2014届江苏高考数学最后一卷
2014年高考江苏数学试题及答案

2014 年一般高等学校招生全国一致考试(江苏卷)数学Ⅰ注意事项考生在答题前请仔细阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第 14 题)、解答题(第15 题第20题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务势必自己的姓名、准考据号用毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点.3.请在答题卡上依据次序在对应的答题地区内作答,在其余地点作答一律无效.作答一定用毫米黑色墨水的署名笔.请注意字体工整,字迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面洁净,不要折叠、损坏.一律禁止使用胶带纸、修正液、可擦洗的圆珠笔.参照公式:圆柱的体积公式:V圆柱sh ,此中 s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱 =cl ,此中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14 小题,每题 5 分,合计70 分.请把答案填写在答题卡相应地点上.........( 1)【 2014 年江苏, 1, 5 分】已知会合A{ 2 , 1,3,4} , B{1,2,3} ,则A I B _______ .【答案】 {1,3}【分析】由题意得 A I B {1,3} .( 2)【 2014 年江苏, 2, 5 分】已知复数z(52i)2( i 为虚数单位),则z的实部为_______.【答案】 21【分析】由题意z(52i) 225 2 52i(2i) 22120i,其实部为 21.( 3)【 2014 年江苏, 3, 5 分】右图是一个算法流程图,则输出的n 的值是 _______.【答案】 5【分析】此题本质上就是求不等式2n20的最小整数解.2n20整数解为 n5,所以输出的 n 5.( 4)【 2014 年江苏, 4, 5 分】从 1,2 ,3,6 这 4 个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是 _______.【答案】132 个数共有 C42【分析】从1,2,3,6这 4 个数中任取6种取法,此中乘积为 6 的有1,6和2,3两种取法,所以所求概率为P2 1 .63( 5)【 2014年江苏, 5, 5 分】已知函数y cosx 与y sin(2 x)(0 ≤) ,它们的图象有一个横坐标为的交点,则的值是 _______ .3【答案】6【分析】由题意 cos sin(23) ,即 sin(2) 1 , 2k( 1)k, (k Z ) ,因为 0,所33236以.6( 6)【 2014 年江苏, 6, 5 分】为了认识一片经济林的生长状况,随机抽测了此中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频次散布直方图如下图,则在抽测的 60 株树木中,有株树木的底部周长小于 100 cm.【答案】 24【分析】由题意在抽测的60 株树木中,底部周长小于100cm 的株数为(0.0150.025) 10 6024 .( 7)【 2014 年江苏, 7,5 分】在各项均为正数的等比数列 { a n } 中,若 a 2 1 ,a 8 a 6 2a 4 ,则 a 6 的值是 ________.【答案】 4【分析】设公比为 q ,因为 a 21 ,则由 a 8a 6 2a 4 得 q 6 q 42a 2 , q 4 q 2 2 0 ,解得 q 22 ,所以a 6 a 2 q 4 4 .( 8)【 2014 年江苏, 8,5 分】设甲、乙两个圆柱的底面积分别为S 1 ,S 2 ,体积分别为 V 1 ,V 2 ,若它们的侧面积相等,且S 19,则V 1的值是 _______.S 24V 2【答案】32r2h r 2S9 【分析】设甲、乙两个圆柱的底面和高分别为r 1、h 1 , r 2、h 2 ,则 2 r 1 h 12 r 2 h 2 ,1,又11,所h 2r 1S 22r 24以r 1 3V 1r 12 h 1r 12 h 1 r 12 r 2r 1 3r 22 ,则r 22 h 2 r 22 h 2 r 22 r 1 r 2 .V 2 2( 9)【 2014 年江苏, 9,5 分】在平面直角坐标系 xOy 中,直线 x 2 y 3 0 被圆 ( x 2)2 ( y 1)2 4 截得的弦长为 ________.【答案】 2 555【分析】圆 (x2) 2 ( y 1)2 4 的圆心为 C (2, 1) ,半径为 r 2 ,点 C 到直线 x 2y 3 0 的距离为2 2 ( 1)3 3 ,所求弦长为 l 2 r 2 d 2 24 9 2 55 . d12 2255 5 ( 10)【 2014 年江苏, 10, 5 分】已知函数 f ( x)x 2 mx 1 ,若对随意 x [ m ,m 1] ,都有 f (x) 0 成立,则实数 m 的取值范围是 ________.【答案】2 ,2【分析】据题意 f (m)m 2 m 2 1 0,解得2 m 0 .f (m 1) (m1)2 m(m 1) 1 0 2( 11)【 2014 年江苏, 11, 5 分】在平面直角坐标系 xOy 中,若曲线 y ax 2bx ( a ,b 为常数 ) 过点 P(2 , 5) ,且该曲线在点 P 处的切线与直线 7 x 2 y 3 0 平行,则 a b 的值是 ________. 【答案】3【分析】曲线y ax 2b过点 P(2, 5) ,则 4ab 5 ①,又 y ' 2ax b 2 ,所以 4a b 7②,由①②解得x2x42a1,所以 ab2 .b 1( 12)【 2014 年江苏, 12, 5 分】如图,在平行四边形 ABCD 中,已知, AB 8,AD 5 ,uuur uuur uuur uuur uuur uuurCP 3PD , BP 2 ,则 AB AD 的值是 ________.AP【答案】 22 uuur uuur uuur uuur 1 uuur uuur uuur uuur uuur 3 uuur uuur 3 uuur【分析】由题意, AP AD DP AD AB ,BP BC CP BC 4 CD AD AB ,4 3 uuur 1 uuur 4uuur uuur uuur 1 uuur uuur uuur 2 uuur 3 uuur 2所以 AP BP ( AD AB) (AD AB) AD AD AB AB ,4 4 2 16即 2 1 uuur uuur 3 uuur uuur25 AD AB 16 64 ,解得 AD AB 22.21( 13)【 2014 年江苏, 13,5 分】已知 f ( x) 是定义在 R 上且周期为 3 的函数, 当 x [0 ,3) 时,2.2f ( x) x 2x若函数 y f ( x)a 在区间 [ 3 ,4] 上有 10 个零点 ( 互不同样 ) ,则实数 a 的取值范围是 ________.【答案】 10 ,2【分析】作出函数f ( x)x22x 1 , x [0,3) 的图象,可见 f (0)1,当 x 1时, f ( x)极大1 ,222f (3)7,方程 f (x) a 0 在 x [ 3,4] 上有 10 个零点,即函数y f ( x) 和图象与直线2ya 与函数ya 在 [ 3,4] 上有 10 个交点,因为函数f ( x) 的周期为 3,所以直线f ( x)x 2 2 x 1 , x [0,3) 的应当是4 个交点,则有 a (0, 1 ) .22( 14)【 2014 年江苏, 14, 5 分】若 ABC 的内角知足 sin A 2 sin B 2sin C ,则 cosC 的最小值是 _______ .【答案】6 24a 2b 22a 2b 2( a2b )2【分析】由已知 sin A2sin B 2sin C 及正弦定理可得 a2b 2c , cosCc 22ab2ab3a22b 22 2ab2 6ab 22ab6 2,当且仅当 3a 22b2,即 a2时等号成立, 所以 cosC8ab8ab4b3的最小值为6 2 .4二、解答题:本大题共6 小题,合计 90 分.请在答题卡指定地区内 作答,解答时应写出必需的文字说明、证明........过程或演算步骤.( 15)【 2014 年江苏, 15, 14 分】已知, , sin 5 .25( 1)求 sin4的值;( 2)求 cos62的值.解:( 1)∵2, ,sin 5,∴ cos1 sin 22 5 ,55sinsin coscos sin2(cos sin)10 .444210( 2)∵ sin 22sincos4,cos 2cos 2 sin 23 ,55∴cos62cos 6 cos2sinsin 233 14 3 3 4 .6 25 2 5 10( 16)【 2014 年江苏, 16, 14 分】如图,在三棱锥 PABC 中, D ,E ,F 分别为棱 PC ,AC ,AB 的中点.已知PA AC ,PA 6,BC 8,DF 5 .( 1)求证:直线 PA ∥平面 DEF ;( 2)平面 BDE ⊥平面 ABC .解:( 1)∵ D ,E 为 PC ,AC 中点∴ DE ∥ PA ∵ PA平面 DEF , DE 平面 DEF ∴PA ∥平面 DEF .( 2)∵ D ,E 为 PC ,AC 中点,∴ DE1PA3∵E ,F 为 AC ,AB 中点,∴EF1BC 4 ,2,∴ DE ⊥ EF ,∵2∴222,∴,,∴,DEEFDFDEF90°DE //PA PA ACDEAC∵ ACI EF E ,∴ DE ⊥平面 ABC ,∵ DE 平面 BDE ,∴平面 BDE ⊥平面 ABC .( 17)【 2014 年江苏, 17,14 分】如图,在平面直角坐标系 xOy 中, 1 2 y 21(a b 0)的左、2分别是椭圆 x22F ,Fab右焦点,极点 B 的坐标为 (0 ,b) ,连结2C ,BF 并延伸交椭圆于点 A ,过点 A 作 x 轴的垂线交椭圆于另一点连结 FC 1 .( 1)若点 C 的坐标为4 1,且 BF 22 ,求椭圆的方程;3 ,3( 2)若 FC 1AB ,求椭圆离心率 e 的值.4 1 16 1解:( 1)∵ C9922 2 2 2( 2)2 22,,∴ a 2b 22b c a ,∴a,∴ b 1 ,3 39,∵ BF∴椭圆方程为x 2y 2 1 .( 2)设焦点 212A Cx 轴对称,∴A(xy),∵ , ,, 对于∵2b b y ,即 bx cy bc 0 ①B ,F ,A 三点共线,∴cx∵ 1AB ,∴ x yb1 ,即xc byc20 ②ccFCx ca 2a 2 c 2bc 2 ①②联立方程组,解得b 2c 2∴ C2bc 2b 2 2 , 2 2yc b cb 2c 2a 2c22bc 22C 在椭圆上,∴b 2c 2b 2c 222c55a 2b 2 1 ,化简得 5c a ,∴ a 5 , 故离心率为 5 .( 18)【 2014 年江苏, 18,16 分】如图,为保护河上古桥 ,规划建一座新桥 ,同时建立一个圆形保护区.规OABC划要求:新桥 BC 与河岸 AB 垂直;保护区的界限为圆心M 在线段 OA 上并与 BC 相切的圆,且古桥两头 O和 A 到该圆上随意一点的距离均许多于 80m .经丈量,点 A 位于点 O 正北方向 60m 处,点 C 位于点 O 正东方向170m 处 ( OC 为河岸 ) , tan BCO 43 .( 1)求新桥 BC 的长;( 2)当 OM 多长时,圆形保护区的面积最大?.解:解法一:( 1)如图,以 O 为坐标原点, OC 所在直线为 x 轴,成立平面直角坐标系xOy .由条件知 A (0, 60) , C (170, 0) ,直线 BC 的斜率 k BC-tan BCO4 .3又因为⊥,所以直线 的斜率k AB3.设点 B 的坐标为 ( a , b ) ,AB BCAB4则 k BC = b 04, kAB =b603,解得 a =80, b=120.a 1703a 04所以 =22.所以新桥 的长是 .BC(17080)(0120) 150 150 mBC( 2)设保护区的界限圆M 的半径为 r m,OM =d m,(0 ≤ d ≤60) .由条件知,直线BC 的方程为 y4( x 170) ,即 4 x 3y680 0,3| 3d 680 |680 3d .因为圆 M 与直线 BC 相切,故点 M (0 ,d ) 到直线 BC 的距离是 r ,即 r因为 O 和 A 到圆 M 上随意一点的距离均许多于 80 m ,5 5rd ≥ 806803dd ≥ 805,解得 10≤ d ≤35.所以 ,即r (60 d ) ≥ 80 3d680 (60 d ) ≥ 805故当 d =10 时 , r 6803d最大,即圆面积最大. 所以当 OM = 10 m 时,圆形保护区的面积最大. 解法二: 5( 1)如图,延伸 OA , CB 交于点 F .因为 tan ∠ BCO = 4 .所以 sin ∠ FCO = 4 ,cos ∠ FCO = 3.3 5 5 因为 OA =60, OC =170,所以 OF =OC tan ∠ FCO = 680. CF = OC 850 ,3 cos FCO 3进而500 .因为 ⊥ ,所以 ∠ ∠4,又因为⊥ ,所以=AF OF OAcos AFB =sin AB BCBF AF3OA OC FCO = 5cos ∠ AFB ==400,进而 BC =CF -BF =150.所以新桥 BC 的长是 150 m .3( 2)设保护区的界限圆 M 与 BC 的切点为 D ,连结 MD ,则 MD ⊥BC ,且 MD 是圆 M 的半径,并设 MD =r m ,OM =d m(0≤ d ≤60) .因为 OA ⊥ OC ,所以 sin ∠ CFO =cos ∠ FCO ,故由( 1)知, sin ∠ CFO =MDMD r 3所以 r 680 3d .MFOF OM680 d 553因为 O 和 A 到圆 M 上随意一点的距离均许多于80 m ,rd ≥ 80680 3dd ≥ 80510≤ d ≤ 35所以,即,解得 ,r (60 d ) ≥ 80 680 3d(60 d ) ≥ 805故当 d =10 时, r6805 3d最大,即圆面积最大.所以当 OM = 10 m 时,圆形保护区的面积最大.f (x) e x e x 此中 e 是自然对数的底数.( 19)【 2014 年江苏, 19, 16 分】已知函数( 1)证明: f ( x) 是 R 上的偶函数;( 2)若对于 x 的不等式 mf x ≤ e x m1在 (0 ,)上恒成立,务实数m( )的取值范围;( 3)已知正数 a 知足:存在[1,a(x 3a 1 与a e 1的大小,并证明x) ,使得 f ( x )3x ) 成立.试比较 e你的结论.解:( 1)xR ,f (x ) e xe xf ( )x ,∴ f (x) 是 R 上的偶函数.( 2)由题意, xxxxxxxx(e e )≤e m 1,即m(ee 1)≤ e 1,∵x (0 ,) ,∴e e 1 0 ,m即 m ≤x e xx 1对 x(0 , ) 恒成立.令te x ( 1),则 m ≤21 t对随意 t (1,) 恒成立.ee1ttt 1∵t 21 t1 (t2t11) 1 11≥ 1,当且仅当 t 2 时等号成立,∴ m ≤ 1 .t1)(tt 1t 11 33'( ) e xe x( 3) f ,当时∴在 ,上单一增, 令 h( x)33x) ,,x 1f '( x)f (x)) a( x3ax( x 1)(1h'( x)∵ a0 ,x 1,∴ h '(x)0 ,即 h( x) 在 x (1,) 上单一减,∵存在 x 0e-1∵ lnaa 1ea1e2[1,ln a e 11e .当 ) ,使得f ( x 0 ) a( x 0 33x 0 ) ,∴ f (1) e 1 2a ,即 a1 e 1 . e2 eln e a 1 (e 1)ln a a 1 , 设 m(a) (e 1)ln a a1 , 则 m'(a)e1 1 e 1 a ,a a1 e 1a e1时, m'(a) 0 , m(a ) 单一增;当 a e1 时, m'(a ) 0 , m(a ) 单一2e减,所以 m(a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时, m(a) 0 , a e 1 e a 1 ;当1e 1 a e 时, m(a) 0 , a e 1 e a 1;当 a e 时, m(a) 0 , a e 1 e a 1 .2 e( 20)【 2014 年江苏,20,16 分】设数列 { n} 的前 n nn ,总存在正整数nm,a 项和为 S .若对随意的正整数m ,使得 Sa 则称 { a n } 是“ H 数列”.( 1)若数列 { n }nnN )na 的前 n 项和 S 2 (n ,证明: { a } 是“ H 数列”;( 2)设 a} 是等差数列,其首项 a1,公差 d.若 { a }是“ H 数列”,求 d 的值;{ n1n( 3)证明:对随意的等差数列{ a n}nn,使得 a nnnN)成立.解:( 1)当 n ≥ 2 时,,总存在两个“ H 数列” { b } 和 { c }bc (na nnn 12n2 n 12n 1 ,当n 1 时,11,S Sa S 2∴n 1 时,11na n 1,∴n} 是“ H 数列”.S a ,当 n ≥ 2 时, S{ a( 2) n1n(n 1) d nn(n 1) dn N , m N nmn n(n1)d 1 (m 1)dS na,对,22使 Sa ,即21取 n 2 得 1 d( m 1)d , m 2 ,∵ d 0 ,∴ m 2 ,又 m N ,∴ m 1,∴ d1.d( 3)设 ad ,令 b a (n 1)a (2 n) a ,对 n N, b b a c (n 1)(a d),{ n} 的公差为 n111n 1n1, n1对 n N , c c a d ,则 b c na 1(n 1)d a ,且 { b } ,{c } 为等差数列.n 1n1nnnnn的前 n 项和 T nna 1 n( n 1) ( a 1 ) ,令n1,则 mn(n 3)2 .{ b }2T (2m)a2当 n 1时 m1;当 n 2 时 m 1;当 n ≥ 3 时,因为 n 与 n 3 奇偶性不一样, 即 n(n 3) 非负偶数, m N .所以对n ,都可找到 m N T b {b } 为“ H 数列”.,使 n m 成立,即 n{c n } 的前n项和 R nn(n1)(a 1d ) ,令 c n(m 1)(a 1 d ) R m ,则 m n(n 1) 1n22∵对N , n(n 1) 是非负偶数,∴ mN,即对n N,都可找到 mN,使得Rcnm成立,即 {c n } 为“ H 数列”,所以命题得证.数学Ⅱ注意事项考生在答题前请仔细阅读本注意事项及各题答题要求 1. 本试卷只有解答题,供理工方向考生使用.本试,21 题有 A 、 B 、 C 、 D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了 3 题或 4 题,则按选做题中的前 2 题计分.第 22、 23 题为必答题.每题10 分,共 40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2. 答题前, 请您务势必自己的姓名、 准考据号用毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点. 3. 请在答题卡上依据次序在对应的答题地区内作答,在其余地点作答一律无效.作答一定用毫米黑色墨水的署名笔.请注意字体工整,字迹清楚. 4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】此题包含A 、B 、C 、D 四小题,请选定此中两题,并在相应的答题地区内作答 ,若多做,则按作答...... ............的前两题评分.解答时应写出文字说明、证明过程或演算步骤.( 21-A )【 2014 年江苏, 21-A , 10 分】(选修 4-1 :几何证明选讲)如图,AB 是圆 O 的直径, C 、 D是圆 O 上位于 AB 异侧的两点.证明:∠ OCB =∠ D .解:因为 , 是圆 O 上的两点,所以 = .故∠ =∠ .又因为 ,是圆 O 上位于 AB 异侧B COB OCOCBBC D的两点,故∠ B ,∠ D 为同弧所对的两个圆周角,所以∠B =∠ D .所以∠ OCB =∠ D .( 21-B )【 2014 年江苏, 21-B ,10 分】(选修 4-2 :矩阵与变换) 已知矩阵 A1 2112 1, B2,向量,x1yx ,y 为实数,若 A α= B α,求 x ,y 的值.解: A 2 y 2 , B α 2 y ,由 A α= B α得2 y 2 2,1,y 4 .y解得 x2 xy 4 y2 xy 4 y , 2( 21-C )【 2014 年江苏, 21-C , 10 分】(选修 4-4 :坐标系与参数方程)在平面直角坐标系xOy 中,已知直线 lx1 2t , 的参数方程为2 ( t 为参数 ) ,直线 l 与抛物线 y 2 4x 交于 A ,B 两点,求线段 AB 的长. y22 t2解:直线 l :x y 3 代入抛物线方程 y 2 4x 并整理得 x 2 10x 9 0,∴交点 A(1,2) ,B(9, 6),故| AB | 8 2 .( 21-D )【 2014 年江苏,21-D ,10 分】(选修 4-5 :不等式选讲)已知 x 0 ,y 0 ,证明: 1 x y 21 x2 y 9 xy .解:因为 x >0, y >0, 所以 1+x +y 2≥ 3 3 xy 2 0 ,1+x 2+y ≥ 33 x 2 y0 ,所以 (1+ x +y 2)( 1+x 2+y ) ≥ 3 3 xy 2 33 x 2 y =9xy . 【必做】第 22、 23 题,每题 10 分,计 20 分.请把答案写在答题 卡的指定地区内 . .... ....... ( 22)【 2014 年江苏, 22,10 分】盒中共有 9 个球,此中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完整同样.( 1)从盒中一次随机拿出 2 个球,求拿出的 2 个球颜色同样的概率 ;P( 2)从盒中一次随机拿出 4 个球,此中红球、黄球、绿球的个数分别记为x 1 ,x 2 ,x 3 ,随机变量 X 表示 x 1 ,x 2 ,x 3中的最大数,求 X 的概率散布和数学希望 E ( X ) .解:( 1)一次取 2 个球共有 C 92 36 种可能状况, 2 个球颜色同样共有 C 42C 32 C 22 10种可能状况,∴拿出的 2 个球颜色同样的概率P10536 18 .43131( 2)X 的全部可能取值为 4 ,3,2 ,则 P( X4)C 4 1;P(X 3)C 4 C 5C 3C 613 ;43C 9126C 963P( X 2) 1 P( X3) P( X4)11 .∴ X 的概率散布列为: X142 3 4P11 13114 63126故X 的数学希望E(X )2 113 134 1 20 .14631269( 23)【 2014 年江苏, 23, 10 分】已知函数 f 0 ( x)sin x (x 0) ,设 f n (x) 为 f n 1 ( x) 的导数, n N .x( 1)求2 f 1 2 2 f 2 2的值;( 2)证明:对随意的 n N ,等式 nf n14f n 4 2成立.42解:( 1)由已知,得 f (x)f (x) sin xcos x sin x ,1x x x 2于是 f 2 ( x)f 1 (x)cos xsin x sin x 2cos x2sin x,所以 f 1 () 4) 216 xx 2xx 2x 32 2 , f 2 (3 ,2故 2 f 1 ( ) f 2 ( ) 1 .2 2 2 x 求导,得( 2)由已知,得 xf (x) sin x, 等式两边分别对 f 0(x) xf ( x) cosx ,即 f 0( x) xf ( x) cos x sin( x 2 ) ,近似可得 2 f 1(x) xf (x) sin x sin(x ) ,123 f 2 ( x) xf 3 ( x)cos x sin( x3 ) ,4 f 3 ( x) xf 4 (x) sinx sin(x 2 ) .2下边用数学概括法证明等式nf n 1 ( x) xf n ( x) sin( xn ) 对全部的 n N * 都成立. ( i )当 n =1 时,由上可知等式成立.2( ii )假定当 n =k 时等式成立 ,即 kf k 1 ( x) xf k (x) sin( x k ) .2因为 [kf k 1 ( x) xf k (x)] kf k 1 (x) f k ( x) xf k ( x)(k 1) f k ( x) f k 1 ( x),[sin( xk )]cos( x k ) ( xk ) sin[ x ( k 1) ],所以22( k 1) 22( k 1) f k( x) f k 1( x) sin[ x ] .2所以当 n=k +1时, 等式也成立.综合 (i),(ii)可知等式 nf n 1 ( x) xf n ( x) sin( x n ) 对全部的 n N * 都成立.2n *2*令 x 4 ,可得 nf n 1 ( 4 )4 f n ( 4 ) sin( 42 ) ( n N ) .所以 nf n 1 ( 4 )4 f n ( 4 )2 ( n N ) .。
2014年江苏省高考数学试卷及解析

2014年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1、(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=、2、(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为、3、(5分)如图是一个算法流程图,则输出的n的值是、4、(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是、5、(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是、6、(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm、7、(5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是、8、(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是、9、(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为、10、(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是、11、(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是、12、(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是、13、(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是、14、(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是、二、解答题(本大题共6小题,共计90分)15、(14分)已知α∈(,π),sinα=、(1)求sin(+α)的值;(2)求cos(﹣2α)的值、16、(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5、求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC、17、(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a >b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C、(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值、18、(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m 处(OC为河岸),tan∠BCO=、(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19、(16分)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数、(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论、20、(16分)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”、(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立、三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21、(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D、【选修4-2:矩阵与变换】22、(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值、【选修4-3:极坐标及参数方程】23、在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为、【选修4-4:不等式选讲】24、已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy、(二)必做题(本部分包括25、26两题,每题10分,共计20分)25、(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同、(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E (X)、26、(10分)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n ∈N*、(1)求2f1()+f2()的值;()+f n()|=都成立、(2)证明:对任意n∈N*,等式|nf n﹣1参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1、(5分)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} 、分析:根据集合的基本运算即可得到结论、解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础、2、(5分)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21、分析:根据复数的有关概念,即可得到结论、解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础、3、(5分)如图是一个算法流程图,则输出的n的值是5、分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案、解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5、故答案为:5、点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键、4、(5分)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是、分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可、解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=、故答案为:、点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件、5、(5分)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是、分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=、根据φ的范围和正弦函数的单调性即可得出、解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=、∵0≤φ<π,∴,∴+φ=,解得φ=、故答案为:、点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题、6、(5分)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm、分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数、解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株)、故答案为:24、点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=、7、(5分)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4、分析:利用等比数列的通项公式即可得出、解答:解:设等比数列{a n}的公比为q>0,a1>0、∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2、∴a6===1×22=4、故答案为:4、点评:本题考查了等比数列的通项公式,属于基础题、8、(5分)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是、分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比、解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===、故答案为:、点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目、9、(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为、分析:求出已知圆的圆心为C(2,﹣1),半径r=2、利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长、解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:、点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题、10、(5分)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0)、分析:由条件利用二次函数的性质可得,由此求得m的范围、解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0)、点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题、11、(5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3、分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案、解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键、12、(5分)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22、分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案、解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22、点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键、13、(5分)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,)、分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a 的范围即可、解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知、故答案为:(0,)、点评:本题考查函数的图象以函数的零点的求法,数形结合的应用、14、(5分)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是、分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论、解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是、故答案为:、点评:本题主要考查正弦定理和余弦定理的应用,结合基本不等式的性质是解决本题的关键、二、解答题(本大题共6小题,共计90分)15、(14分)已知α∈(,π),sinα=、(1)求sin(+α)的值;(2)求cos(﹣2α)的值、分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值、解答:解:α∈(,π),sinα=、∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣、(2)∵α∈(,π),sinα=、∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣、cos(﹣2α)的值为:﹣、点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力、16、(14分)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5、求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC、分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可、解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC、点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目、17、(14分)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a >b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C、(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值、分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值、(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值、解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1、(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,﹣),且A,C关于x轴对称,∴C(,),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=、点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大、18、(16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m 处(OC为河岸),tan∠BCO=、(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大、解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴、设AF=4x(m),则BF=3x(m)、∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m、∵,∴CE=(m)、∴(m)、∴,解得:x=20、∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO、设OM=xm,则OP=m,PM=m、∴PC=m,PQ=m、设⊙M半径为R,∴R=MQ=m=m、∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80、解得:10≤x≤35、∴当且仅当x=10时R取到最大值、∴OM=10m时,保护区面积最大、点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题、19、(16分)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数、(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论、分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论、解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m、(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立、①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1、点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大、20、(16分)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”、(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立、分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出、(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列、再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出、解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2、当n=1时,S1=a1、当n≥2时,S n=a n+1、∴数列{a n}是“H”数列、(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1、(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n﹣b n=﹣a1,+1c n=(n﹣1)(a1+d),对∀n∈N*,c n﹣c n=a1+d,+1则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列、数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则、当n=1时,m=1;当n=2时,m=1、当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*、因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列、数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=、∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*、因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列、因此命题得证、点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题、三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21、(10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D、分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论、解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D、点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题、【选修4-2:矩阵与变换】22、(10分)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值、分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值、解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题、【选修4-3:极坐标及参数方程】23、在平面直角坐标系xOy中,已知直线l的参数方程(t为参数),直线l与抛物线y2=4x相交于AB两点,则线段AB的长为、分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长、解答:解:直线l的参数方程为(t为参数),化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8、故答案为:8、点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题、【选修4-4:不等式选讲】24、已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy、分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论、解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy、点评:本题考查不等式的证明,正确运用均值不等式是关键、(二)必做题(本部分包括25、26两题,每题10分,共计20分)25、(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同、(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E (X)、分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可、解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=、(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X234P故X数学期望E(X)=、点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题、26、(10分)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n ∈N*、(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n()+f n()|=都成立、﹣1分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证、解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,猜想得,nf n﹣1下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)∵[kf k﹣1=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时、等式也成立,(x)+xf n(x)=sin(x +)对任意n∈N*恒成立,由①②得,nf n﹣1令x=代入上式得,nf n()+f n ()=sin (+)=±cos=±,﹣1()+f n ()|=都成立所以,对任意n∈N*,等式|nf n﹣1点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力31/ 31。
2014年江苏高考数学试题含答案(Word版)

∵ BF22 b2 c2 a ,∴ a ( 2)
2
2
2
∴椭圆方程 为 学科王
x2
2
y2 1
2 ,∴b 1
2
(2)设焦点 F ( c ,0),F (c ,0),C(x ,y)
1
2
∵
学科王
A ,C
关于
x
轴对称,∴ 学科王
A(
x
,
y)
∵ B ,F ,A 三点共线,∴ b
2
c
∵ F C 学科王
1
AB ,∴ x y c
DE
AC
∵ AC 学科王 EF E
∴DE⊥平面 ABC
学科王
∵DE 平面 BDE, ∴平面 BDE⊥平面 ABC.
17.
(本
小 学科王
题满分
14
分)如图,在平面直角坐标系
xOy
中,
F1
,F2
分别是椭圆
x2 a2
y2 b
1(a
b
0)
的左、右 焦点, 学科王
2
顶点 B 的坐标为 (0,b) ,连结 BF2 并延长交椭圆于点 A,过点 A 作 x 轴的垂线交椭圆于另一点 C,连结 F1C .
(1)若点 C 的坐标为 4 ,1 ,且 BF 2 33
2 ,求椭圆的 方程;
5
(2)若 FC AB ,求椭圆离心率 e 的值. 1
【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运
算求解能力. 满分 14 分.
16 1
(1)∵C
4,1
,∴
9 a2
9 b2
9
33
一点的距离均不少于
2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是.11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是.14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.答案:1.考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础.2.考点:复数的基本概念;复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的有关概念,即可得到结论.解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.考点:程序框图.专题:算法和程序框图.分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.考点:三角方程;函数的零点.专题:三角函数的求值;三角函数的图像与性质.分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.考点:频率分布直方图.专题:概率与统计.分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式即可得出.解答:解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.点评:本题考查了等比数列的通项公式,属于基础题.8.考点:棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).专题:立体几何.分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.考点:直线与圆的位置关系.专题:直线与圆.分析:求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.考点:向量在几何中的应用;平面向量数量积的运算.专题:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.14.考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.点评:本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.15.考点:两角和与差的正弦函数;两角和与差的余弦函数.专题:三角函数的求值;三角函数的图像与性质.分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.解答:解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC 即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.考点:椭圆的简单性质;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x 的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.考点:数列的应用;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n 项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.21.考点:弦切角.专题:直线与圆.分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.22.考点:矩阵与向量乘法的意义.专题:矩阵和变换.分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y的值.解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题.23.考点:直线的参数方程.专题:计算题;坐标系和参数方程.分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.24.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.25.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.26.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。
2014年全国高考江苏省数学试卷及答案【精校版】

2014 年江苏高考数学试题数学Ⅰ试题参照公式 :圆柱的侧面积公式 :S 圆柱 =cl, 此中 c 是圆柱底面的周长, l 为母线长 .圆柱的体积公式 :V 圆柱=Sh,此中 S 是圆柱的底面积, h 为高 .一、填空题:本大题共14 小题,每题 5 分,合计 70 分. 请把答案填写在答题卡相应地点.......上..1.已知会合 A { 2, 1,3,4} , B { 1,2 ,3} ,则 A B.【答案】 {1,3}2.已知复数z (5 2i ) 2 (i 为虚数单位 ),则 z 的实部为.【答案】 213.右图是一个算法流程图,则输出的n 的值是.【答案】 54.从1,2,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是.1【答案】35.已知函数y cosx 与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的交点,则的值是.3【答案】66.为了认识一片经济林的生长状况,随机抽测了此中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频次散布直方图如下图,则在抽测的 60 株树木中,有株树木的底部周长小于100 cm.【答案】 24.在各项均为正数的等比数列{ a n } 中,若 a2 1 ,a8 a6 2a4,7则 a6的值是.【答案】 48.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为 V1,V2,若它们的侧面积相等,且S1 9,则V1的值是.S2 4 V2【答案】329 .在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆 (x 2)2 ( y 1)2 4 截得的弦长为.【答案】255510.已知函数 f ( x) x2 mx 1 ,若对随意 x [ m,m 1] ,都有 f (x) 0 建立,则实数 m 的取值范围是.【答案】 2 ,211.在平面直角坐标系xOy 中,若曲线 y ax2 b( a ,b 为常数 )过点 P(2 , 5) ,且该曲线在x点 P 处的切线与直线7 x 2 y 3 0 平行,则 a b 的值是.【答案】 312.如图,在平行四边形ABCD中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2,则 ABAD 的值是.【答案】 2213.已知f (x)是定义在 R 上且周期为 3 的函数,当 x [0 ,3) 时, f (x) x2 2x1 .若函2数 y f ( x) a 在区间 [ 3,4 ]上有 10 个零点 ( 互不相同 ) ,则实数 a 的取值范围是.【答案】 10 ,214.若ABC 的内角知足 sin A 2 sin B 2sin C ,则 cosC 的最小值是.【答案】 6 24二、解答题:本大题共6小题 , 合计 90 分 . 请在答题卡指定地区内作答 , 解答时应写出文字........。
2014年江苏高考数学真题及答案

2014年江苏高考数学真题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.3. 右图是一个算法流程图,则输出的n 的值是▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲.8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是▲.9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为▲.10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.202>n组距13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第16题)PD C EFB A17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21 .3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是 5 .4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+,..6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24 株树木的底部周长小于100cm.=7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是 4 .,=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,,它们的侧面积相等,==..9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.=,=2=10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,解得﹣(﹣11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .(,(,,解得:12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22 .=3,=+,=﹣,=3,=2解:∵=3=+,=﹣,•=+)•(﹣|•﹣|••=22=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知,)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.b=2c(bcosC==≥=≤cosC<的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(﹣,=﹣=+cos+cos sin=∴sin(+.,.,∴cos(﹣=cos cos2+sin sin2=(.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.的中点,∴DE=PA=3的中点,∴EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,(则椭圆的方程为x+b+﹣x=∵A(∴C()==×(.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.,∴CE=OP=m∴PC=PQ=∴R=MQ=m=∴136﹣﹣x≥80.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a ﹣1与a e﹣1的大小,并证明你的结论.m≤m≤,当且仅当.=e+﹣>)﹣,﹣=0①a∈(()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.,,即,解得,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.=BA=,向量==B,,∴x=﹣∴x+y=【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为∴|AB|==8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.≥3,+y≥≥3(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).P=,P26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.,∴xf代入上式得,)f))x+)对任意成立,则上式成立;,=,x+代入上式得,(f)(+=±,(f)都成立.。
江苏省南通市2014届高考数学最后一卷 有答案

南通市2014届高三数学临门一脚 分数学I 卷和II 卷,有答案数学I参考公式:棱锥的体积公式:13V Sh =,其中S 为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上.. 1.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ . 2.若复数z 满足i z =2(i 为虚数单位),则z = ▲ . 3.不等式组0,0,2x y x y ⎧⎪⎨⎪+⎩≥≥≤所表示的平面区域的面积为 ▲ .4.函数y =sin 2x 的最小正周期为 ▲ .5.若正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A -BDA 1的体积为 ▲ . 6.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .7.设函数f (x )=log 2x (0<x <5),则f (x )<1的概率为 ▲ . 8.某鲜花店对一个月的鲜花销售数量(单位:支)进行统计,统计时间是4月1日至4月30日,5天一组分组统计,绘制了如图的鲜花销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的鲜花数(单位:支)为 ▲ .(第8题图)(第10题图)(第9题图)9.如图是一个算法流程图.若输入A =3,B =5,则输出A ,B 的值分别为 ▲ .10.已知向量a ,b ,c 在正方形网格中的位置如图所示.若(,)λμλμ=+∈R c a b ,则λμ+=▲ .11.已知实数x ,y ,满足xy =1,且x >2y >0,则2242x y x y+-的最小值为 ▲ .12.设t ∈R ,[t ]表示不超过t 的最大整数.则在平面直角坐标系xOy 中,满足[x ]2+[y ]2=13的点P (x ,y )所围成的图形的面积为 ▲ .13.设函数f (x )满足f (x )=f (3x ),且当x ∈[1,3)时,f (x )=ln x .若在区间[1,9)内,存在3个不同的实数x 1,x 2,x 3,使得312123()()()f x f x f x x x x ===t ,则实数t 的取值范围为 ▲ . 14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,a k 成等比数列,则公差d 的所有可能取值之和为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域内作答........解答时应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)如图,在△ABC 中,|AB AC -|=3,|BC BA -|=5,|CA CB -|=7. (1)求C 的大小;(2)设D 为AB 的中点,求CD 的长.(第15题图)BAC如图,AB 为圆O 的直径,点E ,F 在圆上,四边形ABCD 为矩形,AB ∥EF ,∠BAF =3π,M 为BD 的中点,平面ABCD ⊥平面ABEF .求证:(1)BF ⊥平面DAF ; (2)ME ∥平面DAF .17.(本小题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y . (1)写出y 关于x 函数表达式,并指出x 的取值范围; (2)求当x 取何值时,凹槽的强度T 最大.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0)过点(1,1).(1),求椭圆的方程;(2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .①已知命题:“直线PQ 恒与定圆C 相切”是真命题,试直接写出圆C 的方程;(不需要解答过程)②设①中的圆C 交y 轴的负半轴于M 点,二次函数y =x 2-m 的图象过点M .点A ,B在该图象上,当A ,O ,B 三点共线时,求△MAB 的面积S 的最小值.(第17题图)图1图2(第16题图)设数列{a n },a 1=1,1133n n n a a +=+.数列{b n },13n n n b a -=.正数数列{d n },2221111n n n d b b +=++. (1)求证:数列{b n }为等差数列;(2)设数列{b n },{d n }的前n 项和分别为B n ,D n ,求数列{b n D n +d n B n -b n d n }的前n 项和S n .20.(本小题满分16分)设函数f (x )=ax 2+e x (a ∈R )有且仅有两个极值点x 1,x 2(x 1<x 2). (1)求实数a 的取值范围;(2)是否存在实数a 满足f (x 1)=231e x ?如存在,求f (x )的极大值;如不存在,请说明理由.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 共4小题,请.选定其中两小题.......,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 到点D ,使得CD =AC ,连结AD 交⊙O 于点E ,连结BE 与AC 交于点F ,求证BE 平分∠ABC .B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α.C .[选修4-4:坐标系与参数方程](本小题满分10分)圆C的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.D .[选修4-5:不等式选讲](本小题满分10分) 已知a 、b 、c 均为正实数,且a +b +c =1D(第21A 图)【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(1)计算:2013320145C A +;(2)观察下面一组组合数等式:101C C n n n -=;2112C C n n n -=;3213C C n n n -=;…由以上规律,请写出第k (k ∈N *)个等式并证明.23.(本小题满分10分)设数列{a n },{b n }满足a 1=b 1,且对任意正整数n ,{a n }中小于等于n 的项数恰为b n ; {b n }中小于等于n 的项数恰为a n . (1)求a 1;(2)求数列{a n }的通项公式.南通市2014届高三数学临门一脚参考答案与评分建议数学I参考公式:棱锥的体积公式:13V Sh =,其中S 为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上.. 1.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ . 答案:3.2.若复数z 满足i z =2(i 为虚数单位),则z = ▲ . 答案:-2i .3.不等式组0,0,2x y x y ⎧⎪⎨⎪+⎩≥≥≤所表示的平面区域的面积为 ▲ .答案:2.4.函数y =sin 2x 的最小正周期为 ▲ . 答案:π.5.若正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A -BDA 1的体积为 ▲ . 答案:16. 6.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .答案:8或-2.7.设函数f (x )=log 2x (0<x <5),则f (x )<1的概率为 ▲ . 答案:25.(第10题图)(第9题图)8.某鲜花店对一个月的鲜花销售数量(单位:支)进行统计,统计时间是4月1日至4月30日,5天一组分组统计,绘制了如图的鲜花销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的鲜花数(单位:支)为 ▲ . 答案:1200.9.如图是一个算法流程图.若输入A =3,B =5,则输出A ,B 的值分别为 ▲ .答案:5,3.10.已知向量a ,b ,c 在正方形网格中的位置如图所示.若(,)λμλμ=+∈R c a b ,则λμ+=▲ .答案:53-.11.已知实数x ,y ,满足xy =1,且x >2y >0,则2242x y x y+-的最小值为 ▲ .答案:4.12.设t ∈R ,[t ]表示不超过t 的最大整数.则在平面直角坐标系xOy 中,满足[x ]2+[y ]2=13的点P (x ,y )所围成的图形的面积为 ▲ . 答案:8.13.设函数f (x )满足f (x )=f (3x ),且当x ∈[1,3)时,f (x )=ln x .若在区间[1,9)内,存在3个不同的实数x 1,x 2,x 3,使得312123()()()f x f x f x x x x ===t ,则实数t 的取值范围为 ▲ . 答案:ln31(,)93e. 14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,(第8题图)a k 成等比数列,则公差d 的所有可能取值之和为 ▲ . 答案:92.二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域内作答........解答时应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)如图,在△ABC 中,|AB AC -|=3,|BC BA -|=5,|CA CB -|=7. (1)求C 的大小;(2)设D 为AB 的中点,求CD 的长.解:(1)依题意BC =3,CA =5,AB =7.······························································1分 由余弦定理,得222cos 2CB CA AB C CB CA+-=⋅⋅=12-. ·········································4分因0<C <π,··························································································6分 故C =23π.··························································································8分 (2)由余弦定理,得13cos 14A =.·······························································11分 在△ADC 中,AD =72,CD 2=AC 2+AD 2-2AC ×AD ×cos A =194, 于是CD.··················································································14分16.(本小题满分14分)如图,AB 为圆O 的直径,点E ,F 在圆上,四边形ABCD 为矩形,AB ∥EF ,∠BAF =3π,M 为BD 的中点,平面ABCD ⊥平面ABEF .求证:(1)BF ⊥平面DAF ; (2)ME ∥平面DAF .解:(1)因四边形ABCD 为矩形,故DA ⊥AB .(第15题图)BAC(第16题图)因平面ABCD ⊥平面ABEF ,且DA ⊂平面ABCD ,平面ABCD ∩平面ABEF =AB , 故DA ⊥平面ABEF . ············································································3分 因BF ⊂平面ABEF ,故DA ⊥BF . ···························································4分 因AB 为直径,故BF ⊥AF .因DA ,AF 为平面DAF 内的两条相交直线,故BF ⊥平面DAF .·····················7分 (2)因∠BAF =3π,AB ∥EF ,故EF =12AB .··················································8分 取DA 中点N ,连NF ,MN ,因M 为BD 的中点, 故MN ∥AB ,且MN =12AB ,于是四边形MNFE 为平行四边形, 所以ME ∥NF .···················································································11分 因NF ⊂平面DAF ,ME ⊄平面DAF ,故ME ∥平面DAF .·············································································14分注:第(2)问,亦可先证明ME ∥平面MOE .17.(本小题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y . (1)写出y 关于x 函数表达式,并指出x 的取值范围; (2)求当x 取何值时,凹槽的强度T 最大.解:(1)易知半圆CmD 的半径为x ,故半圆CmD 的弧长为πx . 所以,4=2x +2y +πx ,得4(2)2xy -+π=.····················································4分 依题意,知:0<x <y ,得404x <<+π. 所以,4(2)2x y -+π=(404x <<+π).·······················································7分(2)依题意,T =AB S ⋅=212(2)2x xy x -π=238(43)x x -+π. ······························9分(第17题图)图1图2令2163(43)T x x '=-+π=0,得16x =∈4(0,),另一解舍去.··············11分所以当16912x =π+,凹槽的强度最大.·····················································14分注:x 的范围写为404x <≤+π,不扣分.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0)过点(1,1).(1),求椭圆的方程; (2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .(2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .①已知命题:“直线PQ 恒与定圆C 相切”是真命题,试直接写出圆C 的方程;(不需要解答过程)②设①中的圆C 交y 轴的负半轴于M 点,二次函数y =x 2-m 的图象过点M .点A ,B在该图象上,当A ,O ,B 三点共线时,求△MAB 的面积S 的最小值.解:(1)由e =,所以::a b c .························································2分 设椭圆方程为222212x y b b+=,将(1,1)代入得221112b b +=,所以223,32b a ==,椭圆方程为222133x y +=.·············································5分 (2)①221x y +=.··················································································9分 ②由题意,二次函数为y =x 2-1.······························································10分 设直线AB 的方程为y =kx .由21y x y kx⎧=-⎨=⎩,消去y 得,210x kx --=. 设11(,)A x y ,22(,)B x y ,则12x x k +=,121x x =-.······································12分所以2112S OM x x=⋅-=·····························14分当0k=时,△MAB的面积S的最小值为1.·············································16分19.(本小题满分16分)设数列{a n},a1=1,1133nn naa+=+.数列{b n},13nn nb a-=.正数数列{d n},2221111nn ndb b+=++.(1)求证:数列{b n}为等差数列;(2)设数列{b n},{d n}的前n项和分别为B n,D n,求数列{b n D n+d n B n-b n d n}的前n项和S n.解:(1)由1133nn naa+=+,得11331n nn na a-+=+.又13nn nb a-=,所以11n+nb b+=.·······························································3分又b1=a1=1,所以数列{b n}是以1为首项,1为公差的等差数列.·····················4分(2)由(1)得1(1)1nb n n=+-⨯=,B n=(1)2n n+.·············································6分因2221111nn ndb b+=++,故222221121)111(1)(1)nn ndn n n n++=++=+++(21[1](1)n n=++.由d n>0,得11111(1)1ndn n n n=+=+-++.于是,111nD nn=+-+.······································································10分又当n≥2时,b n D n+d n B n-b n d n=(B n-B n-1)D n+(D n-D n-1)B n-(B n-B n-1)(D n-D n-1)=B n D n-B n-1D n-1,所以S n=(B n D n-B n-1D n-1)+(B n-1D n-1-B n-2D n-2)+…+(B2D2-B1D1)+B1D1=B n D n.··········14分因S1=b1D1+d1B1-b1d1=B1D1也适合上式,故对于任意的n∈N*,都有S n=B n D n.所以S n=B n D n=(1)2n n+⋅1(1)1nn+-+=321(2)2n n+.···································16分20.(本小题满分16分)设函数f(x)=ax2+e x(a∈R)有且仅有两个极值点x1,x2(x1<x2).(1)求实数a的取值范围;(2)是否存在实数a满足f(x1)=231e x?如存在,求f(x)的极大值;如不存在,请说明理由.解:(1)()f x'=2ax+e x.显然a ≠0,x 1,x 2是直线y =12a-与曲线y =g (x )=e x x两交点的横坐标.··············2分由()g x '=1xx-=0,得x =1.列表: ·························································4分 此外注意到: 当x <0时,g (x )<0;当x ∈[0,1]及x ∈(1,+∞)时,g (x )的取值范围分别为[0,1e ]和(0,1e ).于是题设等价于0<12a -<1e⇒a <e 2-,故实数a 的取值范围为(-∞,e2-).········6分(2)存在实数a 满足题设.证明如下: 由(1)知,0< x 1<1<x 2,1()f x '=2ax 1+1e x =0,故f (x 1)=121+e x ax =111e e 2x x x -=231e x ,故11231e 1e e 02x x x --=.····························8分 记R (x )=23e 1e e 2x x x --(0<x <1),则()R x '=2e (1)1e 02x x x x --<,于是,R (x )在(0,1)上单调递减. 又R (23)=0,故R (x )有唯一的零点x =23. 从而,满足f (x 1)=231e x 的x 1=23.所以,a=1231e 3e 24x x -=-.·····························12分 此时f (x )=2233e e 4x x -+,()f x '=233e e 2x x -+,又(0)f '>0,(1)f '<0,(2)f '>0,而x 1=23∈(0,1), 故当a =233e 4-时,f (x )极大=f (x 1)=232e 3.·······················································16分南通市2014届高三数学临门一脚数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 共4小题,请.选定其中两小题.......,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,⊙O 是三角形△ABC 的外接圆,AB =AC ,延长BC 到点D ,使得CD =AC ,连结AD 交⊙O 于点E ,连结BE 与AC 交于点F ,求证BE 平分∠ABC .解:因CD =AC ,故∠D =∠CAD .因AB =AC ,故∠ABC =∠ACB . 因∠EBC =∠CAD ,故∠EBC =∠D .因∠ABC =∠ABE +∠EBC ,∠ACB =∠D +∠CAD .故∠ABE =∠EBC ,即BE 平分∠ABC . ···················································10分B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α.解:(1)令2()()(4)(4)4014abf a b a a b λλλλλλλ--==--+=-+++=-,于是 1λ+2λ=a +4,1λ⋅2λ=4a +b .解得a =1,b =2. ············································5分(2)设α=x y ⎡⎤⎢⎥⎣⎦,则A α=1214⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=24x y x y +⎡⎤⎢⎥-+⎣⎦=3x y ⎡⎤⎢⎥⎣⎦=33x y ⎡⎤⎢⎥⎣⎦, 故23,43,x y x x y y +=⎧⎨-+=⎩解得x =y .于是,α=11⎡⎤⎢⎥⎣⎦.···············································10分D(第21A 题图)C .[选修4-4:坐标系与参数方程](本小题满分10分)圆C 的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.解:由题设知,圆心(1C ,(2,0)P ,∠CPO =60°,故过P 点的切线的倾斜角为30°. ····························································3分 设(,)M ρθ是过P 点的圆C 的切线上的任一点,则在△PMO 中, ∠MOP =θ,030OMP θ∠=-,0150OPM ∠=. 由正弦定理得sin sin OM OPOPM OMP=∠∠,于是002sin150sin(30)ρθ=-, 即0cos(60)1 ρθ+=(或0sin(30)1ρθ-=)即为所求切线的极坐标方程.·········10分D .[选修4-5:不等式选讲](本小题满分10分)已知a 、b 、c 均为正实数,且a +b +c =1解:因 a 、b 、c >0,故 2 111)2≤((a +1)+(b +1)+(c +1))(1+1+1)=12,························································3分,=a =b =c =13时,取“=”..··········································10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(1)计算:2013320145C A +;(2)观察下面一组组合数等式:101C C n n n -=;2112C C n n n -=;3213C C n n n -=;…由以上规律,请写出第k (k ∈N *)个等式并证明.解:(1)原式=2074.·····················································································5分(2)等式为:11C C k k n n k n --=,k ∈N *. ····························································7分证明:C k n k =!!()!kn k n k -=(1)!(1)!((1)(1))!n n k n k -----=11C k n n --.·······························10分23.(本小题满分10分)数列{a n },{b n }满足a 1=b 1,且对任意正整数n ,{a n }中小于等于n 的项数恰为b n ; {b n }中小于等于n 的项数恰为a n . (1)求a 1;(2)求数列{a n }的通项公式.解:(1)首先,容易得到一个简单事实:{a n }与{b n }均为不减数列且a n ∈N ,b n ∈N . 若a 1=b 1=0,故{a n }中小于等于1的项至少有一项,从而b 1≥1,这与b 1=0矛盾. 若a 1=b 1≥2,则{a n }中没有小于或等于1的项,从而b 1=0,这与b 1≥2矛盾. 所以,a 1=1.························································································4分 (2)假设当n =k 时,a k =b k =k ,k ∈N *.若a k +1≥k +2,因{a n }为不减数列,故{a n }中小于等于k +1的项只有k 项, 于是b k +1=k ,此时{b n }中小于等于k 的项至少有k +1项(b 1,b 2,…,b k ,b k +1), 从而a k ≥k +1,这与假设a k =k 矛盾.若a k +1=k ,则{a n }中小于等于k 的项至少有k +1项(a 1,a 2,…,a k ,a k +1), 于是b k ≥k +1,这与假设b k =k 矛盾. 所以,a k +1=k +1.所以,当n =k +1时,猜想也成立.综上,由(1),(2)可知,a n =b n =n 对一切正整数n 恒成立.所以,a n =n ,即为所求的通项公式.························································10分。
2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一测试(江苏卷)数学Ⅰ参考公式:圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =I _______. 【答案】{13}-,【分析】由题意得{1,3}A B =-I .(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【分析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【分析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【分析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =和sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【分析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【分析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,测试时间为120分钟.测试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5. 请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【分析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【分析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【答案】255【分析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)3512d +⨯--==+,所求弦长为2292552245l r d =-=-=. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】20⎛⎫- ⎪⎝⎭, 【分析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得20m -<<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线和直线7230x y ++=平行,则a b +的值是________. 【答案】3-【分析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=u u u r u u u r u u u r u u u r ,,则AB AD ⋅u u u r u u u r 的值是________. 【答案】22【分析】由题意,14AP AD DP AD AB =+=+u u u r u u u r u u u r u u u r u u u r ,3344BP BC CP BC CD AD AB =+=+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r,所以13()()44AP BP AD AB AD AB ⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r 2213216AD AD AB AB =-⋅-u u u r u u u r u u u r u u u r ,即1322564216AD AB =-⋅-⨯u u u r u u u r ,解得22AD AB ⋅=u u u r u u u r .(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________.【答案】()102,【分析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象和直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =和函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 22sin A B C =,则cos C 的最小值是_______.62-【分析】由已知sin 22sin A B C =及正弦定理可得22a b c =,2222222()2cos 22a b a b a b c C ab ab ++-+-==2232222622628a b ab ab ab ab +---=,当且仅当2232a b =,即23a b =所以cos C 62- 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,5sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()5sin 2ααπ∈π,,,∴225cos 1sin αα=--=, ()210sin sin cos cos sin sin )444αααααπππ+=+=+=.(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()3314334cos 2cos cos2sin sin 2666525ααα5π5π5π+-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =I ,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =(2)若1FC AB ⊥,求椭圆离心率e 的值. 解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴22(2)2a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴5c a = 5. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 和河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并和BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC 22(17080)(0120)150-+-=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 和直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠, 从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AFcos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m .(2)设保护区的边界圆M 和BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -和e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a aa a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-, 取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+.当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 和3n -奇偶性不同,即(3)n n -非负偶数,m *∈N . 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ【选做】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答 的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵和变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系和参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2122x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 和抛物线24y x =交于A B ,两点,求线段AB 的长. 解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||82AB =. (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷只有解答题,供理工方向考生使用.本试,21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.测试时间30分钟.测试结束后,请将答题卡交回.2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4. 如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:X 2 3 4P11141363 1126 故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()12444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===-⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立.(i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以12()()444n n nf f πππ-+n ∈*N ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届江苏高考数学最后一卷
一.填空题 1.已知i i z 2)
1(2
=+,则z = 。
2.若“12
>x ”是“a x <”的必要不充分条件,则a 的最大值为 。
3.已知角θ的顶点在坐标原点,始边与x 轴的正半轴重合,终边上有一点)4,3(-A ,则
)2
sin(π
θ+
= 。
4.已知中心在原点,坐标轴为对称轴的双曲线的渐近线方程是x y 4±=,则该双曲线的离心率是 。
5.已知一个正四面体的边长为2,则它的体积为 。
6. 已知0y x π<<<,且tan tan 2x y =,1
sin sin 3
x y =
,则x y -=_______. 7. 圆05622
2=++-+a y x y x 关于直线b x y 2+=成轴对称图形,则b a -的取值范
围是___________.
8. 在平面直角坐标系xoy
中,直线2m y =+与圆222x y n +=相切,其中m ,
∈n N *,01m n <-≤,若函数1()x f x m n +=-的零点0(,1)x k k ∈+,∈k Z ,则
k = .
9. 若直线1+=kx y 与圆042
2
=-+++my kx y x 交于N M ,两点,且N M ,关于直线
x y =对称,动点),(b a P 在不等式组⎪⎩⎪
⎨⎧≥≤-≥+-000
2y my kx y kx 表示的平面区域内部及边界上
运动,则
1
2
--a b 的取值范围是 . 10. 在ABC ∆中,设()()4,2,3,2=-=AC k BC
∈≤k ,4Z ,则A
B C ∆为直角三角
形的概率为__________.
11. 已知函数()x
x x f +-=
112,若方程()a x f =-1有且仅有三个不同的实根,则实
数a 的取值的集合为 .
12. 已知∈b a ,R ,且2
2
3a ab b ++=,设2
2
a a
b b -+的最大值和最小值分别为
,M m ,则M m +=________.
13. 已知函数234
2015
()12342015
x x x x f x x =+-+-+
+,设()(4)F x f x =+,且函数()F x 的零点均在区间[],a b (a b <,a ,∈b Z )内,圆22x y b a +=-的面积的最
小值是_______.
14. 各项均为正偶数的数列1a ,2a ,3a ,4a 中,前三项依次成公差为(0)d d >的等差数列,后三项依次成公比为q 的等比数列.若4188a a -=,则q 的所有可能的值构成的集合为__________. 二.解答题
15. 已知(sin ,1)a α=,(cos ,2)b α=,(0,)4
πα∈.
(1)若17
8
a b ⋅=,求sin cos αα-的值;
(2)若a ∥b ,又β为锐角,且1
tan 3
β=求αβ+的值.
16. 在四棱锥ABCD P -中,︒
=∠=∠90ACD ABC ,︒
=∠=∠60CAD BAC ,⊥PA 平
面ABCD ,E 为PD 的中点,AB PA 2=. (1)若F 为PC 的中点,求证⊥PC 平面AEF ; (2)求证//CE 平面PAB .
M
F E
D
C
B
A
P
17. 如图所示,l 1,l 2是两条互相垂直的海岸线,C 为一海岛,
ABCD 是一矩形渔场,为了扩大渔业规模,将该渔场改建成一个更大的矩形渔场AMPN ,要求点D ,N 在海岸线l 1上,点B ,M 在海岸线l 2上,且两点M ,N 连线经过海岛C ,已知AB =3km ,AD =2km .
(1)要使矩形AMPN 的面积大于32km 2,则AN 的长应在什么范围内?
(2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求最小面积.
(3)若AN 的长度不少于6km ,则当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小面积.
18. 已知椭圆()01:22
22>>=+b a b y a x C 上的一动点到右焦点的最短距离为
22-,且右焦点到右准线的距离等于短半轴的长.
(1)求椭圆C 的方程;
(2)设()0,4P ,B A ,是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E , 证明直线AE 与x 轴相交于定点Q .
(3)在(2)的条件下, 过点Q 的直线与椭圆C 交于N M ,两点,直线MN 中点的横坐标为0
x ,求
x 的范围.
19. 设.2)(,ln )(),(2)(--==--
=e
p qe e g x x f x f x q px x g 且其中(e 为自然对数的底数)。
(1)求p 与q 的关系;
(2)若)(x g 在其定义域内为单调函数,求p 的取值范围; (3)若∈a R ,试讨论方程()f x x a =+的解的个数
20. 已知数列}{n a 是以d 为公差的等差数列,数列}{n b 是以q 为公比的等比数列.
(1)若数列}{n b 的前n 项和为n S ,且112a b d ===,31003252010S a b <+-,且q 为
整数,求q 的值;
(2)在(1)的条件下,试问数列}{n b 中是否存在一项k b ,使得k b 恰好可以表示为
该数列中连续∈p p (N ,)2≥p 项的和?请说明理由;
(3)若123,,r s r t b a b a a b a ==≠=(其中t s r >>,且(s r -)是(t r -)的约数),求证:数列
}
{n b 中每一项都是数列
}
{n a 中的项.
附加题
21. B . 选修4—2:矩阵与变换
设214,,5311x A X B y ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
,且AX B =. ⑴求1A -; ⑵求X .
C .选修4-4:坐标系与参数方程
在极坐标系中,已知圆C 经过点4
P π,)
,圆心为直线sin()3
π
ρθ-求圆
C 的极坐标方程.
22. 全美职业篮球联赛(NBA)某年度总决赛在雷霆队与迈阿密热火队之间角逐,比
赛采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束. 因两队实力相当,故每场比赛获胜的可能性相等. 据以往资料统计,第一场比赛组织者可获门票收入2000万美元,以后每场比赛门票收入比上场增加100万美元,当两队决出胜负后,问:
(1)组织者在此次决赛中要获得门票收入不少于13500万元的概率为多少? (2)某队在比赛过程中曾一度比分落后2分以上(含2分),最后取得全场胜利称为“逆袭”,求雷霆队“逆袭”获胜的概率; (3)求此次决赛所需比赛场数的分布列及数学期望.
23. 设A 是集合{}n P ,,3,2,1⋅⋅⋅=的一个k 元子集
(即由k 个元素组成的集合),且A 的任何两个子集的元素之和不相等;而对于集合P 的包含集合A 的任意1+k 元子集B ,则存在B 的两个子集,使这两个子集的元素之和相等. (1)当6=n 时,试写出一个三元子集A .
(2)当16=n 时,求证:5≤k ,并求集合A 的元素之和S 的最大值.。