,∠BOD=40°,
OA平分∠COE,求∠DOE的度数. 解:∵∠BOD=40°,
∴∠AOC=∠BOD=40°, ∵OA平分∠COE, ∴∠COE=2∠AOC=80°,
同学们,再见!
பைடு நூலகம்
∴∠DOE=180°-∠COE=100°.
6. (2023·湛江霞山区一模)如图,直线AB,CD相交于点 O,OE是∠AOD的平分线,∠AOC=26°,求∠AOE 的度数.
解:∵∠AOC=26°, ∴∠AOD=180°-∠AOC=154°. 又∵OE是∠AOD的平分线, ∴∠AOE= 12∠AOD=77°.
新人教版初中七年级数学下学期
第五章 相交线与平行线
第1课 相交线(1) 邻补角与对顶角
邻补角与对顶角的定义及性质
定义
图例 性质 几何语言
邻 有一条公共边,另一 补 边互为反向延长线的 角 两个角
∵∠1与∠2 邻补角 是邻补角, 互__补___ ∴∠__1_+__∠__2__
=__1_8_0_°______
对 有公共顶点,一角的 顶 两边与另一角的两边 角 互为反向延长线
对顶角 _相__等__
∵∠1与∠2 是对顶角, ∴∠__1_=__∠__2__
1. 下列图形中,∠1与∠2互为邻补角的是
( D)
2. (2023·东莞月考)下列四个图形中,∠1与∠2是对顶角
的是
( B)
3. 如图,直线a,b相交于点O. (1)∠1的对顶角是_∠__3_,∠1的邻补角是_∠__2_,__∠__4___; (2)(2023·东莞月考)∠2=140°,则∠1=___4_0_°_,∠3 =__4_0_°__.
课时1 相交线专题

O A 图④
E
C
二 、典例讲解
例5.如图⑤,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE, 且∠1∶∠2=1∶4,求∠AOF的度数.
D E
2
A C
1
O
B
图⑤
F
三 、课堂小练
1.如图,∠AOD=90°,OD为∠BOC的平分线,OE为BO的延长线, 若∠AOB=50°,求∠COE的度数.
课时一
相交线专题
一、专题简析
知所成的四个角中有一个角为90°时,这两
条直线互相垂直,其中一条直线叫做另一条直线的垂线. 两条直线的交点叫垂足.
D
C
1 2 ∠1和∠2互为余角
A O
A
O
∠AOC和∠COB互为邻补角
B
C 对顶角
五、学案巩固和提高
请同学们认真完成练习学案上 的题目,相信自己一定能行!
E B C O A 图② F
D
二 、典例讲解
例3.如图③,直线AB、CD相交于点O,OE为射线,∠AOC=60°,
∠BOE-∠DOE=10°,求∠DOE、∠AOE的度数.
D E A O B
C
图③
二 、典例讲解
例4.如图④,直线AB、CD相交于点O,OE⊥OF,OC平分∠AOE, 且∠BOF=2∠BOE,求∠DOE的度数.
A B
50 O D
E
C
三 、课堂小练
C D
A
O
B
三 、课堂小练
3.如图,AB⊥CD,垂足为O,直线EF经过点O,OM平分∠BOF, ∠COF=34°,求∠DOE、∠FOM、∠EOM的度数.
C F M
A
O
冀教版七年级下册数学《相交线》PPT(第1课时)

或者MN⊥EF于O
或者AB⊥OE于O
M
F
E
E
A
O
B
N
垂线的画法 你能借助三角尺或量角器经过直线AB外的一点P画出AB 的垂线吗?.
P
Q
A
B
AQ
B
P
∴ PQ为所求
∴ PQ为所求
方法归纳 画垂线的方法可归纳为“一落、二过、三画” 1.一落:把三角尺的一条直角边落在已知直线上; 2.二过:让三角尺的另一条直角边经过已知的点; 3.三画:沿着直角边经过已知点画直线.
①在直线c的两侧 ②在直线a,b的之间
内错角
c
1 2
a
34
65
b
78
3 5
典例精析 例1 如图,直线DE截直线AB ,AC,构成8个角,指出所有的
同位角,内错角,同旁内角.
解:两条直线是AB,AC,截线是DE,
所以8个角中, 同位角:∠2与∠5,∠4与∠7,∠1
D
21 34
B
A
58
67 E C
与∠8, ∠6和∠3;
解析:过一点有且只有一条直线与已知直线垂直;过直 线外一点并过直线上一点不一定有一条直线与已知直线 垂直.故D错.故选D.
三 点到直线的距离
合作探究 问题 在灌溉时,要把河中的水引到农田P处,如何挖掘能使渠 道最短?
m
P.
P
C
B
A
E
Fm
知识要点 直线外的一点与直线上各点的连接的所有线段中,垂线 段最短.
情境引入
问题引入 在奥运会的跳远比赛中,裁判员在测量运动员的跳远
成绩时,拉紧的皮尺与起跳线有什么关系?这样做的依据 是什么?
人教版七年级数学下册相交线与平行线《相交线(第1课时)》示范教学设计

相交线(第1课时)教学目标1.理解邻补角和对顶角的概念.2.掌握“对顶角相等”的性质.教学重点“对顶角相等”的性质.教学难点能正确辨认两条相交直线所形成的邻补角和对顶角,能推出“对顶角相等”的性质.教学过程新课导入如图,观察剪刀剪开布片过程中有关角的变化.可以发现,握紧剪刀的把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片.如果把剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题.【设计意图】从现实生活中发现并提出简单的数学问题吸引学生的注意,同时为得出两条直线相交所成角的关系提供生活背景.新知探究一、探究学习【问题】如图,任意画两条相交的直线,形成四个角,∠1和∠2有怎样的位置关系?∠l和∠3呢?【师生活动】教师引导学生从角的定义出发,分别说出∠1与∠2,∠1与∠3的位置关系.在学生直观地感知到两个角有“相邻”“相对”的关系时,引导学生用几何语言准确表达,进而得到“邻补角”“对顶角”的定义.【答案】∠1和∠2有一条公共边OC,它们的另一边互为反向延长线.∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线.【追问】分别量一下各个角的度数,∠1和∠2的度数有什么关系?∠1和∠3呢?【师生活动】学生用量角器量出各个角的度数,从而发现它们之间的数量关系.【答案】∠1=50°,∠2=130°,∠3=50°,∠4=130°.∠1+∠2=180°,∠1=∠3.还可以得到:∠3+∠4=180°,∠2=∠4.【追问】在剪刀把手之间的角变化的过程中,各个角之间的关系还保持吗?为什么?【答案】各个角之间的关系仍保持.理由:由图知∠1+∠2=∠2+∠3=180°,所以∠1=∠3.同理可得∠2=∠4.【设计意图】让学生充分经历动手操作、独立思考的探究过程,并且在这一过程中,渗透由特殊到一般的研究问题的方法,使学生经历从实验几何到论证几何的过渡.二、新知精讲【新知】两个角有公共顶点和一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.如下图中的∠1和∠2,∠2和∠3,∠3和∠4,∠4和∠1都互为邻补角.【特别提醒】1.邻补角互补.2.互为邻补角的两个角满足:(1)有公共顶点和一条公共边;(2)另一边互为反向延长线.3.邻补角是成对出现的,单独一个角或两个以上的角不能互为邻补角.4.邻补角的两种类型:(1)由两条直线相交形成;(2)由一条直线和一条端点在该直线上的射线形成,如图中的∠1和∠2.【新知】两个角有公共顶点,且它们的两边分别互为反向延长线,具有这种位置关系的两个角,互为对顶角.如下图中的∠1和∠3,∠2和∠4都互为对顶角.【思考】如图,可以得到对顶角的什么性质?【师生活动】教师引导学生对图形进行观察分析,可以得到:∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.【答案】对顶角的性质:对顶角相等.【特别提醒】1.两条直线相交是形成对顶角的前提条件.2.两直线相交,对顶角有2对.【动图】观察动图,直观地感受“对顶角相等”.三、典例精讲【例1】如图,直线AB,CD,EF相交于一点O,请找出∠COF的邻补角.【师生活动】学生组内讨论,解答本题,教师提问.【答案】解:∠COF的邻补角有∠DOF和∠COE.【归纳】两步寻找邻补角:第1步:固定角的一边;第2步:将另一边反向延长.由固定边和另一边的反向延长线组成的角就是原角的邻补角.【设计意图】通过寻找邻补角,考查学生对邻补角定义的掌握情况,同时总结出寻找邻补角的步骤.【例2】下列四个图形中,∠1与∠2互为对顶角的是().A.B.C.D.【师生活动】教师引导学生对各选项进行分析:选项A,D,均有一边不互为反向延长线,故不是对顶角;选项B,有一边不互为反向延长线,且两角没有公共顶点,故不是对顶角;选项C,符合对顶角的概念.【答案】C【归纳】抓住两特征,判断两角是否互为对顶角:(1)两角有公共顶点;(2)两角的两边分别互为反向延长线.同时具有以上两个特征的角互为对顶角,二者缺一不可.【方法总结】反向延长法:找一个角的对顶角时,分别反向延长这个角的两边,以这两条反向延长线为边的角即原角的对顶角.【设计意图】考查学生对对顶角定义的掌握情况,知道在判断是否为对顶角的时候可以使用反向延长法.【例3】如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.【师生活动】学生独立完成计算,组内交流对计算结果进行纠错.【答案】解:由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.【例4】如图,直线AB,CD,EF两两相交,∠1=2∠3,∠2=80°,求∠4的度数.【师生活动】学生对图形中的各角进行分析:∠1与∠2互为对顶角,∠3与∠4互为邻补角.先根据∠1与∠2的关系及∠1与∠3的关系,∠2=80°,求出∠1及∠3的度数,再根据∠3与∠4的关系求出∠4的度数.【答案】解:因为∠1和∠2互为对顶角,所以∠1=∠2=80°.又因为∠1=2∠3,所以∠3=12∠1=40°.因为∠3和∠4互为邻补角,所以∠4=180°-∠3=140°.【归纳】在运用邻补角及对顶角的概念和性质解决问题时,要牢记邻补角互补,对顶角相等.【设计意图】例3和例4考查学生使用邻补角和对顶角的性质对角度进行计算,巩固学生对这两种角的性质的掌握.课堂小结板书设计一、邻补角的概念及性质二、对顶角的概念及性质课后任务完成教材第3页练习.。
七年级下册冀教版数学【授课课件】第1课时 相交线
探究新知
学生活动一【一起探究】 如图,在平面上任意画两条相交的直线,形成几
个角?这些角有什么位置关系?
探究新知
如图,在两条相交的直线所形成的4个角中,∠1 与∠3有怎样的位置关系?
如图 , 两条直线l1,l2相交于点O,形 成四个角,分别是∠1,∠2,∠3,∠4.∠1 和∠3具有公共顶点O,并且两边互为反 向延长线.我们把具有这种特殊位置关系 的两个角叫做对顶角.
探究新知 如图,观察∠3与∠5有什么位置特征? ①在直线EF两侧; ②在直线AB,CD之间.
探究新知 如图,图中的内错角还有哪些?
在形如“Z”的图形中有内错角,即∠4和∠6 也是内错角.
探究新知
如图,观察∠4与∠5有什么位置特征? ①在直线EF同侧; ②在直线AB,CD之间.
我们把具有∠4和∠5这样位置关系的一对角叫 做同旁内角.
探究新知 如图,图中的同旁内角还有哪些?
在形如“U”的图形中有同旁内角,即∠3和∠6也 是同旁内角.
探究新知
学生活动二【典例精讲】 例1 下面四个图形中,∠1与∠2是对顶角的图形的个 数是( B )
A.0个
B.1个
C.2个
D.3个
探究新知
是(2x-10)°和(110-x)°,则x= 40或80
.
回顾反思
1. 什么是对顶角? 2. 什么是同位角? 3. 什么是内错角? 4. 什么是同旁内角?
当堂训练
1.如图,下列各组角中,互为对顶角的是( A ) A.∠1与∠2 B.∠1与∠3 C.∠2与∠4 D.∠2与∠5
当堂训练
2.下列各图中∠1,∠2是邻补角吗?为什么?
探究新知
如图,两条直线被第三条直线所截,形成几个角? 答:形成八个角,分别是∠1,∠2, ∠3,∠4,∠5,∠6,∠7,∠8.
平行线与相交线(讲义)
七年级寒假讲义38页第一讲相交线第二讲三线八角第三讲平行线及其判定第四讲平行线性质第五讲平行线判定与性质综合第六讲习题课(格式规范训练)第一讲相交线【相交线、对顶角、邻补角】4.三条直线AB,CD,EF相交于点O,如图所示,∠AOD的对顶角是_________ ,∠FOB的对顶角是_________ ,∠EOB的邻补角是_________ .5.如图,图中有_________ 对对顶角,_________ 对邻补角.6.如图所示,已知三条直线AB、CD、EF两两相交于点P、Q、R,则图中邻补角共有_________ 对,对顶角共有_________ 对(平角除外).7.下列说法:①对顶角的角平分线在同一条直线上;②相等的角是对顶角;③一个角的邻补角只有一个;④补角即为邻补角.其中正确的有_________ .9.如图,三条直线交于同一点,∠1:∠2:∠3=2:3:1,则∠4=_________ .10.如图,直线AB、CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()【垂线、垂线段、点到直线距离】11.在同一平面内,过一点有_________ 条直线与已知直线垂直.12.如图,AB⊥BC,则AB_________ AC(填“>”或“=”或“<”),其理由是_________ .13.已知如图,CD⊥AD于D,BE⊥AC于E.(1)点B到AC的距离是_________ ;(2)线段AD的长度表示_________ 的距离或_________ 的距离.14.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,则点A到BC的距离为线段_________ 的长度;点A到CD的距离为线段_________ 的长度;点B到AC的距离为线段_________ 的长度;点B到CD的距离为线段_________ 的长度.15.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()16.分别过点P作线段MN的垂线.17.如图,P是直线l外一点,A、B、C是直线l上的三点,且PB与l垂直,在从点P到点A、从点P到直线l的多条道路中,点P到点A的最短路线是_________ ,点P到直线l的最短路线是_________ (只填写序号即可).18.如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是_________ .19.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边B C.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是_________ .20.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB_________ 7cm.(填>或者<或者=或者≤或者≥).21.如图,AC⊥BC于点C,CD⊥AB于点D,AC=5cm,BC=12cm,AB=13cm,则点C到AB的距离是___ cm.【拓展练习】22.平面内有a、b、c三条直线,则它们的交点个数可能是_________ 个.23.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.24.(1)三条直线相交,最少有_________ 个交点,最多有_________ 个交点,分别画出图形,并数出图中对顶角和邻补角的个数(2)四条直线相交,最少有_________ 个交点,最多有_________ 个交点,分别画出图形,并数出图中对顶角和邻补角的个数(3)依此类推,n条直线相交,最少有_________ 个交点,最多有_________ 个交点,对顶角有_________ 对,邻补角有_________ 对.25.(1)在图1中以P为顶点画∠P,使∠P的两边分别和∠1的两边垂直.(2)量一量∠P和∠1的度数,它们之间的数量关系是_________ .(3)同样在图2和图3中以P为顶点作∠P,使∠P的两边分别和∠1的两边垂直,分别写出图2和图3中∠P和∠1的之间数量关系.(不要求写出理由)图2:_________ 图3:_________(4)由上述三种情形可以得到一个结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角_________ .(不要求写出理由)第二讲三线八角【同位角、同旁内角、内错角】1.看图填空:(1)∠1和∠4是____________角;(2)∠1和∠3是____________角;(3)∠2和∠D是____________角;(4)∠3和∠D是____________角;(5)∠4和∠D是____________角;(6)∠4和∠B是____________角.2.看图填空:(1)若ED,BC被AB所截,则∠1与____________是同位角.(2)若ED,BC被AF所截,则∠3与____________是内错角.(3)∠1与∠3是AB和AF被____________所截构成的____________角.(4)∠2与∠4是____________和____________被BC所截构成的____________角.3.如图,下列结论正确的有__________________.①∠ABC与∠C是同位角;②∠C与∠ADC是同旁内角;③∠BDC与∠DBC是内错角;④∠ABD的内错角是∠BDC;⑤∠A与∠ABD是由直线AD,BD被直线AB所截得到的同旁内角.4.在图中,∠1与∠2是同位角的有__________________.)6.如图,与∠B是同旁内角的角有__________________.7.如图所示,与∠C构成同旁内角的有__________________.8.如图,在∠1,∠2,∠3,∠4中,是内错角的是()9.如图,在所标识的角中,是内错角的是()10.如图,CM、ON被AO所截,那么()11.如图,下列说法不正确的是()12.如图,下列说法中,错误的是()13.如图,下列判断错误的是()14.如图,用数字标出的八个角中,同位角、内错角、同旁内角分别有哪些?请把它们一一写出来.15.观察下图,图中有多少同位角、内错角、同旁内角?请把它们列出来.16.如图所示,同位角一共有_________对,内错角一共有_________对,同旁内角一共有有_________对.17.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180°;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()【拓展练习】18.图中,与∠1成同位角的个数是__________对19.图中所标出的角中,共有同位角__________对20.如图所示,同位角共有__________对21.如图,其中同旁内角有__________对22.如图所示,直线AB∥CD,两相交直线EF、GH与AB、CD都相交,图中的同旁内角共有__________对23.如图所示,图中能与∠C构成同旁内角的有__________个.24.如图所示,与∠A是同旁内角的角共有_________个.25.如图所示,图中共有内错角__________对26.如图,若直线MN与△ABC的边AB、AC分别交于E、F,则图中的内错角有__________对27.如图一共有__________对内错角.第三讲平行线及其判定【平行线定义、平行线公理与推论】4.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:_________.6.如图,直线AB,CD表示一条公路的两边,且AB∥CD,点E为直线AB,CD外一点,现过点E作边CD的平行线,只需过点E作_________的平行线即可,其理由是_________.8.下列说法中正确的个数为()①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行9.下列结论正确的个数是()(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;【平行线判定】11.如图,直线a,b被直线c所截,若要a∥b,需增加条件_________(填一个即可).12.如图,下列条件中,不能判定直线a平行于直线b的是()13.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()14.如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥C D.16.某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相同,这两次拐弯的角度可能是()17.几何推理,看图填空:(1)∵∠3=∠4(已知)∴_________∥_________(___________________________)(2)∵∠DBE=∠CAB(已知)∴_________∥_________(___________________________)(3)∵∠ADF+_________=180°(已知)∴AD∥BF(__________________________)18.如图,∠B=55°,∠EAC=110°,AD平分∠EAC,AD与BC平行吗?请你完成下列填空,把解答过程补充完整.解:AD∥BC,理由如下:∵AD平分∠EAC,∠EAC=110°(已知)∴∠EAD=∠EAC=_________ °又∠B=55°(已知)∴∠B=∠_________∴AD∥BC(___________________________)19.如图,已知CD⊥DA,DA⊥AB,∠1=∠2.证明:DF∥AE.请你完成下列填空,把解答过程补充完整.证明:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°.(___________________________)∴∠CDA=∠DA B.(等量代换)又∠1=∠2,∴∠CDA﹣∠1=∠DAB﹣_________.(等式的性质)即∠3=_________.∴DF∥AE.(___________________________).20.如图,在△ABC中,已知∠1=∠2,∠1=∠B,求证:AB∥EF,DE∥B C.21.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?22.如图所示,已知直线AB,CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP.为什么?23.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥C D.24.如图所示,FG平分∠CFN,∠1=∠3=60°,求证:AB∥C D.25.已知,如图∠1和∠D互余,CF⊥DF,问AB与CD平行吗?为什么?【拓展练习】26.如图,已知∠ABE+∠E+∠CDE=360°,证明:AB∥C D.27.如图,已知∠BED=∠B+∠D,求证:AB∥C D.28.如图,∠BEC=95°,∠C=45°,∠ABE=130°,则AB与CD平行吗?请说明理由.29.如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.30.已知:E是AB、CD外一点,∠D=∠B+∠E,求证:AB∥C D.第四讲平行线性质第五讲平行线判定与性质综合第六讲习题课(格式规范训练)。
人教版七年级数学下册5.1.1《相交线》教学设计
人教版七年级数学下册5.1.1《相交线》教学设计一. 教材分析《相交线》是人教版七年级数学下册第五章第一节的内容,主要介绍相交线的概念、性质和应用。
通过学习相交线,学生能够理解直线、射线和线段的特征,掌握相交线的定义和性质,并能够运用相交线解决一些实际问题。
本节课的内容是学生进一步学习几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线和线段的基本概念,对于一些基本的几何图形有一定的了解。
但是,对于相交线的概念和性质可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对于相交线在实际问题中的应用还不够熟悉,需要通过一些具体的案例来引导和启发。
三. 教学目标1.知识与技能:学生能够理解相交线的概念,掌握相交线的性质,并能够运用相交线解决一些实际问题。
2.过程与方法:学生通过观察、操作和思考,培养空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,自主学习,培养对数学的兴趣和自信心。
四. 教学重难点1.重点:相交线的概念和性质。
2.难点:相交线在实际问题中的应用。
五. 教学方法1.情境教学法:通过实物和图形,引导学生观察和操作,激发学生的学习兴趣和积极性。
2.问题驱动法:通过提出问题,引导学生思考和探究,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组讨论和合作,促进学生之间的交流和互助。
六. 教学准备1.教具准备:直尺、圆规、三角板、白板等。
2.教学素材:相交线的图片、实例和练习题。
3.教学环境:教室布置成有利于学生思考和交流的环境。
七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形,如交叉的道路、铁路等,引导学生观察和思考这些图形的特征。
提问:这些图形有什么共同的特点?学生通过观察和思考,能够发现这些图形的共同特点是它们由两条直线相交而成。
教师引导学生总结出相交线的概念。
相交线教案教学设计
相交线教案教学设计第一章:相交线的概念介绍1.1 教学目标让学生了解相交线的定义和特征。
能够识别和绘制相交线。
理解相交线在几何图形中的重要性。
1.2 教学内容相交线的定义和特征。
相交线的性质和定理。
相交线在实际问题中的应用。
1.3 教学方法采用讲授法,讲解相交线的定义和特征。
利用图形和实物展示相交线,帮助学生直观理解。
提供练习题,让学生通过实践巩固知识点。
1.4 教学步骤1.4.1 引入通过展示一些实际生活中的相交线例子,如交叉的道路、铁路等,引起学生对相交线的兴趣。
1.4.2 讲解讲解相交线的定义和特征,如两条直线相交形成的交点、相互垂直的直线等。
通过图形和实物展示相交线,帮助学生直观理解。
1.4.3 练习提供一些练习题,让学生通过实践绘制和识别相交线。
引导学生运用相交线的性质和定理解决问题。
1.4.4 总结对本节课的内容进行总结,强调相交线的重要性和应用。
第二章:相交线的性质和定理2.1 教学目标让学生掌握相交线的性质和定理。
能够运用性质和定理解决相关问题。
2.2 教学内容相交线的性质,如交点的性质、对顶角的性质等。
相交线的定理,如平行线与相交线的关系、同位角和内错角的性质等。
2.3 教学方法采用讲授法,讲解相交线的性质和定理。
通过图形和实物展示相交线的性质和定理,帮助学生直观理解。
提供练习题,让学生通过实践巩固知识点。
2.4 教学步骤2.4.1 引入通过回顾上一节课的内容,引导学生对相交线的性质和定理产生兴趣。
2.4.2 讲解讲解相交线的性质和定理,如交点的性质、平行线与相交线的关系等。
通过图形和实物展示相交线的性质和定理,帮助学生直观理解。
2.4.3 练习提供一些练习题,让学生通过实践运用性质和定理解决问题。
引导学生运用相交线的性质和定理解决实际问题。
2.4.4 总结对本节课的内容进行总结,强调相交线性质和定理的重要性。
第三章:相交线在实际问题中的应用3.1 教学目标让学生了解相交线在实际问题中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
猜猜看:若直线CD绕点O转
动时,∠1和∠3 同 时缩小或增大,你
C 1
2
B
o 3
4 D
A
能猜出∠1和∠3的大小关系吗?
4、你能得到对顶角∠1和∠3的大小关系吗?
动动脑:为什么?
∠1与∠2互补, ∠2与∠3互补
C 1
2
B
o 3
4 D
A
那么∠ 2 +∠1= 180°, ∠ 2 +∠3= 180°, 由同角的补角相等可知 ∠1= ∠3
O C
AOB=180°-∠AOC AOB=∠COD
D
(邻补角互补) (对顶角相等)
如图,直线AB、CD、EF相交于O,
F
A
D
O )1 )2 E B
(1)∠AOC的对顶角是 ∠DOB , ∠1邻补角是 ∠DOF和∠EOC . C
(2)若∠AOC=80°,∠1=30°,求∠2的度数。
解:因为∠DOB=∠ AOC ,( 对顶角相等 ) ∠AOC =80°(已知) 80 °(等量代换) 所以∠DOB= 又因为∠1=30° (已知) 所以∠2=∠DOB-∠ 1 = 80° - 30° = 50° 。
分类 ∠1 和∠2 ∠2 和∠ 3 ∠3 和∠4 ∠4 和∠1
大小关系
∠1+∠2=180°
∠2+∠3=180° ∠3+∠4=180° ∠4+∠1=180°
邻 补 角 对 顶 角
∠1 和∠3 ∠2 和∠4
5、你能得到对顶角∠1和∠3的大小关系吗? 两直线相交
位置 关系
C 1 A
2 4
B 3 D
分类 ∠1 和∠2 ∠2 和∠ 3 ∠3 和∠4 ∠4 和∠1
变式2:若∠1+∠3 = 50°,则∠3= 25° , ∠2= 155° 。 b
a
解:设∠1=x°,则∠2=3x°
1(
2 ( ) 4
) 3
变式3:若∠2是∠1的3倍,求∠3的度数?
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
如图两堵墙围一个角AOB,但人不能进入围墙, 我们如何去测量这个角的大小呢?
∠1=120° ∠2=60° (2) 不是
∠1=130°
∠2=50°
(3 ) 是
2.下列各图中∠1、∠2是对顶角吗?为什么?
1 2 1 2
1
2
(1)不是
(2 )
是
(3 )
不是
1
2
2 1
(4) 不是
(5)是
4、你能写出邻补角∠1和∠2的大小关系式吗? 两直线相交
位置 关系
C 1 A
2 4
B 3 D
B 3 D
∠1 ∠2 ∠3 ∠4
和∠2 和∠ 3 和∠4 和∠1
∠1 和∠3 ∠2 和∠4
2、观察∠1和∠2的顶点和两边,有怎样的位
置关系? 两直线相交 分类
位置 关系
大小关系
C 1 A
2 4
B 3 D
∠1 ∠2 ∠3 ∠4
和∠2 和∠ 3 和∠4 和∠1
∠1 和∠3 ∠2 和∠4
C
2 1
B
o4
3
A
D
3、类比∠1和∠2,看∠1和∠3有怎样的位置
关系? 两直线相交 分类
位置 关系
大小关系
C 1 A
2 4
B 3 D
∠1 ∠2 ∠3 ∠4
和∠2 和∠ 3 和∠4 和∠1
邻 补 角
∠1 和∠3 ∠2 和∠4
C
2 1
B
o
4
3
A
D
1.下列各图中∠1、∠2是邻补角吗? 为什么?
1
2
1
2
1
2
∠1=140° ∠2=40° (1 ) 不是
350
2或4
3
1 2 3 180
0
D
28
400
1400
解:因为OA平分∠EOC,∠AOE=400
所以∠AOC=∠AOE=400
又因为∠ BOD 是∠ AOC 的对顶角 所以∠BOD=∠AOC=400(对顶角相等) 所以∠BOD=∠AOC=400
64 0
解:因为∠640 ∠1是∠2的对顶角 所以∠1=∠2=640(对顶角相等) 又因为∠1=2∠3 1 所以∠3= ∠1=400 2 所以∠4=∠3=320(对顶角相等)
0
6对对顶角,12对邻补角
b c
3.平面上n条直线交于一点,有几 对对顶角?有几对邻补角?
如图,直线AB、CD相交于点O. (1)若∠AOC+∠BOD=100°,求各角的度数. (2)若∠BOC比∠AOC的2倍多33°,求各角的度数.
A O C
D
B
1如图
D
A
C
2、如图 2
140o
3、如图
EOC
必做题:课本P8第2题 课本P9第7题 选做题: 如图,直线AB、CD相交于点O. (1)若∠AOC+∠BOD=100°,求各角的度数. (2)若∠BOC比∠AOC的2倍多33°,求各角的度数.
A O C D
B
a
1.平面上两条直线相交,有几对 对顶角?几对邻补角?
2对对顶角,4对邻补角
b
a
2.平面上三条直线交于一点,有几 对对顶角?有几对邻补角?
你能动手画出两条相交直线吗?
1、两条直线相交,形成的小于平角的角 B C 2 有哪几个?
1 4
o 3
D
A
∠1,∠2,∠3,∠4
2、将这些角两两相配能得到几对角?
C 1 4 2 B
o 3
D
A
1、你能根据这几对角的位置关系,对它们 进行分类吗? 两直线相交 分类
位置 关系
大小关系
C 1 A
2 4
大小关系
∠1+∠2=180°
∠2+∠3=180° ∠3+∠4=180° ∠4+∠1=180°
邻 补 角 对 顶 角
∠1 和∠3 ∠2 和∠4
5、你能得到对顶角∠1和∠3的大小关系吗?
动动手: 将对顶角∠1和∠3
进行翻折,比较它 们的大小?
C 1
2
B
o 3
4 D
A
4、你能得到对顶角∠1和∠3的大小关系吗?
邻补角、对顶角的位置关系和大小关系 两直线相交
位置 关系
C 1 A
2 4
B 3 D
分类 ∠1 和∠2 ∠2 和∠ 3 ∠3 和∠4 ∠4 和∠1
大小关系
∠1+∠2=180°
∠2+∠3=180° ∠3+∠4=180° ∠4+∠1=180° ∠1=∠3
邻 补 角 对 顶 角
∠1 和∠3 ∠2 和∠4
∠2=∠4
解:设∠1=x,则∠3=8x,∠2=x x+8x+x=1800 x=180 ∠1=180 ∠2=180 ∠3=1440 ∠4=∠1+∠2=180+180=360
40o
140o
30o 150o
40o
140
60o
20o
80o
因为∠1=20o 所以∠DOE=∠1=200 (对顶角相等) 又因为∠BOC=800 所以∠AOD=∠BOC=80o(对顶角相等) 所以∠2=∠AOD-∠DOE =80o-200
例1、如图,直线a、b相交,∠1=40°,求 ∠2、∠3、∠4的度数。 b 解:由邻补角的定义可知 2 1( ( ∠2=180°-∠1 ) ) a 3 4
=180°-40°=140° 由对顶角相等可得 ∠3=∠1=40°,∠4=∠2=140°
变式1:若∠1= 32°20′,求∠2、∠3、∠4的 度数。