华师大版八年级数学下册知识要点
华东师大版八年数学下知识点归纳

一、数与式1.整数的运算:加法、减法、乘法、除法,能够熟练运用各种整数运算的性质。
2.整数的科学计数法和运算:掌握科学计数法的表示方法,并能进行加、减、乘、除运算。
3.分数的加减乘除:熟练掌握分数的加减乘除法运算,注意化简分数和找到最简分数。
4.百分数的应用:能够将百分数转化为小数和分数,灵活运用百分比解决实际问题。
5.带分数的加减乘除:理解带分数的含义,掌握带分数的加减乘除法运算。
二、函数1.函数的概念:理解函数的定义,能够给出函数的自变量、因变量和函数表达式。
2.函数间的关系:掌握函数之间关系的性质,如一次函数、二次函数、反比例函数等。
3.函数的解析式:能够根据已知函数的性质写出其解析式,如直线的解析式、抛物线的解析式等。
4.函数的图象和性质:能够根据函数的解析式绘制出函数的图象,理解函数图象的特点和性质。
三、图形的研究1.平面图形的展开和计算:熟练计算平面图形的周长和面积,理解面积和周长的概念。
2.直角三角形的研究:熟练使用勾股定理解决实际问题,理解正弦、余弦和正切的概念。
3.平行四边形和梯形的研究:能够计算平行四边形和梯形的周长和面积,理解这些图形的性质。
4.圆的性质和计算:理解圆的直径、半径、圆周和圆心角的概念,能够计算圆的周长和面积。
四、常用图形和统计1.线段和角的相交关系:理解直线和线段的相交性质,掌握平行线和垂直线的性质。
2.平面镜像和旋转:理解平面镜像和旋转的概念,能够根据图形的变换关系进行计算和推理。
3.统计调查和数据处理:能够进行统计调查和数据分析,掌握平均数、中位数和众数的计算方法。
五、概率1.随机事件的概率计算:理解事件的概率和样本空间的概念,能够计算事件的概率。
2.多个随机事件的概率:掌握与事件相应的几种概率的计算方法,如和事件、积事件等。
以上是华东师大版八年级数学下册的主要知识点归纳,包括数与式、函数、图形的研究、常用图形和统计、概率等内容。
希望对你的学习有所帮助。
八年级下册数学知识点概括 华师大版

第17章分式1. 定义:形如A/B(A,B是整式,且B中含字母)2. 分式有意义:分母不为0分式无意义:分母为0分式为0:分母不为0,分子为03.分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变即:约分(最简分式),通分4.分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减5.分式方程及其解法:先化为整式方程,再解整式方程,最后检验6.整数指数幂的加减乘除法任何不为0的数的零指数幂为1负整指数幂:a-n=1/a n第18章函数及其图象1.函数和变量①在某一变化过程中,取值始终保持不变的量叫做常量②可以取不同数值的量叫做变量2.自变量的取值范围①当解析式是整式时,自变量的取值范围是全体实数②当解析式是分式时,自变量的取值范围是使分母不为零的实数③当解析式是偶次方根时,自变量的取值范围是使被开方数不小于0的实数3.函数关系的表示方法:解析法,列表法,图象法4.函数图象的画法:列表,描点,连线5.象限问题:第一象限(+, + ), 第二象限(--, + ),第三象限(--,--),第一象限(+,--)6.坐标轴上的点X轴上的点(X,O)Y轴上的点(O,Y)7.点(a,b)对称问题:关于X轴对称的点为(a,-b)关于Y轴对称的点为(-a,b)关于原点对称的点为(-a,-b)8.一次函数①形如y=kx + b ,(k,b为常数,且k≠0)②k>0,b>0时,图象经过一二三象限K>0,b<0时,图象经过一三四象限K<0,b>0时,图象经过一二四象限K<0,b<0时,图象经过二三四象限③K>0时,y随x增大而增大K<0时,y随x增大而减小④用待定系数法求一次函数的关系式:㈠设y=kx + b,㈡将已知条件代入关系式得到方程(组),㈢解方程(组)求出待定系数,㈣将待定系数代回所设函数关系式即可9. 反比例函数①反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;②K>0时,图象在一三象限,y随x增大而减小K<0时,图象在二四象限,y随x增大而增大注意:双曲线的两个分支都是无限接近坐标轴但不与坐标轴相交10. 反比例函数和一次函数的结合题解法将已知的点分别代入反比例函数和一次函数的关系式中,即可求出未知量第19章全等三角形一.命题与定理①命题:可以判断一件事情正误的句子。
华师大版八年级下册数学知识点总结

)))))))八年级华师大版数学(下)分式第16章 16.1分式及基本性质§一、分式的概念A那么式子中含有字母,表示两个整式,并且B如果1、分式的定义:A、B B分式叫做。
2、对于分式概念的理解,应把握以下几点:)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线(1)分式的分子可以含有字母,也可以不含字母,但分式(2起除号和括号的作用;3)分母不能为零。
的分母一定要含有字母才是分式;(3、分式有意义、无意义的条件;(1)分式有意义的条件:分式的分母不等于0 。
(2)分式无意义的条件:分式的分母等于0 的条件:4、分式的值为0A的条。
即,使0=0当分式的分子等于0,而分母不等于0时,分式的值为B 0件是:A=0,B≠。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
?式单项?整式??分类:有理式项项多????分式???单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零1))))))).)))))))的整式,分式的值不变。
A·M AA÷M用式子表示为:= = ,其中M(M≠0)为整式。
MBB÷M·B2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
(完整版)华东师大版八年数学下知识点归纳

华师大版八年级数学下册各章知识汇总精编第16章分式1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第17章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
华东师大版八年数学下知识点归纳

华东师大版八年数学下知识点归纳集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]华师大版八年级数学下册各章知识汇总精编第16章分式1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第17章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
华师大版八年级下册数学知识点总结计划

.八年级华师大版数学〔下〕第16章分式§16.1 分式及根天性质一、分式的观点1、分式的定义:假如 A、B 表示两个整式,而且 B 中含有字母,那么式子叫做分式。
2、对于分式观点的理解,应掌握以下几点:〔1〕分式是两个整式相除的商。
此中分子是被除式,分母是除式,分数线A B起除号和括号的作用;〔2〕分式的分子能够含有字母,也能够不含字母,但分式的分母必定要含有字母才是分式;〔3〕分母不可以为零。
3、分式存心义、无心义的条件(1〕分式存心义的条件:分式的分母不等于 0;(2〕分式无心义的条件:分式的分母等于 0。
4、分式的值为 0 的条件:当分式的分子等于0,而分母不等于 0 时,分式的值为 0。
即,使A=0 的条B件是: A=0 ,B≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
单项式整式分类:有理式多项项分式单项式:由数与字母的乘积构成的代数式;多项式:由几个单项式的和构成的代数式。
二、分式的根天性质.1、分式的根天性质:分式的分子与分母都乘以〔或除以〕同一个不等于零的整式,分式的值不变。
A A·M A÷M用式子表示为:B =B·M= B÷M,此中 M〔M≠0〕为整式。
2、通分:利用分式的根天性质,使分子和分母都乘以适合的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的重点是:确立几个分式的最简公分母。
确立最简公分母的一般方法是:(1〕假如各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不一样字母及指数的积。
〔2〕假如各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不一样因式三个方面去确立。
3、约分:依据分式的根天性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:〔1〕假如分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大条约数,相同字母的最低次幂;〔2〕假如分子、分母中起码有一个多项式就应先分解因式,而后找出它们的公因式再约分;〔3〕约分必定要把公因式约完。
华东师大版八年数学下知识点归纳

华师大版八年级数学下册各章知识汇总精编第16章分式1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第17章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
华师大版八年级下册数学知识点总结计划

八年级华师大版数学(下)第16 章分式§16.1 分式及基天性质一、分式的观点1、分式的定义:假如A、B表示两个整式,而且B中含有字母,那么式子AB 叫做分式。
3、分式存心义、无心义的条件( 1)分式存心义的条件:分式的分母不等于0 ;( 2)分式无心义的条件:分式的分母等于0。
4、分式的值为0 的条件:当分式的分子等于0,而分母不等于0 时,分式的值为0。
即,使A=0 的条B件是: A=0 ,B≠0。
二、分式的基天性质通分:利用分式的基天性质,使分子和分母都乘以适合的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的重点是:确立几个分式的最简公分母。
确立最简公分母的一般方法是:( 1)假如各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、全部不一样字母及指数的积。
(2)假如各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不一样因式三个方面去确立。
约分:依据分式的基天性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
在约分时要注意:( 1)假如分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的最大条约数,相同字母的最低次幂;( 2)假如分子、分母中起码有一个多项式就应先分解因式,而后找出它们的公因式再约分;( 3)约分必定要把公因式约完。
1三、分式的符号法例:(1)-aa -a;()-a a;()- -a ab =-b=b2 -b=b3-b=b§ 16.2 分式的运算一、分式的乘除法应用法例时要注意:(1)分式中的符号法例与有理数乘除法中的符号法例相同,即“同号得正,异号得负,多个负号出现看个数,奇负偶正”;( 2)当分子分母是多项式时,应先进行因式分解,以便约分;(3)分式乘除法的结果要化简到最简的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下数学各章知识要点
第17章分式复习要点
1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算
1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,
4)分式运算的最后结果应化为最简分式或整式.
7、分式方程
1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第18章函数及图象的复习要点
1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=1 。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;
第二象限内的点x<0,y>0;
第三象限内的点x<0,y<0;
第四象限内的点x>0,y<0;
由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.
4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
5、第一、三象限角平分线上的点,横纵坐标相等;第二、四象限角平分线上的点,横纵坐标互为相反数。
6、在一个变化过程中,存在两个变量x、y,对于x的每一个取值,y都有唯一的一个值与之对应,我们就说y是x的函数。
x是自变量,y是因变量。
函数的表示方法有:解析式法、图象法、列表法。
7、函数自变量的取值范围:
①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;
③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.
④函数的解析式是负整指数和零指数时,底数≠0;
⑤对于反映实际问题的函数关系,应使实际问题有意义.
8、如果y=kx +b ( k、b是常数,k≠0),那么,y叫x的一次函数。
如果y=k x (k是常数,k 0),那么,y叫x的正比例函数。
9、点在函数的图象上的代数意义是:这一点的坐标满足函数的解析式。
两个函数有交点的代数意义是:两个函数的解析式组成的方程组的解就是交点的坐标。
10、一次函数y=kx+b的性质:
(1)一次函数图象是过两点的一条直线,|k|的值越大,图象越靠近于y轴。
(2)当k>0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);
(3)当k<0时,图象过二、四象限,y随x的增大而减小。
从左至右图象是下降的(左高右低);
(4)当b>0时,与y轴的交点(0,b)在正半轴;当b<0时,与y轴的交点(0,b)在负半轴。
当b=0时,一次函数就是正比例函数,图象是过原点的一条直线
(5)几条直线互相平行时,k值相等而b不相等。
11、如果y=kx ( k是常数,k≠0),那么,y叫x的反比例函数。
12、反比例函数y=kx的性质:
(1)反比例函数的图象是双曲线,图象无限的靠近于x、y轴。
(2)当k>0时,图象的两个分支位于一、三象限,在每个象限内,y随x的增大而减小,从左至右图象是下降的(左低右高);
(3)当k<0时,图象的两个分支位于二、四象限,在每个象限内,y随x的增大而增大,从左至右图象是上升的(左高右低)。
(4)反比例函数y=kx与正比例函数y=k x的交点关于原点对称。
第19章全等三角形
1、判断正确或错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.
2、命题是由题设、结论两部分组成的.题设是已知事项;结论是由已知事项推出的事项.常可写成“如果……,那么……”的形式.用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论.
3、直角三角形的两个锐角互余.
4、三角形全等的判定:
方法1:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简记为S.A.S.(或边角边).
方法2:如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简记为A.S.A.(或角边角)
方法3:如果两个三角形有两个角和其中一个角的对边分别对应相等,那么这两个三角形全等.简记为A.A.S.(或角角边).
方法4:如果两个三角形的三条边分别对应相等,那么这两个三角形全等.简记为S.S.S(或边边边).
方法5(只能用于直角三角形):如果两个直角三角形的斜边和一条直角边分别对应相等,那么这两个直角三角形全等.简记为H.L.(或斜边、直角边).5、一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题.
6、如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.
7、如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
8、如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(勾股定理的逆定理)
9、角平分线上的点到这个角的两边的距离相等.到一个角两边的距离相等的点在这个角的平分线上.
10、线段的垂直平分线上的点到这条线段的两个端点的距离相等;到一条线段的两个端点的距离相等的点在这条线段的垂直平分线上。
第20章平行四边形的判定
1、四边形的内角和定理:四边形内角和等于360°;
2、多边形内角和定理:n边形的内角和等于(n-2)×180°;
3、多边形的外角和定理:任意多边形的外角和等于360°;
4、n边形对角线条数公式:n(n-3)2(n≥3);
5、中心对称:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称。
6、中心对称图形:把一个图形绕某一个点旋转180°,如果它能够和原来的图形互相重合,那么就说这个图形叫做中心对称图形。
7、中心对称的性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。
8、平行四边形的性质和判定
一般说来,n 个数 、 、…、 的平均数为 =1n(x1+x2+…xn)
一般说来,如果n 个数据中,x1出现f1次,x2出现f2次,xk 出现fk 次,且f 1+f2+… +fk =n 则这n 个数的平均数可表示为x =x1f1+x2f2+…xkfkn 。
其中fin 是xi 的权重(i =1,2…k )。
加权平均数是分析数据的又一工具。
当考虑不同权重时,决策者的结论就有可能随之改变。
2、将一组数据按由小到大(或由大到小)的顺序排列(即使有相等的数据也要全部参加排列),如果数据的个数是奇数,那么中位数就是中间的那个数据。
如果数据的个数是偶数,那么中位数就是中间的两个数据的平均数。
一组数据的中位数只有一个,它可能是这组数据中的一个数据,也可能不是这组数据中的数据.
3、一组数据中出现的次数最多的数据就是众数。
一组数据可以有不止一个众数,也可以没有众数(当某一组数据中所有数据出现的次数都相同时,这组数据就没有众数).
4、一组数据中的最大值减去最小值就是极差:极差=最大值-最小值
5、我们通常用
S 表示一组数据的方差,用X 表示一组数据的平均数,X 1、X 2 、…、 表示各个原始数据.则S=1/5[(X 1-X) +(X 1-X)]
( 平方单位)
求方差的方法:先求平均数,再求偏差,然后求偏差的平方和,最后再平均数 6、求出的方差再开平方,这就是标准差。
7、平均数、极差、方差、标准差的变化规律
一组数据同时加上或减去一个数,极差不变,平均数加上或减去这个数,方差不变,标准差不变
一组数据同时乘以或除以一个数,极差和平均数都乘以或除以这个数,方差乘以或除以该数的平方,标准差乘以或除以这个数。
一组数据同时乘以一个数a ,然后在加上一个数b ,极差乘以或除以这个数a ,平均数乘以或除以这个数a ,再加上b,方差乘以a 的平方,标准差乘以|a|. (加减的数都不为0)
2
--_2
2
--2
_
--2
_。