数学人教版八年级下册函数的图象在实际生活中的运用

合集下载

人教版八年级数学下册19 第1课时 函数的图象教案与反思

人教版八年级数学下册19 第1课时 函数的图象教案与反思

19.1.2 函数的图象工欲善其事,必先利其器。

《论语·卫灵公》原创不容易,【关注】,不迷路!工欲善其事,必先利其器。

《论语·卫灵公》原创不容易,【关注】,不迷路!第1课时函数的图象1.理解函数图象的意义;(重点)2.能够结合实际情境,从函数图象中获取信息并处理信息.(难点)一、情境导入在太阳和月球引力的影响下,海水定时涨落的现象称为潮汐.如图是我国某港某天0时到24时的实时潮汐图.图中的平滑曲线,如实记录了当天每一时刻的潮位,揭示了这一天里潮位y(m)与时间t(h)之间的函数关系.本节课我们就研究函数图象.二、合作探究探究点一:函数的图象【类型一】函数图象的意义下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是( )解析:∵对于x的每一个取值,y都有唯一确定的值,选项A对于x的每一个取值,y都有两个值,故A错误;选项B对于x的每一个取值,y都有两个值,故B错误;选项C对于x的每一个取值,y都有两个值,故C错误;选项D对于x的每一个取值,y都有唯一确定的值,故D正确.故选D.方法总结:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.【类型二】判断函数的大致图象3月20日,小彬全家开车前往铜梁看油菜花,车刚离开家时,由于车流量大,行进非常缓慢,十几分钟后,汽车终于行驶在高速公路上,大约三十分钟后,汽车顺利到达铜梁收费站,停车交费后,汽车驶入通畅的城市道路,二十多分钟后顺利到达了油菜花基地,在以上描述中,汽车行驶的路程s(千米)与所经历的时间t(分钟)之间的大致函数图象是( )解析:行进缓慢,路程增加较慢;在高速路上行驶,路程迅速增加;停车交费,路程不变;驶入通畅的城市道路,路程增加但增加的比高速路上慢,故B符合题意.故选B.方法总结:此类题目,理解题意是解题关键,据题干中提供的信息,及生活实际判断图象各阶段的变化情况和特征.【类型三由函数图象判断容器的形状下雨时在室外放置一个无盖的容器,如果雨水均匀地落入容器,容器水面高度h与时间t的函数图象如图所示,那么这个容器的形状可能是( )解析:根据图象可以得到,杯中水的高度h随注水时间t的增大而增大,而增加的速度越来越小.则杯子应该是越向上开口越大.故杯子的形状可能是B.故选B.方法总结:解决此类问题,要在读懂题意的前提下,结合图象分析问题并注意一些细节的描述,如在某段时间内的函数值的增减情况、变化趋势等.究点二:函数图象的应用【类型一】从函数图象上获取信息小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多米?一共用了多少分钟?(4)我们认为骑单车的度超过300米/分就超越了安全限度.问:在整个上学的途中哪个时间段明骑车速度最快,速度在安全限度内吗?解析:根据图象进行分析即可.解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;(2)根据题意,小明在书店停的时间为从8分钟到1分钟,故小明在书店停留了4分钟;(3)一行驶的总路程为120+(1200-600)+(1500-600)=1200+600+900=2700(米);共用了14分钟;(4)由图象可知:0~6分钟时,平均速度为12006=200(米/分);6~8分钟时,平均速度为1200-6008-6=300(米/分);12~14钟时,平均速度为=450(米/分).所以,12~14分钟时小明骑车速度最快,不在安全限度内.方法总结:解读图象反映的信息,关键是理解横轴和纵轴表示的实际意义,解决问题的过程中体现了数形结合思想.【类型二】动点问题的函数图象如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →B →C →D →A ,设P 点经过的路程为x ,以点A ,P ,B 为顶点的三角形的面积是y ,则下列图象能大致反应y 与x 的函数关系的是( )解析:当点P 由点A 向点B 运动,即0≤x ≤4时,y 的值为0;当点P 在BC 上运动,即4<x ≤8时,y 随着x 的增大而增大;当点P 在CD 上运动,即8<x ≤12时,y 不变;当点P 在DA 上运动,即12<x ≤16时,y 随x 的增大而减小.故选B.方法总结:解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.三、板书设计1.函数图象的意义2.函数图象的应用本课设计的学习内容都是学生所熟知的事情,情景导入是由实例入手,这些内容有利于学生联系实际,主动进行观察、实验、猜测、验证、推理与交流等数学活动.通过一些现实生活中用图象来反映的问题实例,让学生经历将实际问题抽象为数学问题的过程.教学生如何观察分析图象,学会观察图象的一般步骤,利用问题串的形式引导学生逐步深入获得图象所传达的信息,逐步熟悉图象语言.【素材积累】每个人对未来都有所希望和计划,立志是成功的起点,有了壮志和不懈的努力,就能向成功迈进。

人教版八年级数学下册《勾股定理》勾股定理在实际生活中的应用

人教版八年级数学下册《勾股定理》勾股定理在实际生活中的应用
(2)构造直角三角形; 25 推论1 三个角都相等的三角形是等边三角形
第二十一章 一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。
(3)利用勾股定理等列方程; 本章的难点是解一元二次方程。
4.最后,就是冲刺阶段,也称为“备考篇”。在这一阶段,老师会将复习的主动权交给你自己。以前,学习的重点、难点、方法、思路都是以老师的意志为主线,但是,现在你要直接 、主动的研读《考试说明》,研究近年来的高考试题,掌握高考信息、命题动向。
小技巧 化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
归纳小结
1、勾股定理: 如__果__直_角__三__角__形_的__两__直__角_边__长__分__别_为__a_,_b_,_斜_边__为__c.
那__么____________________________ 2、勾股定理有广泛的应用.
第十七章 勾股定理
17.1 勾股定理
第2课时 勾股定理在实际生活中的应用
教学目标 1.会用勾股定理解决简单的实际问题. 2.树立数形结合的思想.
勾股定理的应用
例1:一个门框的尺寸如图所示,一块长3m, 宽2.2m的长方形薄木板能否从门框内通过? 为什么?
已知条件有哪些?
C
2m
A 1m B
1.木板能横着或竖着从门框通过吗? 2.这个门框能通过的最大长度是多少? 3.怎样判定这块木板能否通过木框?
3、学习反思:
____________________________ __________________ ____B
拓展迁移
在数轴上作出表示 20的点. 一个门框的尺寸如图所示,一块长3m,宽的长方形薄木板能否从门框内通过?为什么?

最新人教版初中数学八年级下册19.1.2《画函数的图象》教案

最新人教版初中数学八年级下册19.1.2《画函数的图象》教案

画函数的图象知识技能目标1.掌握用描点法画出一些简单函数的图象;2.理解解析法和图象法表示函数关系的相互转换.过程性目标1.结合实际问题,经历探索用图象表示函数的过程;2.通过学生自己动手,体会用描点法画函数的图象的步骤.教学过程一、回忆复习函数的表示方法有哪些?二、导入新课写出正方形的边长x与面积s的函数关系式,指出自变量x的取值范围,并思考:如何在直角坐标系中画这个函数的图像?三、实践应用例1画出函数y=x+1的图象.分析要画出一个函数的图象,关键是要画出图象上的一些点,为此,首先要取一些自变量的值,并求出对应的函数值.解取自变量x的一些值,例如x=-3,-2,-1,0,1,2,3 …,计算出对应的函数值.为表达方便,可列表如下:由这一系列的对应值,可以得到一系列的有序实数对:…,(-3,-2),(-2,-1),(-1,0),(0,1),(1,2),(2,3),(3,4),…在直角坐标系中,描出这些有序实数对(坐标)的对应点,如图所示.通常,用光滑曲线依次把这些点连起来,便可得到这个函数的图象,如图所示.归纳:画函数图象的方法,可以概括为列表、描点、连线三步,通常称为描点法.例2画出函数x y 21的图象.分析用描点法画函数图象的步骤:分为列表、描点、连线三步.解列表:描点:用光滑曲线连线:四、交流反思由函数解析式画函数图象,一般按下列步骤进行:1.列表:列表给出自变量与函数的一些对应值;2.描点:以表中对应值为坐标,在坐标平面内描出相应的点;3.连线:按照自变量由小到大的顺序,把所描各点用光滑的曲线连结起来. 描出的点越多,图象越精确.有时不能把所有的点都描出,就用光滑的曲线连结画出的点,从而得到函数的近似的图象.五、检测反馈1.在所给的直角坐标系中画出函数x y 21=的图象(先填写下表,再描点、连线).2.画出函数xy 6-=的图象(先填写下表,再描点、然后用光滑曲线顺次连结各点).3.(1)画出函数y =2x -1的图象(在-2与2之间,每隔0.5取一个x 值,列表;并在直角坐标系中描点画图).(2)判断下列各有序实数对是不是函数y =2x -1的自变量x 与函数y 的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:(-2.5,-4),(0.25,-0.5),(1,3),(2.5,4).4.(1)画出函数231+-=x y 的图象(在-4与4之间,每隔1取一个x 值,列表;并在直角坐标系中描点画图).(2)判断下列各有序实数对是不是函数231+-=x y 的自变量x 与函数y 的一对对应值,如果是,检验一下具有相应坐标的点是否在你所画的函数图象上:)312,2(-,)212,23(-,(-1,3),)211,23(.5.画出下列函数的图象:(1)y =4x -1; (2)y =4x +1.。

初二八年级数学下册《解题技巧专题:利用一次函数解决实际问题》(附答案演示)【人教版适用】

初二八年级数学下册《解题技巧专题:利用一次函数解决实际问题》(附答案演示)【人教版适用】

解:(2)∵B种树苗的数量不超过
35棵,但不少于A种树苗的数量, ∴ ∴22.5≤x≤35.
设总费用为W元,则W=6.4x+
32+7(45-x)=-0.6x+347. ∵k=-0.6<0,
∴y随x的增大而减小,
∴当x=35,45-x=10时,总费用最低,即购买B种 树苗35棵,A种树苗10棵时,总费用最低,W最低= -0.6×35+347=326(元).
5.A,B两地相距60km,甲、乙两人从两地出发相向 而行,甲先出发,图中l1,l2
表示两人离A地的距离s(km)
与时间t(h)的关系,请结合图 象解答下列问题:
(1)表示乙离A地的距离与时间关系的图象是
(填l1
或l2);甲的速度是 30 km/h,乙的速度是 20 km/h;
解析:由题意可知,乙的函数
kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A
酒店本月对这种水果的需求量,y(元)表示水果店销售
这批水果所获得的利润. (1)求y关于x的函数表达式;
解:(1)当2000≤x≤2600时,y=10x-6(2600-x)=16x
-15600;当2600<x≤3000时,y=2600×10=26000,
பைடு நூலகம்
四、分类讨论思想
4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两 “龙虾节”期间,甲、乙两家商店 都让利酬宾,付款金额y甲,y乙
家农贸商店,平时以同样的价格出售品质相同的小龙虾,
(单位:元)与原价x(单位:元)之
间的函数关系如图所示:
(1)直接写出y甲,y乙关于x的函数关系式; 解:(1)y甲=0.8x,y乙=
∴y=
(2)当A酒店本月对这种水果的需求量如何时,该水果店

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计

人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
(四)课堂练习,500字
为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。

人教版数学八年级下册《勾股定理在实际生活中的应用》ppt课件

人教版数学八年级下册《勾股定理在实际生活中的应用》ppt课件

中点,它的顶端恰好到达池边的
水面.这个水池的深度与这根芦
苇的长度分别是多少?
A
巩固练习
解:设AB=x,则AC=x+1, 有 AB2+BC2=AC2,
B
C
可列方程,得 x2+52=(x+1)2 ,
解方程得x=12.
因此x+1=13
答:这个水池的深度是12尺,
这根芦苇的长度是13尺.
A
链接中考
1.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁
2.如图,学校教学楼前有一块长为 4 米,宽为 3 米的
长方形草坪,有极少数人为了避开拐角走“捷径”, 在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长; (2)他们仅仅少走了几步(假设2步为1米)?
解:(1) 在Rt△ ABC 中,
A
别踩我,我怕疼! 根据勾股定理得
AB 32 42 5米,
A
5
4
3
C
2B
1
x
-4 -3 -2 --11 O 1 2 3
AB AC2 BC2 5.
问题:如果知道平面直角坐标 系坐标轴上任意两点的坐标为 A(x1,y1),B(x2,y2),你能求 这两点之间的距离吗?
总结
(x1,y1) y A C
O
(x2,y2)
B x
两点之间的距离公式:一般地,设平面上任意两点
归纳总结
利用勾股定理解决实际问题的一般步骤:
实际问题 解决
勾股定理
转化 利用
数学问题 建构 直角三角形
将实际问题转化为数学问题,建立几何模型,画 出图形,分析已知量、待定量,这是利用勾股定 理解决实际问题的一般思路.

人教版 八年级数学下册 第19章 专题练习:《一次函数图像综合:实际应用(行程、收费等)》(二)

人教版 八年级数学下册 第19章 专题练习:《一次函数图像综合:实际应用(行程、收费等)》(二)

人教版八年级数学下册第19章专题:《一次函数图像综合:实际应用(行程、收费等)》(二)1.“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为y(米)与时间x(分钟)的关系如图.请结合图象,解答下列问题:(1)填空:a=;b=;m=.(2)求线段BC所在直线的解析式.(3)若小军的速度是120米/分,求小军第二次与爸爸相遇时距图书馆的距离.2.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,根据图象所提供的信息分析,解决下列问题:(1)甲队的工作速度;(2)分别求出乙队在0≤x≤2和2≤x≤6时段,y与x的函数解析式,并求出甲乙两队所挖河渠长度相等时x的值;(3)当两队所挖的河渠长度之差为5m时x的值.3.疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?4.甲、乙两车分别从A,B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地,乙车匀速前往A地.设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(小时),y与x之间的函数图象如图所示.(1)图中,m=,n=;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)在甲车返回到A地的过程中,当x为何值时,甲、乙两车相距190千米?5.如图1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距千米;货车的速度是千米/时;(2)求三小时后,货车离C站的路程y2与行驶时间x之间的函数表达式;(3)试求客车与货两车何时相距40千米?6.为了减少二氧化碳的排放量,提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付(使用的前1小时免费)和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)图中表示会员卡支付的收费方式是(填①或②).(2)在图①中当x≥1时,求y与x的函数关系式.(3)陈老师经常骑行该公司的共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.7.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人距离景点A的路程(米)关于时间t(分)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙距离景点C的路程不超过300米,则乙从景点B步行到景点C的速度至少为多少?8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.如图,l A、l B分别表示A步行与B骑车在同一公路上同时出发,距甲地的路程S(千米)与B出发的时间t(小时)的关系.已知B骑车一段路后,自行车发生故障,进行修理.(1)B出发时与A相距千米,B出发后小时与A相遇;(2)求出A距甲地的路程S A(千米)与时间t(小时)的关系式,并求出B修好车后距甲地的路程S B(千米)与时间t(小时)的关系式.(写出计算过程)(3)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,在途中何时与A相遇?10.某食品工厂将一种食品的加工任务平均分给甲、乙两个生产组共同完成.甲、乙两组同时以相同的效率开始工作,中途乙组因升级设备,停工了一段时间.乙组设备升级完毕后,工作效率有所提升,在完成本组任务后,还帮助甲组加工了60千克,最后两组同时停工,完成了此次加工任务.两组各自加工的食品量y(千克)与甲组工作时间x(小时)的关系如图所示.(1)甲组每小时加工食品千克,乙组升级设备停工了小时;(2)设备升级完毕后,乙组每小时可以加工食品多少千克?(3)求a、b的值.参考答案1.解:(1)由图可得,a=1500÷150=10,b=10+5=15,m=(3000﹣1500)÷(22.5﹣15)=1500÷7.5=200,故答案为:10,15,200;(2)设线段BC所在的直线的解析式为y=kx+m,∵点B(15,1500),点C(22.5,3000)在直线y=kx+m上,∴,得即线段BC所在的直线的解析式为y=200x﹣1500;(3)∵小军的速度是120米/分,∴线段OD所在直线的解析式为y=120x,令120x=200x﹣1500,解得,x=18.75∴小军第二次与爸爸相遇时距图书馆的距离是3000﹣120×18.75=750(米),答:小军第二次与爸爸相遇时距图书馆的距离是750米.2.解:(1)甲队的工作速度为:60÷6=10(米/小时);(2)当0≤x≤2时,设y与x的函数解析式为y=kx,可得2k=30,解得k=15,即y=15x;当2≤x≤6时,设y与x的函数解析式为y=nx+m,可得,解得,即y=5x+20,∴;10x=5x+20,解得x=4,即甲乙两队所挖河渠长度相等时x的值为4;(3)当0≤x≤2时,15x﹣10x=5,解得x=1.当2<x≤4时,5x+20﹣10x=5,解得x=3,当4<x≤6时,10x﹣(5x+20)=5,解得x=5.答:当两队所挖的河渠长度之差为5m时,x的值为1h或3h或5h.3.解:(1)设降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=kx+b,∵AB段过点(40,160),(80,260),∴,解得,,即降价后销售额y(元)与销售量x(千克)之间的函数表达式是y=2.5x+60(x>40);(2)设当销售量为a千克时,小李销售此种水果的利润为150元,2.5a+60﹣2a=150,解得,a=180,答:当销售量为180千克时,小李销售此种水果的利润为150元.4.解:(1)m=300÷(180÷1.5)=2.5,n=300÷[(300﹣180)÷1.5]=3.75,故答案为:2.5;3.75;(2)设甲车返回时y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴甲车返回时y与x之间的函数关系式是y=﹣100x+550(2.5≤x≤5.5);(3)乙车的速度为:(300﹣180)÷1.5=80(千米/时),甲车返回时的速度为:300÷(5.5﹣2.5)=100(千米/时),根据题意得:80x﹣100(x﹣2.5)=190,解得x=3.答:当x=3时,甲、乙两车相距190千米.5.解:(1)由函数图象可得,A,B两地相距:480+120=600(km),货车的速度是:120÷3=40(km/h).故答案为:600;40;(2)y=40(x﹣3)=40x﹣120(x>3);(3)分两种情况:①相遇前:80x+40x=600﹣40解之得x=…(8分)②相遇后:80x+40x=600+40解之得x=综上所述:当行驶时间为小时或小时,两车相遇40千米.6.解:(1)图中表示会员卡支付的收费方式是②.故答案为:②(2)当x≥1时,设手机支付金额y(元)与骑行时间x(时)的函数关系式为y=kx+b (k≠0),将(1,0),(1.5,2)代入y=kx+b,得:,解得:,∴当x≥1时,手机支付金额y(元)与骑行时间x(时)的函数关系式为y=4x﹣4.(3)设会员卡支付对应的函数关系式为y=ax,将(1.5,3)代入y=ax,得:3=1.5a,解得:a=2,∴会员卡支付对应的函数关系式为y=2x.令2x=4x﹣4,解得:x=2.由图象可知,当0<x<2时,陈老师选择手机支付比较合算;当x=2时,陈老师选择两种支付都一样;当x>2时,陈老师选择会员卡支付比较合算.7.解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后25分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地300米时,乙需要步行的距离为:5400﹣3000﹣300=2100(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:=70(米/分),答:乙从景点B步行到景点C的速度至少为70米/分.8.解:(1)由图象可得,甲店团体票是200元,个人票为(元);乙店人数小于或等于10人时,个人票为(元),乙店人数大于10人而又不超过20人时,价格为600元.∴y甲=25x+200,;(2)当0≤x≤10时,令25x+200=60x,得x=,当10≤x≤20时,令25x+200=600,得x=16,答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人时,小王公司应该选择在乙店吃小龙虾更省钱.9.解:(1)由图形可得B出发时与A相距10千米B出发后3小时与A相遇;故答案为:10,3;(2)设S A的解析式为;S A=k2t+b,由题意得:,解得:,则S A的解析式为;S A=t+10,设S B的解析式为S B=mt+n,由题意得:解得:,∴S B的解析式为S B=10t﹣7.5;(3)如图,设B不发生故障时的解析式为:y=k2t,根据题意得:7.5=0.5k2,解得:k2=15,则解析式为y=15t,由,解得:,∴当t=时,与A相遇10.解:(1)由图象可得,甲组每小时加工食品:210÷7=30(千克);乙组升级设备停工了:4﹣2=2(小时),故答案为:30;2;(2)(210﹣30×2)÷(7﹣4)=50(千克/时),答:设备升级完毕后,乙组每小时可以加工食品50千克;(3)根据题意得,50(b﹣4)=30(b﹣2)+60×2,解得b=13,∴a=30×2+50×(13﹣4)=510.。

人教版初中数学八年级下册19.2一次函数一次函数图像与性质应用课件

人教版初中数学八年级下册19.2一次函数一次函数图像与性质应用课件
反思小结:确定正比例函数的表达式需要1个条件, 确定一次函数的表达式需要2个条件.
2、已知一次函数的图象经过点(3,5)与(-4, -9).求这个一次函数的解析式.
例3、已知一次函数y=kx+b(k≠0)在x=1时,y=5, 且它的图象与x轴交点的横坐标是6,求这个一 次函数的解析式。
4、 小明根据某个一次函数关系式填写了 下表:
已知:如图,平面直角坐标系xOy中,A(1,0), B(0,1),C(-1,0),过点C的直线绕点C旋 转,交y轴于点D,交线段AB于点E. (1)求∠OAB的度数及直线Az的解析式; (2)若△OCD与△BDE的面积相等, ①求直线CE的解析式; ②若y轴上的一点P满足∠APE=45°,请你直接写 出P点的坐标.
或3毫克以上时,治疗疾病最有效, 6
那么这个有效时间是_4__ 小时。.
点评(1)根据图像反映的信息解答有关问 3
题时,首先要弄清楚两坐标轴的实际意义,抓
住几个关键点来解决问题;
O2
5
(2)特别注意,第5问中由y=3对应的x值有两个;

x/时
(3)根据函数图像反映的信息来解答有关问题,比较形象、直观,从中能 进一步感受“数形结合思想”。
解:(1)设Q=kt+b。把t=0,Q=40;t=3.5,Q=22.5
分别代入上式,得 b 40
解得 k 5
22.5 3.5k b
b

40
图象是包括
解析式为:Q=-5t+40 (0≤t≤8) Q (2)取点A(0,40),B(8,0),
40 然后连成 线段AB,即是所求的图形。
如图,直线y=kx+6与x、y轴分别交于E、F.点E 坐标为(-8,0),点A的坐标为(-6,0),P(x ,y)是直线y=kx+6上的一个动点. (1)求k的值; (2)若点P是第二象限内的直线上的一个动点,当 点P运动过程中,试写出三角形OPA的面积S与x的 函数关系式,并写出自变量x的取值范围; (3)探究:当P运动到什么位置时,三角形OPA的 面积为 27/8 ,并说明理由.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

19.1.2 函数图象
第3课时
教学、学习目标:
1、对比函数的三种表示方法,体会不同的表示方法的优点与不足。

2、能根据解题的实际需要,将三种表示函数的方法相互转化。

3、提高识图能力、分析函数图象信息能力。

4、能解决与函数相关的简单问题的能力。

教学重点:运用函数的三种表示方法解决相关问题。

教学难点:分析概括实际问题图象中的信息。

教学过程
一、提出问题,创设情境
1、回顾前面的问题,表示两个变量的对应函数关系有哪些方法?
借助图形展示,由学生回答,点出三种表示方法:图象法、列表法、解析式法
2、你认为这三种表示函数的方法各有什么优点?
在学生回答的基础上适当归纳,进而提出三种方法在实际问题中的运用
3、学生自学课本P79—80,完成导学案P55预习导学部分
二、新课探究:
1、探究活动1(P79练习2)如图是两地某一天气温变化图
师生共同解决相关问题,明确认识图象变化
2、探究活动2例4一水库的水位在最近5 h 内持续上涨,下表记录了这5 h 内6 个时间点的水位高度,其中t 表示时间,y表示水位高度.
t/h 0 1 2 3 4 5
y/m 3 3.3 3.6 3.9 4.2 4.5
(1)在平面直角坐标系中描出表中数据对应的点,这些点是否在一条直线上?由此你发现水位变化有什么规律?
(2)水位高度y 是否为时间t 的函数?如果是,试写出一个符合表中数据的函数解析式,并画出函数图象.这个函数能表示水位的变化规律吗?
(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度将达到多少米.师生共同解决例题,分析不同表示方法的运用及相互转化过程。

进一步明确解决实际问题的方法
三、当堂练习
1.王教授和孙子小强经常一起进行爬山早锻炼.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山
所用时间(分)的关系(从小强开始爬山时计时),看图回答下列
问题:(1)小强让爷爷先上 米;
(2)山顶高 米, 先爬上山顶;
(3)小强通过 时间追上爷爷;
(4) 的速度大,大 。

2、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用。

刚开始,他按市场价售出一部分后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示。

结合图像回答下列问题:
(1)农民自带的零钱是 ;
(2)降价前他出售每千克土豆的价格是 .
(3)降价后他按每千克0.4元 将剩余土豆售完,这时他手中
的钱(含备用零钱)是26元,他一共带了土豆 千克
3、一慢车和一快车沿相同路线从A 地到B 地,所行的路程与时间的函数图象如图,试根据图象回答下列问题(2003盐城中考试题)
1)慢车比快车早出发 小时,快车追上慢车时行使了 千
米,快车比慢车早 小时到达B 地;
2)快车追上慢车需 个小时.
3)求快、慢车的速度。

4)求A 、B 两地之间的路程。

四、课时小结
1、函数图象上点的横、纵坐标分别对应 值和 的值。

2、从函数图象中获得的信息来研究实际问题关键要注意分清横轴和纵轴表示的
五、课后作业
导学测评P36—37相关练习
板书设计。

相关文档
最新文档