赵树嫄 第四版 线代答案更新版
赵树嫄微积分第四版第六章 定积分

证
b a
f ( x )dx g( x )dx .
a
令 h( x ) f ( x ) g( x ) 即可.
18
推论2 证
| f ( x ) dx | | f ( x ) | dx
a a
b
b
(a b)
| f ( x) | f ( x) | f ( x) | ,
f ( x ) dx S
曲边梯形的面积
b a
f ( x ) dx S 曲边梯形面积的相反数
y
y f ( x)
a
o
y f ( x)
b
x
a o
b
x
11
y
f ( x)
A1
A3
A2
A5
a
b a
A4
b
x
f ( x ) dx A1 A2 A3 A4 A5
若要求阴影部分的面积, 则为
b a
f ( x ) dx f ( x ) dx .
b
a
5. 由定义不难得到:
b a
1 dx b a .
b a
f ( x ) dx lim f ( i )xi
0
i 1
n
10
定积分的几何意义:
f ( x ) 0, f ( x ) 0,
y
b a
个小区间[ xi 1 , xi ], 长度为 xi xi xi 1 ;
在每个小区间[ xi 1 , xi ] 上任取一点 i,
o a
x1
xi 1 i x i xn1 b
线性代数第四版答案

线性代数第四版答案(总120页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章行列式1利用对角线法则计算下列三阶行列式(1)解2(4)30(1)(1)1180132(1)81(4)(1)2481644(2)解acb bac cba bbb aaa ccc3abc a3b3c3(3)解bc2ca2ab2ac2ba2cb2(a b)(b c)(c a)(4)解x(x y)y yx(x y)(x y)yx y3(x y)3x33xy(x y)y33x2y x3y3x32(x3y3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4解逆序数为0(2)4 1 3 2解逆序数为4 41 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n1) 2 4 (2n)解逆序数为3 2 (1个)5 2 5 4(2个)7 2 7 4 7 6(3个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)(6)1 3 (2n1) (2n) (2n2) 2解逆序数为n(n1)3 2(1个)5 2 5 4 (2个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)4 2(1个)6 2 6 4(2个)(2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个)3写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为(1)t a11a23a3r a4s其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是(1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44(1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a424计算下列各行列式(1)解(2)解(3)解(4)解abcd ab cd ad1 5证明:(1)(a b)3;证明(a b)3(2);证明(3);证明(c4c3c3c2c2c1得)(c4c3c3c2得)(4)(a b)(a c)(a d)(b c)(b d)(c d)(a b c d);证明=(a b)(a c)(a d)(b c)(b d)(c d)(a b c d)(5)x n a1x n1a n1x a n证明用数学归纳法证明当n2时命题成立假设对于(n1)阶行列式命题成立即D n1x n1a1x n2a n2x a n1则D n按第一列展开有xD n1a n x n a1x n1a n1x a n因此对于n阶行列式命题成立6设n阶行列式D det(a ij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转依次得证明D3D证明因为D det(a ij)所以同理可证7计算下列各行列式(D k为k阶行列式)(1), 其中对角线上元素都是a未写出的元素都是0解(按第n行展开)a n a n2a n2(a21)(2);解将第一行乘(1)分别加到其余各行得再将各列都加到第一列上得[x(n1)a](x a)n1(3);解根据第6题结果有此行列式为范德蒙德行列式(4);解(按第1行展开)再按最后一行展开得递推公式D2n a n d n D2n2b n c n D2n2即D2n(a n d n b n c n)D2n2于是而所以(5) D det(a ij)其中a ij|i j|;解a ij|i j|(1)n1(n1)2n2(6), 其中a1a2a n0解8用克莱姆法则解下列方程组(1)解因为所以(2)解因为所以9问取何值时齐次线性方程组有非零解解系数行列式为令D0得0或1于是当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组有非零解解系数行列式为(1)3(3)4(1)2(1)(3)(1)32(1)23令D0得02或3于是当02或3时该齐次线性方程组有非零解第二章矩阵及其运算1已知线性变换求从变量x1x2x3到变量y1y2y3的线性变换解由已知故2已知两个线性变换求从z1z2z3到x1x2x3的线性变换解由已知所以有3设求3AB2A及A T B解4计算下列乘积(1)解(2)解(132231)(10)(3)解(4)解(5)解(a11x1a12x2a13x3 a12x1a22x2a23x3 a13x1a23x2a33x3)5设问(1)AB BA吗解AB BA因为所以AB BA (2)(A B)2A22AB B2吗解 (A B)2A22AB B2因为但所以(A B)2A22AB B2(3)(A B)(A B)A2B2吗解 (A B)(A B)A2B2因为而故(A B)(A B)A2B26举反列说明下列命题是错误的(1)若A20则A0解取则A20但A0(2)若A2A则A0或A E解取则A2A但A0且A E (3)若AX AY且A0则X Y解取则AX AY且A0但X Y7设求A2A3A k 解8设求A k解首先观察用数学归纳法证明当k2时显然成立假设k时成立,则k1时,由数学归纳法原理知9设A B为n阶矩阵,且A为对称矩阵,证明B T AB也是对称矩阵证明因为A T A所以(B T AB)T B T(B T A)T B T A T B B T AB从而B T AB是对称矩阵10设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB BA证明充分性因为A T A B T B且AB BA所以(AB)T(BA)T A T B T AB即AB是对称矩阵必要性因为A T A B T B且(AB)T AB所以AB(AB)T B T A T BA11求下列矩阵的逆矩阵(1)解 |A|1故A1存在因为故(2)解 |A|10故A1存在因为所以(3)解 |A|20故A1存在因为所以(4)(a1a2a n0)解由对角矩阵的性质知12解下列矩阵方程(1)解(2)解(3)解(4)解13利用逆矩阵解下列线性方程组(1)解方程组可表示为故从而有(2)解方程组可表示为故故有14设A k O (k为正整数)证明(E A)1E A A2A k1证明因为A k O所以E A k E又因为E A k(E A)(E A A2A k1)所以 (E A)(E A A2A k1)E由定理2推论知(E A)可逆且(E A)1E A A2A k1证明一方面有E(E A)1(E A)另一方面由A k O有E(E A)(A A2)A2A k1(A k1A k)(E A A2A k1)(E A)故 (E A)1(E A)(E A A2A k1)(E A)两端同时右乘(E A)1就有(E A)1(E A)E A A2A k115设方阵A满足A2A2E O证明A及A2E都可逆并求A1及(A2E)1证明由A2A2E O得A2A2E即A(A E)2E或由定理2推论知A可逆且由A2A2E O得A2A6E4E即(A2E)(A3E)4E或由定理2推论知(A2E)可逆且证明由A2A2E O得A2A2E两端同时取行列式得 |A2A|2即 |A||A E|2故 |A|0所以A可逆而A2E A2 |A2E||A2||A|20故A2E也可逆由A2A2E O A(A E)2EA1A(A E)2A1E又由A2A2E O(A2E)A3(A2E)4E(A2E)(A3E) 4 E所以 (A2E)1(A2E)(A3E)4(A 2 E)116设A为3阶矩阵求|(2A)15A*|解因为所以|2A1|(2)3|A1|8|A|1821617设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*证明由得A*|A|A1所以当A可逆时有|A*||A|n|A1||A|n10从而A*也可逆因为A*|A|A1所以(A*)1|A|1A又所以(A*)1|A|1A|A|1|A|(A1)*(A1)*18设n阶矩阵A的伴随矩阵为A*证明(1)若|A|0则|A*|0(2)|A*||A|n1证明(1)用反证法证明假设|A*|0则有A*(A*)1E由此得A A A*(A*)1|A|E(A*)1O所以A*O这与|A*|0矛盾,故当|A|0时有|A*|0(2)由于则AA*|A|E取行列式得到|A||A*||A|n若|A|0则|A*||A|n1若|A|0由(1)知|A*|0此时命题也成立因此|A*||A|n119设AB A2B求B解由AB A2E可得(A2E)B A故20设且AB E A2B求B解由AB E A2B得(A E)B A2E即 (A E)B(A E)(A E)因为所以(A E)可逆从而21设A diag(12 1)A*BA2BA8E求B 解由A*BA2BA8E得(A*2E)BA8EB8(A*2E)1A18[A(A*2E)]18(AA*2A)18(|A|E2A)18(2E2A)14(E A)14[diag(21 2)]12diag(12 1)22已知矩阵A的伴随阵且ABA1BA13E求B解由|A*||A|38得|A|2由ABA1BA13E得AB B3AB3(A E)1A3[A(E A1)]1A23设P1AP其中求A11解由P1AP得A P P1所以A11 A=P11P1.|P|3而故24设AP P其中求(A)A8(5E6A A2)解()8(5E62)diag(1158)[diag(555)diag(6630)diag(11 25)]diag(1158)diag(1200)12diag(100)(A)P()P125设矩阵A、B及A B都可逆证明A1B1也可逆并求其逆阵证明因为A1(A B)B1B1A1A1B1而A1(A B)B1是三个可逆矩阵的乘积所以A1(A B)B1可逆即A1B1可逆(A1B1)1[A1(A B)B1]1B(A B)1A26计算解设则而所以即27取验证解而故28设求|A8|及A4解令则故29设n阶矩阵A及s阶矩阵B都可逆求 (1)解设则由此得所以(2)解设则由此得所以30求下列矩阵的逆阵(1)解设则于是(2)解设则第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵(1)解(下一步r2(2)r1r3(3)r1 ) ~(下一步r2(1)r3(2) ) ~(下一步r3r2 )~(下一步r33 )~(下一步r23r3 )~(下一步r1(2)r2r1r3 )~(2)解(下一步r22(3)r1r3(2)r1 )~(下一步r3r2r13r2 )~(下一步r12 )~(3)解(下一步r23r1r32r1r43r1 )~(下一步r2(4)r3(3)r4(5) )~(下一步r13r2r3r2r4r2 )~(4)解(下一步r12r2r33r2r42r2 ) ~(下一步r22r1r38r1r47r1 ) ~(下一步r1r2r2(1)r4r3 )~(下一步r2r3 )~2设求A解是初等矩阵E(1 2)其逆矩阵就是其本身是初等矩阵E(1 2(1))其逆矩阵是E(1 2(1))3试利用矩阵的初等变换求下列方阵的逆矩阵(1)解~~~~故逆矩阵为 (2)解~~~~~故逆矩阵为4 (1)设求X使AX B 解因为所以(2)设求X使XA B 解考虑A T X T B T因为所以从而5设AX2X A求X解原方程化为(A2E)X A因为所以6在秩是r的矩阵中,有没有等于0的r1阶子式有没有等于0的r阶子式解在秩是r的矩阵中可能存在等于0的r1阶子式也可能存在等于0的r阶子式例如R(A)3是等于0的2阶子式是等于0的3阶子式7从矩阵A中划去一行得到矩阵B问A B的秩的关系怎样解R(A)R(B)这是因为B的非零子式必是A的非零子式故A的秩不会小于B的秩8求作一个秩是4的方阵它的两个行向量是(1 0 1 0 0) (11 0 0 0)解用已知向量容易构成一个有4个非零行的5阶下三角矩阵此矩阵的秩为4其第2行和第3行是已知向量9求下列矩阵的秩并求一个最高阶非零子式(1);解(下一步r1r2 )~(下一步r23r1r3r1 )~(下一步r3r2 )~矩阵的是一个最高阶非零子式(2)解(下一步r1r2r22r1r37r1 ) ~(下一步r33r2 )~矩阵的秩是2是一个最高阶非零子式(3)解(下一步r12r4r22r4r33r4 )~(下一步r23r1r32r1 )~(下一步r216r4r316r2 )~~矩阵的秩为3是一个最高阶非零子式10设A、B都是m n矩阵证明A~B的充分必要条件是R(A)R(B)证明根据定理3必要性是成立的充分性设R(A)R(B)则A与B的标准形是相同的设A 与B的标准形为D则有A~D D~B由等价关系的传递性有A~B11设问k为何值可使(1)R(A)1 (2)R(A)2 (3)R(A)3解(1)当k1时R(A)1(2)当k2且k1时R(A)2(3)当k1且k2时R(A)312求解下列齐次线性方程组:(1)解对系数矩阵A进行初等行变换有A~于是。
(完整版)赵树嫄微积分第四版第二章极限与连续

x从右侧无限趋近x0 , 记作x x0 (或x x0 0 ) .
左极限:
0, 0,使当x0 x x0时, 恒有 | f ( x) A | .
记作 lim f ( x) A 或 x x0
f ( x0 0) A .
x0
x0
x
左极限:
0, 0,使当x0 x x0时, 恒有 | f ( x) A | .
定义无限接近于无限增大时sinlimsinlim为中心线直线图形完全落在以函数lim不存在arctanlim不存在lim的一条水平渐近线就是那么的距离趋于零这时我们称直线lim的一条水平渐近线就是那么为常数二自变量趋于有限点处时函数的极限问题
第二章 极限与连续
本章介绍极限的概念、性质和运算法则,以及与极 限概念密切相关的,并且在微积分运算中起重要作 用的无穷小量的概念和性质。此外还给出了两个极 其有用的重要极限。随后,运用极限引入了函数的 连续性概念,它是客观世界中广泛存在的连续变化 这一现象的数学描述,微积分学中讨论的函数主要 是连续函数。
x
x
故 lim ex 不存在. x
o
x
一条伸展到无穷远的曲线 y f ( x) ,当点P( x, f ( x)) 沿 曲线无限远离原点时,点 P 到直线 y A 的距离趋于零, 这时我们称直线 y A 是曲线 y f ( x) 的水平渐近线.
如果 lim f ( x) A 或 lim f ( x) A ( A 为常数),
性质2 有界性
对于数列{an } ,如果存在常数 M 0 ,使对一切 n,有
| an | M , 则称数列{an } 是有界的。
定理2 收敛的数列必定有界。 注1 有界性是数列收敛的必要条件,不是充分条件。
赵树嫄微积分第四版第一章 函数

2000 则 | A| [ ] 333, 6 2000 | B| [ ] 250 , 8 2000 | AB| [ ] 83 , 24
250 333 83
S
例2 在12000的整数中,有多少整数 (1) 能被6或8整除; (2) 既不能被6也不能被8整除; (3) 能被6整除而不能被8整除.
B A B 基本性质: A
4、补集 A { x | x U 且 x A } ,其中 U为全集。
U
A
例如, U { 0 , 1 , 2 , 3 , } , A { 0 , 2 , 4 , 6 , } ,
则 A { 1 , 3 , 5 , 7 , }
例3 某地区有100个工厂,其中,80个生产甲种机床,以集 合A表示这些工厂;61个生产乙种机床,以集合B表示这些 工厂; 55个两种机床都生产。试用集合表示下列各类工厂, 并计算出各类工厂的数目: (1) 生产甲种机床而不生产乙种机床的工厂; (2) 生产乙种机床而不生产甲种机床的工厂; (3) 甲、乙两种机床至少生产其中一种的工厂; (4) 甲、乙两种机床都不生产的工厂。
A U ,A A 基本性质: A
(六) 集合运算律
B B A 交换律: A
A B B A
A B ) C A ( B C ) 结合律: ( ( A B ) C A ( B C )
( B C ) ( A B ) ( A C ) 分配律: A A ( B C ) ( A B ) ( A C )
A B A , , A B A " " 设
( A B ) B A ( B B ) A B
线性代数3-3(第四版)赵树嫄

设1(1 2) 2(1/2 2) 有122 由此可得 1220 即1 2线性相关
《线性代数》 (第四版)教学课件
首页 上一页 下一页 结束
(二)关于线性组合与线性相关的定理
定理37 向量组1 2 s(s2)线性相关的充分必要条件是 其 中至少有一个向量是其余s1个向量的线性组合 定理38 如果向量组1 2 s 线性相关 而1 2 s线性无 关 则向量可由向量组1 2 s线性表示且表示法唯一 举例 任何一个向量 (a1 a2 an) 都可由初始单位向量组 1(1 0 0) 2(0 1 0) n(0 0 1)唯一地线性表 示 即 a11a22 ann
《线性代数》 (第四版)教学课件
首页
上一页
下一页
结束
例5 证明 如果向量组 线性无关 则向量组 亦线性无关 证 设有一组数k1 k2 k3使 k1()k2()k3()0 成立 整理得 (k1k3)(k1k2)(k2k3)0 因为向量组 线性无关 故
k k3 0 1 0 k1 k2 k2 k3 0 该方程组的系数行列式D20
提示
1 0 1 D 1 1 0 20 0 1 1
所以该方程组只有零解k1k2k30 从而 线性无关
《线性代数》 (第四版)教学课件
首页
上一页
《线性代数》 (第四版)教学课件
首页 上一页 下一页 结束
定理39 设有两个向量组 1 2 s (A) 及 1 2 t (B) 向量组(B)可由向量组(A)线性表示 如果st 则向量组(B)线性 相关
举例 定理又可以叙述为 如果向量组(B)可由向量组(A)线性表 示 且向量组(B)线性无关 则ts
《线性代数》 (第四版)教学课件
第二章-线性代数(第四版)习题答案

方法三. 用克拉默法则解方程. 系数矩阵
2 2 1 D= 3 1 5 3 2 3 = = = = = =
c2 −2c3 c1 −2c3
0
0
1 = 1.
−7 −9 5 −3 −4 3
所以,
1 y1 = D x1 x2 x3 2 1 2 1 5 3 = x1 1 5 2 3 − x2 2 1 2 3 + x3 2 1 1 5 = −7x1 − 4x2 + 9x3 ;
y1 2 2 1 2 1 −1 x1 −7 −4 3 2 9 y1
y2 = 3 3 y2
5 3
x2 = 6 3 x3
−7 y2 . y3 −4
即
y1 = −7x1 − 4x2 + 9x3 , y2 = 6x1 + 3x2 − 7x3 , y = 3x + 2x − 4x . 3 1 2 3
−2 3 2 ; 1 7 0 (−1, 2);
(2) (1, 2, 3) 2 ; 1
线性代数 (同济四版) 习题参考答案
2 1 4 0 1 3 1
19
0 −1 2 ; (4) 1 −1 3 4 1 −3 1 4 0 −2 a11 a12 a13 x1 x2 ; (5) (x1 , x2 , x3 ) a a a 12 22 23 a13 a23 a33 x3 1 2 1 0 1 0 3 1 0 1 0 1 0 1 2 −1 . (6) 0 0 2 1 0 0 −2 3 0 0 0 3 0 0 0 −3 4 3 1 7 4×7+3×2+1×1 解: (1) 1 −2 3 2 = 1 × 7 + (−2) × 2 + 3 × 1 5 7 0 1 5×7+7×2+0×1 3 (2) (1, 2, 3) 2 = (1 × 3 + 2 × 2 + 3 × 1) = (10) = 10. 1 −2 4 2 × (−1) 2 × 2 2 (3) 1 (−1, 2) = 1 × (−1) 1 × 2 = −1 2 . −3 6 3 × (−1) 3 × 2 1 3 1 6 −7 8 2 1 4 0 0 −1 2 = 20 −5 −6 1 −1 3 4 1 −3 1 4 0 −2 a11 a12 a13 x1 (x1 , x2 , x3 ) a12 a22 a23 x2 a13 a23 a33 x3 3
(完整版)赵树嫄微积分第四版第九章微分方程与差分方程简介

dx
2
2
22
dy 2 sin
y
sin
x 2
dx,
2
ln | csc y cot y | 2cos x C
22
2
为所求通解.
dx sin x
csc
x
dx
ln
|
csc
x
cot
x
|
C
例
求方程
y
1 y2 xy(1 x2 )
满足 y(1)
2
的特解.
解
y
1
分离变量, 1
y2
dy
x(1
x2 ) dx
两边积分
的通解.
解
分离变量:
e
ey y
1
dy
ex ex
1ln(e y 1) ln(ex 1) lnC ,
即所求通解为 (ex 1)(e y 1) C .
例 求方程 dy cos x y cos x y 的通解.
dx
2
2
解 dy cos x y cos x y 2sin x sin y ,
由初始条件 y(0) 1 , C 1 ,
即所求特解为 y e x2 ( x 2 1) .
例 x ln x dy ( y ln x)dx 0 ,且 y(e) 1 。
解 方程改写为 y 1 y 1 , 一阶线性方程, x ln x x
y
e
dx x ln x
(
1
e
dx x ln x
y 积分 ln y x2 lnC ,
则通解为 y C ex2 .
练习 求方程 dy y 的通解. dx x
解 分离变量, dy dx , yx
线性代数人大(赵树

例4 证明上三角行列式
a11 0 D 0 a12 a1n a22 a2 n a11a22 ann 0
证: 由定义
和式中,只有当
D ( 1) ( j1 j2 jn ) a1 j1 a2 j2 anjn
ann
jn n, jn1 n 1,, j2 2, j1 1时,
x1 3 x2 5 例1 解二元线性方程组 4 x1 3 x2 5
解: 方程组未知量的系数所构成的二阶行列式
D
1 3 4 3
3 ( 3) 4 15 0
1 5 4 5
方程组有惟一解.又
D1
5 3 5 3
30 , D2
15
分析:
a11 a 21 a 31 a12 a 22 a 32 a13 a 23 a11a 22a 33 a12a 23a 31 a13a 21a 32 a 33 a13a 22a 31 a12a 21a 33 a11a 23a 32
( 1)
( j1 j2 j3 )
于是方程组的解为
D3 15 D1 55 D2 20 x1 11,x2 4, x3 3. D 5 D 线性代数 5 D 5 9
思考与练习(三阶行列式) 1 1 1
1.解方程 1 2 1 x
x 1 6 2 x1 x 2 3 x 3 5 2.解线性方程组 3 x1 x 2 5 x 3 5 4x x x 9 2 3 1
于是方程组的解为
D1 30 D2 15 x1 2,x2 1. D 15 D 15 线性代数
6
(2)三阶行列式
主对角线法