材料力学9-2

合集下载

材料力学卡式定理

材料力学卡式定理

l
(2)
于是(1)式改写为
y / l
(3)
3
梁内任一点处的比能
u
1 2
E 2
1 2
E 2
l2
y2
(4)
梁的应变能
l
U VudV 0 (AudA)dx
l 1 E 2
( 02
l2
y2dA)dx 1 EI 2
A
2l
(5)
由卡氏第一定理
m U 1 EI (2 ) EIθ
(6)
2 lx)
2
dx
1 ( 5PL3 RC L3 ) 0
EI 48
3
RC
5P 16
能量法求解超静定结构,适 用任意荷载作用下、线性或 非线性弹性杆系、刚架或曲 杆等超静定系统。
14
2.求 wB
① 求内力
M
AB ( x)
5P 16
(L
x)
P(0.5L
x)
M BC ( x)
5P 16
Px L EI Px
1 EI
x 0
P(L
x1 ) ( x1
x)dx1
P
x3 [
(L
x)x2
Lx 2 ]
EI 3
2
12
例6 等截面梁如图,用卡氏定理求B 点的挠度。
P 0.5 L
B
A
L
解:1.依 wC 0 求多余反力,
卡氏定理解 ① 取静定基如图 C 超静定结构
② 求内力
M AB ( x) RC (L x) P(0.5L x)
L x1
O
x
w
①求内力 M AB ( x1) P(L x1) Px ( x x1) M BC ( x1) P(L x1)

材料力学第五版课后习题答案

材料力学第五版课后习题答案

7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。

由于实用的原因,图中的α角限于060~0范围内。

作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。

现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3,且这一拉杆的强度由胶合缝强度控制。

为了使杆能承受最大的荷载F ,试问α角的值应取多大? 解:AFx =σ;0=y σ;0=x τ ατασσσσσα2s i n 2c o s 22x yx yx --++=][22cos 12cos 22σαασα≤+=+=A F A F A F ][22cos 1σα≤+A F ,][cos 2σα≤AFασ2cos ][A F ≤,ασ2max,cos ][AF N = ατασστα2c o s 2s i n 2x yx +-=][3][2sin στατα=≤=F ,σ][5.1A F ≤,σ][5.1max,AF T =由切应力强度条件控制最大荷载。

由图中可以看出,当060=α时,杆能承受最大荷载,该荷载为:A F ][732.1max σ=7-6[习题7-7] 试用应力圆的几何关系求图示悬臂梁距离自由端为m 72.0的截面上,在顶面以下mm 40的一点处的最大及最小主应力,并求最大主应力与x 轴之间的夹角。

解:(1)求计算点的正应力与切应力MPa mm mm mm N bh My I My z 55.1016080401072.01012124363=⨯⨯⋅⨯⨯⨯===σMPa mm mm mm N bI QS z z 88.0801608012160)4080(10104333*-=⨯⨯⨯⨯⨯⨯⨯-==τ (2)写出坐标面应力 X (10.55,-0.88)Y (0,0.88)(3) 作应力圆求最大与最小主应力,并求最大主应力与x 轴的夹角 作应力圆如图所示。

从图中按比例尺量得:MPa 66.101=σ MPa 06.03-=σ 0075.4=α7-7[习题7-8] 各单元体面上的应力如图所示。

材料力学简明教程(景荣春)课后答案第九章

材料力学简明教程(景荣春)课后答案第九章

解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =

材料力学 第九章 压杆稳定分析

材料力学 第九章 压杆稳定分析

我国建筑业常用:
cr
s
1
c
2
对于A3钢、A5钢和16锰钢: 0.43,c
2E 0.56 S
c 时,由此式求临界应力 。
②s< 时:
cr s
几点重要说明:
1. 所有稳定问题(包括后续内容)均需首先计算λ以界定压 杆的属性。
2. 对一般金属材料,作如下约定:
A. λp≈100;λs≈60。故:
i
二、压杆的分类
1、大柔度杆:
cr
2E 2
P
2E P
P
100
满足 P 的杆称为大柔度杆(或 细长杆),其临界力用 欧拉公式求。
P 的杆为中小柔度杆,其 临界力不能用欧拉公式 求。
2、中柔度杆─λP>λ≥λS,即: P<≤S
直线型经验公式: cr ab
crab s
a s
b
s
60
支承情况
两端铰支
一端固定 另端铰支
两端固定
一端固定 另端自由
两端固定但可沿 横向相对移动
Pcr
Pcr
Pcr
Pcr
Pcr

l l 0.7l l 0.5l
l 2l l 0.5l
稳 时
B
B
B

D

线 形
C
C

A
A
A
C— 挠曲 C、D— 挠
线拐点 曲线拐点
C— 挠曲线拐点
临界力Pcr 欧拉公式
Pc
r
2
l
EI
工程实例
目录
一、稳定平衡与不稳定平衡 : 1. 不稳定平衡
2. 稳定平衡
3. 稳定平衡和不稳定平衡

材料力学课后习题答案

材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。

`解:(a)(1) 用截面法求内力,取1-1、2-2截面;(2) 取1-1截面的左段; 110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;>220 0 0xN N FF F =-==∑(4) 轴力最大值:max N F F =(b)(1) 求固定端的约束反力;0 20 xR R FF F F F F =-+-==∑(2) 取1-1截面的左段; 》(a)(c) ¥ (d)N 1F RF N 1110 0 xN N FF F F F =-==∑(3) 取2-2截面的右段;220 0 xN R N R FF F F F F =--==-=-∑(4) 轴力最大值:max N F F =(c) '(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1截面的左段;110 20 2 xN N FF F kN =+==-∑(3) 取2-2截面的左段;220 230 1 xN N FF F kN =-+==∑(4) 取3-3截面的右段;330 30 3 xN N FF F kN =-==∑(5) 轴力最大值:max 3 N F kN =,【F N 211#N 2F N 3(1) 用截面法求内力,取1-1、2-2截面;。

(2) 取1-1截面的右段;|110 210 1 xN N FF F kN =--==∑(2) 取2-2截面的右段;*220 10 1 xN N FF F kN =--==-∑(5) 轴力最大值:max 1 N F kN =8-2 试画出8-1所示各杆的轴力图。

解:(a) 、(b)《(c)F N 1F N 2FNF NFF N:(d)<8-5 图示阶梯形圆截面杆,承受轴向载荷F 1=50 kN 与F 2作用,AB 与BC 段的直径分别为d 1=20mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。

材料力学填空与判断题

材料力学填空与判断题

宁波市建工城建专业《工程力学》考试复习题(《材料力学》部分)一、选择题5-1 梁在集中力作用的截面处,它的内力图为( B )(A )Q 图有突变,M 图光滑连接; (B )Q 图有突变,M 图有转折; (C )M 图有突变,Q 图光滑连接; (D )M 图有突变,Q 图有转折。

5-2 梁在集中力偶作用的截面处,它的内力图为( C )。

(A )Q 图有突变,M 图无变化; (B )Q 图有突变,M 图有转折; (C )M 图有突变,Q 图无变化; (D )M 图有突变,Q 图有转折。

5-3 梁在某一段内作用有向下的分布力时,则该段内M 图是一条( B )。

(A )上凸曲线; (B )下凸曲线; (C )带有拐点心曲线; (D )斜直线。

5-4 若梁的剪力图和弯矩图如图所示,则该图表明( C ) (A )AB 段有均布荷载,BC 段无荷载;(B )AB 段无荷载,B 截面处有向上的集中力,BC 段有向上的均布荷载; (C )A B 段无荷载,B 截面处有向下的集中力,BC 段有向上的均布荷载; (D )AB 段无荷载,B 截面处有顺时针的集中力偶,BC 段有向上的均布荷载。

6-1.关于构件的强度、刚度和稳定性描述正确的是( C )。

(A )只与材料的力学性质有关; (B )只与构件的形状尺寸有关; (C )与二者都有关; (D )与二者都无关。

6-2.某轴的轴力沿杆轴是变化的,则在发生破坏的截面上有( D )。

(A )外力一定最大,且面积一定最小;(B )轴力一定最大,且面积一定最小; (C )轴力不一定最大,但面积一定最小;(D )轴力和面积之比一定最大。

6-3. 应用拉压正应力公式AN=σ的条件是( B ) (A )应力小于比极限;(B )外力的合力沿杆轴线; (C )应力小于弹性极限;(D )应力小于屈服极限。

A C B⊕ΘA CB6-4. 图示四种材料的应力-应变曲线中,强度最大的是材料(A ),塑性最好的是材料(D )。

《材料力学》第9章 压杆稳定 习题解

《材料力学》第9章 压杆稳定 习题解

第九章压杆稳定习题解之马矢奏春创作[习题9-1]在§9-2中已对两端球形铰支的等截面细长压杆, 按图a所示坐标系及挠度曲线形状, 试分析当分别取图b,c,d 所示坐标系及挠曲线形状时,用下的挠曲线微分方程是否与图a情况下的相同,式又是否相同.解:挠曲线微分方程与坐标系的y轴正向规定有关, 与挠曲线的位置无关.因为(b)图与(a)图具有相同的坐标系, 所以它们的挠曲线微分方程相同, 都是(c)、(d)的坐标系相同, 它们具有相同的挠曲显然, 这微分方程与(a)的微分方程分歧.临界力只与压杆的抗弯刚度、长度与两真个支领情况有关, 与坐标系的选取、挠曲线的位置等因素无关.因此, 以上四种情形的临界力具有相同的公式,[习题9-2]图示各杆资料和截面均相同, 试问杆能接受的压力哪根最年夜, 哪根最小(图f所示杆在中间支承处不能转动)?解:由这公式可知,和截面相同的压杆,平方成反比, 其中.(a(b(c(d(e(f故图e, 图f.[习题9-3]图a,b所示的两细长杆均与基础刚性连接, 但第一根杆(图a)的基础放在弹性地基上,刚性地基上.2.螺旋千斤顶(图c)的底座对丝杆(起顶杆)的稳定性有无影响?校核丝杆稳定性时, 把它看作下端固定(固定于底座解:临界力与压杆两真个支领情况有关.因为(a)的下支座分歧于(b)的下支座, .(b)为一端固, 其临界力为:可是, (a), 它因此, ., 我们无妨设下支座(B)且无侧向位移, 则:解得:用试算法得:因此, 2.这与弹性支座的转动刚度C有关, C越小, .螺旋千斤顶的底座与空中不是刚性连接, 即不是固定的.它们之间是靠摩擦力来维持相对的静止.当轴向压力不是很年夜, 或空中较滑时, 底座与空中之间有相对滑动, 此时, 不能看作固定端;当轴向压力很年夜, 或空中很粗拙时, 底座与空中之间无相对滑动, 此时, 可以看作是固定端.因此, 校核丝杆稳定性时, 把, 下端为具有一定转动刚度的弹性支座较合适.这种情况.譬因此, , 把它看作下端固定, 而是偏于危险.[习题9-4].[解]:设压杆向右弯曲.压杆处于临界状态时, 两真个竖向反力水平反力为0, 约束反力偶矩两端相等,, 下标end 的意思.若取下截离体为研究对象,逆转.则上述微分方程的通解为:.(a)把A 、B 的值代入(a )得:因此:[习题9-5]长m 5的10号工字钢, 在温度为C 00时装置在两个固定支座之间, 这时杆不受力.已知钢的线膨胀系数107)(10125--⨯=C l α,GPa E 210=.试问当温度升高至几多度时, 杆将丧失稳定性?解:[习题9-6]两根直径为d 的立柱, 上、下端分别与强劲的顶、底块刚性连接, 如图所示.试根据杆真个约束条件, 分析在总压力F 作用下, 立柱可能发生的几种失稳形态下的挠曲线形状, 分别写出对应的总压力F 之临界值的算式(按细长杆考虑), 确定最小临界力cr P 的算式.解:在总压力F 作用下, 立柱微弯时可能有下列三种情况: (a )每根立柱作为两端固定的压杆分别失稳:(b )两根立柱一起作为下端固定而上端自由的体系在自身平面内失稳失稳时整体在面内弯曲, 则1, 2两杆组成一组合截面.(c )两根立柱一起作为下端固定而上端自由的体系在面外失稳故面外失稳时cr P 最小:243128l Ed P cr π=.[习题9-7]图示结构ABCD 由三根直径均为d 的圆截面钢杆组成, 在B 点铰支, 而在A 点和C 点固定, D为铰接点, π10=d l .若结构由于杆件在平面ABCD 内弹性失稳而丧失承载能力, 试确定作用于结点D 处的荷载F 的临界值.解:杆DB 为两端铰支, 杆DA 及DC 为一端铰支一端固定, 选取.此结构为超静定结构, 当杆DB 失稳时结构仍能继续承载, 直到杆AD 及DC 也失稳时整个结构才丧失承载能力, 故[习题9-8]图示铰接杆系ABC 由两根具有相同截面和同样资料的细长杆所组成.若由于杆件在平面ABC 内失稳而引起毁坏, 试确定荷载F 为最年夜时的θ角(假设20πθ<<).解:要使设计合理, 必使AB 杆与BC 杆同时失稳,即:[习题9-9]下端固定、上端铰支、长m l 4=的压杆, 由两根10号槽钢焊接而成, 如图所示, 并符合钢结构设计规范中实腹式b 类截面中心受压杆的要求.已知杆的资料为Q235钢, 强度许用应力MPa 170][=σ, 试求压杆的许可荷载.解:查型钢表得:[习题9-10]如果杆分别由下列资料制成:(1)比例极限MPa P 220=σ, 弹性模量GPa E 190=的钢;(2)MPa P 490=σ, GPa E 215=, 含镍3.5%的镍钢;(3)MPa P 20=σ, GPa E 11=的松木.试求可用欧拉公式计算临界力的压杆的最小柔度.解:(1)(2)(3)[习题9-11]两端铰支、强度品级为TC13的木柱, 截面为150mm ×150mm 的正方形, 长度m l 5.3=, 强度许用应力MPa 10][=σ.试求木柱的许可荷载.解:由公式(9-12a ):[习题9-12]图示结构由钢曲杆AB 和强度品级为TC13的木杆BC 组成.已知结构所有的连接均为铰连接, 在B 点处接受竖直荷载kN F 3.1=, 木材的强度许用应力MPa 10][=σ.试校核BC 杆的稳定性.解:把BC 杆切断, 代之以轴力N,则由公式(9—12b )得:因为st ][σσ<, 所以压杆BC 稳定.[习题9-13]一支柱由4根mm mm mm 68080⨯⨯的角钢组成(如图), 并符合钢结构设计规范中实腹式b 类截面中心受压杆的要求.支柱的两端为铰支, 柱长m l 6=, 压力为kN 450.若资料为Q235钢, 强度许用应力MPa 170][=σ,试求支柱横截面边长a 的尺寸.解:(查表:,) , 查表得:Am 4 =mm[习题9-14]某桁架的受压弦杆长4m,由缀板焊成一体, 并符合钢结构设计规范中实腹式b 类截面中心受压杆的要求, 截面形式如图所示, 资料为Q235钢, MPa 170][=σ.若按两端铰支考虑, 试求杆所能接受的许可压力.解:由型钢表查得角钢: 得查表:故[习题9-15]图示结构中, BC 为圆截面杆, 其直径mm d80=;AC 边长mm a 70=的正方形截面杆.已知该结构的约束情况为A 端固定, B 、C 为球形铰.两杆的资料均为Q235钢, 弹性模量GPa E 210=, 可各自自力发生弯曲互不影响.若结构的稳定平安系数5.2=st n , 试求所能接受的许可压力.解:BC 段为两端铰支, 1=μ AB 杆为一端固定, 一端铰支, 7.0=μ故kN F 376][=[习题9-16]图示一简单托架, 其撑杆AB 为圆截面木杆, 强度品级为TC15.若架上受集度为的均布荷载作用, AB 两端为柱形铰, 资料的强度许用应力, 试求撑杆所需的直径d . 解:取m m -以上部份为分离体, 由, 有设, m 则求出的与所设基秘闻符, 故撑杆直径选用m.[习题9-17]图示结构中杆AC 与CD 均由Q235钢制成, C , D 两处均为球铰.已知mm, mm, mm ;,, ;强度平安因数, 稳定平安因数.试确定该结构的许可荷载.解:(1)杆CD 受压力3F F CD = 梁BC 中最年夜弯矩32F M B =(2)梁BC 中(3)杆CD(Q235钢的)100=P λ =(由梁力矩平衡得)故, 由(2)、(3)可知, kN F 5.15][=[习题9-18] 图示结构中, 钢梁AB 及立柱CD 分别由16号工字钢和连成一体的两根mm mm mm 56363⨯⨯角钢组成, 杆CD 符合钢结构设计规范中实腹式b 类截面中心受压杆的要求.均布荷载集度m kN q /48=.梁及柱的资料均为Q235钢, MPa 170][=σ,GPa E 210=.试验算梁和立柱是否平安.解:(1)求过剩约束力CD F把CD 杆去失落, 代之以约束反力CD F .由变形协调条件可知,查型钢表得:16号工字钢的41130cm I z =, 3141cm W z =mm mm mm 56363⨯⨯L 形角钢的面积:2143.6cm A =, 417.23cm I z =, cm i z 94.1=(2)梁的强度校核)(8165.36kN R B = (↑)AC 段:x x Q 488165.36)(-=;2248165.36)(x x x M -=令 0488165.36)(=-=x x Q , 得:那时m x 767.0=,创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日 CBx0 1 2 3 4 M 0.000 14.119 12.817 -22.367 12.817 14.119 0.000所以符合正应力强度条件, 即平安.(3)立桩的稳定性校核而且所以压杆会失稳.不服安.。

材料力学——第9章(平面弯曲杆件的变形与刚度计算)

材料力学——第9章(平面弯曲杆件的变形与刚度计算)

a
A
x1
F C
b
Fa l
当 a>b 时——
6lEI
B
max
x2
Fab( l a ) max B 6lEI 当 a>b 时——最大挠度发生在AC段
0 x l 2 b2 3 a( a 2b ) 3
xa
最大挠度一定在左侧段
x x
max 1
2 Fb 1 ( x x ) ( l b 2 )3 9 3 EIl
19
Fb l
讨论:1、此梁的最大挠度和最大转角。 左 1 max 1 0 x1 0 右 2 max 2 0 x 2 l 侧 侧 Fab( l b ) Fab( l a ) 段: 1 max A 段: 2 max B 6lEI
§9-1 挠曲线 挠度和转角
§9-2 挠曲线的近似微分方程
§9-3 积分法求梁的变形 §9-4 叠加法求梁的变形 §9-5 梁的刚度条件与合理刚度设计 §9-6 用变形比较法解简单超静定梁
1
研究范围:等直梁在对称弯曲时位移的计算。 研究目的:①对梁作刚度校核; ②解超静定梁(为变形几何条件提供补充方程)。
式中,C1、D1是积分常数,可通过梁的边界条件(支座 的约束条件)确定。
梁上有集中力、集中力偶以及间断性分布荷载作用时,弯 矩方程需分段写出,各梁段的挠曲线近似微分方程也不同。积 分常数还要利用连续性条件,才能求出。 7
二、位移边界条件
A F C B F D
支座位移条件: A 0 B 0 Nhomakorabea

18
⑸跨中点挠度及两端端截面的转角

x L 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
以1代表max作用面的方位角, 2代表min作用面的方位角。

0 0 σ x σ y , 则 α 1 45 (α 1 在 90 范围内取值)
若 σ x σ y , 则 α 1 450
若 σ x σ y ,则 α1
{ 45
450 (τ x 0)
得到 max 和 min(主应力)
σ max σ min
}
σ x σ y σ x σ y 2 ( ) τ xy 2 2
2
(2)主平面的位置
2τ xy σ x σy
tg 2α 0
α1
α 2 α 1 90
0
σ max σ min
}
σ x σ y σ x σ y 2 ( ) τ xy 2 2

B1
A1
2 B
A

o
c
τy
σy


σα
E
(b)
σx
e
σx
f
o
τα
y
2
B2 C D2 x B1
D1
τx
τy
τx

σy
图 9-4
(4)利用应力圆求主应力 数值和主平面位置
σ2
o
D1
主应力数值
A1和 A2两点为与主平面 对应的点,其横坐标 为主应力 1 ,2
OA1 OC CA1
§9-2
平面应力状态下的应力研究 • 应力圆
y
(2)
σy
平面应力状态的普遍形式如
τx σx
图 9-2 a 所示 。单元体上有
x
τy
a
σx τx
z
b
d
τy
c
x ,x 和 y , y。
σy
单元体用平面图形来表示(图9-2b)
图 9-2
一、斜截面上的应力 1、 截面法: 假想地沿斜截面 ef 将单元体截分为二(图9-2b) ,
x y
(9-3)
(9-4)
1 1 σ 2 2 (σ x σ y ) 2
(σ σ ) 4τ 2 x
2
x y

主平面方位
σ2
o
D1
由 CD1 顺时针转 2α o 到 CA1
A2 B2
C y D2 2α o
B1
A1
所以从 x 轴顺时针转 α o
(负值)即到1对应的主平 面的外法线
x y d 2[ sin 2 x cos 2 ] 0 d 2
当即正应力达到极值的面上,剪应力必等于零。 此平面为主平面。正应力的极值为主应力。 由公式
tg 2α 0
2τ xy σ x σy
求出0就可确定主平面的位置。
(1)主应力 将0代入公式
σ x σ y σ x σ y σα cos 2α τ xy sin 2α 2 2
{ -96
MPa
α0
27.5 62.5
0
0

A x
σ max σ min
=
{ -96
26
MPa
3
1
σ 1 26 MPa
σ2 0
σ 3 96 MPa
四、平面应力y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
(2)应力圆作法 在 - 坐标系内 , 选定比例尺 o 量取 OB1 = x , B1D1 = x , 得 D1点

(b)
D1 B1

τy
σy
x
σx τx
τy
σx τx
σy
量取 OB2=y , B2D2= y , 得D2 点 o y B2 D2 x B1
(b)
D1

0
D2 (-0.4,0.2)
σ 40 0.95 MPa
0
τ 40
0
B 80
1
0
o
C
D1 (-1,0.2)
B2

τ 40 0.26 MPa
0
σ 30 0.68 MPa
0
τ 30 0.36 MPa
0
σ 40 0.95 MPa
0
τ 40 0.26 MPa
0
σ x 1
σx τx
x
σx
τx
τ x 0.2
σ y 0.4
τy σy
τ y 0.2
解: (1) 画应力圆 OB1 = x= - 1MPa , B1 D1 = x= - 0.2MPa,定出 D1点; OB2 =y= - 0.4MPa 和 B2D2 = y = 0.2MPa , 定出 D2 点 . 以 D1 D2 为直径绘出的圆即为应力圆。 D2 (-0.4,0.2) B1 o
3
三、平面应力状态分析——解析法
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2

dσ α

2[
σ x σy
2
2τ xy
sin 2α τ xy cos 2α ] 0 得到
σ x 1
τ x 0.2
σ y 0.4
C
D1 (-1,-0.2)
B2

τ y 0.2
(2) 确定 = 30°斜截面上的应力 将 半径 CD1 逆时针转动 2 = 60°到半径 CE, E 点的坐标就
代表 = 30°斜截面上的应力。
D2 (-0.4,0.2) B1 o
τy
σy
σx τx
τy
σx τx
σy
图 9-4
连接D1D2两点的直线与 轴相交于C 点, 以C为

(b)
D1 o y B2 C D2 x B1
圆心, CD1或CD2为半径
作圆

τy
σy
σx τx
τy
σx τx
σy
图 9-4

该圆的圆心 C 点到 坐标
原点的 距离为 半径为
(
x y
B1
A1
σx
σ1
平面应力圆画法
应力圆作法总结
例题9-1
从水坝体内某点处取出的单元体如图所示,
x= - 1MPa , y= - 0.4MPa , x= - 0.2MPa , y= 0.2MPa , 绘出相应的应力圆 确定此单元体在 =30°和 = - 40°两斜面上的应力。
σy τy
σx
σ1
α o 确定后, 1 对应的主平面方位即确定。

tg ( 2α 0 )
B1D1 2τ x CB1 (σ x σ y )
σ2
o
D1
A2 B2
C y D2 2α o
B1
A1
σx
σ1
tg ( 2τ x ) 2α 0 σ x σ y
1
(9-5)

τ tg ( 2 x ) 2α 0 σ x σ y
二、主应力和主平面
主平面: 一点处剪应力等于零的平面称为主平面 主应力: 主平面上的正应力称为主应力 说明: 一点处必定存在这样的一个单元体, 三个相互垂直
的面均为主平面, 三个互相垂直的主应力分别记为 1 ,2 , 3
且规定按代数值大小的顺序来排列, 即
2
1
1 2 3
y
(d)
σ y dA sinα
2、平面应力状态下, 任一斜截面 ( 截面 ) 上的应力 ¸
的 计算公式

x y x y
2
2 x y 2
cos 2 x sin 2
(9 - 1) (9 - 2)
sin 2 x cos 2
y
α 30
0
x
α 400
例题 9-2 两端简支的焊接工字钢梁及其荷载如图 a , b 所示
,梁的横截面尺寸示于图 c 中。试绘出截面 c 上 a , b 两点处 的应力圆,并用应力圆求出这两点处的主应力。
120
250KN
9 z 270
A C
B
1.6m
2m
(a)
a b
(c) 单位:mm
250KN 解: 首先计算支反力, 并作出 梁的剪力图和弯矩图 A C 1.6m 2m QC左 = 200 kN
剪应力 :对单元体任一点的矩顺时针转为正,反之为负。
设斜截面的面积为 dA , eb 的面积为 dAcos , bf 的面积为dAsin 研究对象的受力如图 9-2d 所示
e
e
x
x


τ x dA cosα σ x dA cosα
b

σ α dA
τ α dA
f
y
b
f
τ y dA sinα
200KN
B
+ MC = 80 kN•m
50KN
+
IZ
6 4 120300 111270 8810 mm 12 12 3 3
留下左边部分的单体元 ebf 作为研究对象(图9-2c)。
y
y
e
y
x
n e x
x
x
x
x
x

b
f
y
y
b
f
y
图9-2
y
y
y
e
y
x
n e x
x
x
x
x
x

b
f
y
y
b
f
y
相关文档
最新文档