(人教版)八年级下学期数学知识点归纳
人教版八年级下册数学知识点汇总

人教版八年级下册数学知识点汇总第十六章二次根式。
1. 二次根式的概念。
- 形如√(a)(a≥slant0)的式子叫做二次根式。
其中“√()”称为二次根号,a叫做被开方数。
- 注意:被开方数a必须是非负数,否则√(a)无意义。
例如√(-2)就不是二次根式。
2. 二次根式的性质。
- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。
- (√(a))^2=a(a≥slant0)。
例如(√(5))^2 = 5。
- √(a^2)=| a|=a(a≥sl ant0) -a(a<0)。
如√(3^2) = 3,√((-3)^2)=| - 3|=3。
3. 二次根式的乘除。
- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。
例如√(2)×√(3)=√(2×3)=√(6)。
- 二次根式的除法法则:√(a)÷√(b)=√(frac{a){b}}(a≥slant0,b>0)。
如√(8)÷√(2)=√(frac{8){2}}=√(4) = 2。
4. 二次根式的加减。
- 最简二次根式:被开方数不含分母,被开方数中不含能开得尽方的因数或因式的二次根式。
例如√(8)不是最简二次根式,化简为2√(2)后是最简二次根式。
- 二次根式加减时,先将二次根式化为最简二次根式,然后合并同类二次根式(同类二次根式是指被开方数相同的二次根式)。
例如√(12)+√(27)=2√(3)+3√(3)=5√(3)。
第十七章勾股定理。
1. 勾股定理。
- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。
- 例如在直角三角形中,两直角边分别为3和4,则斜边c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
八年级数学下册知识点总结(全)

八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法:用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线。
3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。
5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
八年级下册数学重点知识归纳

八年级下册数学重点知识归纳摘要:一、引言二、数轴与实数1.数轴的定义与性质2.实数的分类与性质三、代数式与代数表达式1.代数式的基本概念2.代数表达式的运算规则四、方程与不等式1.一元一次方程的解法2.一元二次方程的解法3.不等式的基本概念与解法五、函数1.函数的基本概念2.函数的图像与性质3.函数的解析式与应用六、几何知识1.点、线、面的基本概念2.直线与角的关系3.三角形的基本性质与证明4.四边形的分类与性质七、数据的收集与分析1.数据的收集方法2.数据的整理与展示3.数据的分析与推断八、概率与统计1.概率的基本概念2.事件的概率3.统计的基本概念与方法九、综合应用1.实际问题与数学建模2.数学在生活中的应用十、总结与展望正文:【引言】数学是科学的基础,也是工具。
在八年级下册的数学课程中,我们将学习一系列重要的数学知识,为以后的学习打下坚实的基础。
本篇文章将对这些重点知识进行归纳总结,帮助大家更好地掌握数学知识。
【数轴与实数】数轴是数学中的一个基本概念,它是一个直线,规定了原点、正方向和单位长度。
实数是数学中的基本对象,可以分为有理数和无理数。
有理数又可分为整数、分数和小数。
无理数是不能表示为有理数的实数,如圆周率π。
【代数式与代数表达式】代数式是由数、字母和运算符号组成的式子,如3x+2y。
代数表达式是在代数式的基础上,应用运算律和运算方法得到的式子,如(3x+2y)^2。
【方程与不等式】方程是一个含有未知数的等式,如x+3=5。
解方程就是求出方程中未知数的值。
不等式是表示大小关系的式子,如x>3。
解不等式就是找出满足不等式的所有x 的值。
【函数】函数是一种特殊的关系,它将一个或多个变量映射到另一个变量。
例如,y=2x+1 是一个一次函数,它将x 映射到y。
函数的解析式是表示函数关系的式子。
【几何知识】几何是数学的一个重要分支,主要研究点、线、面的性质和它们之间的关系。
在八年级下册,我们将学习直线与角的关系,三角形的性质和证明,以及四边形的分类和性质。
新人教版八年级下册数学知识点总结归纳期末总复习

新人教版八年级下册数学知识点总结归纳期末总复习一、 第十六章 二次根式 【知识回顾】 :2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质: (1)(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的a (a >0)a -(a <0)0 (a =0);(a ≥0,b≥0);=b ≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算二、第十七章 勾股定理 归纳总结1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么c b a 222=+应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c =,b =,a =) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2、勾股定理逆定理:如果三角形三边长a,b,c 满足c b a 222=+那么这个三角形是直角三角形。
应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法。
(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边)3、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等4.直角三角形的性质(1)直角三角形的两个锐角互余。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
八年级下册数学知识点归纳总结

八年级下册数学知识点归纳总结一、代数知识点1. 代数表达式- 单项式与多项式的定义- 合并同类项- 代数式的加减运算- 代数式的乘除运算2. 一元一次方程- 方程的建立与解法- 利用等式性质解方程- 解含有括号的一元一次方程- 解应用题3. 一元一次不等式- 不等式的概念与性质- 不等式的解集表示- 解一元一次不等式- 解一元一次不等式组4. 二元一次方程组- 方程组的建立- 代入法解方程组- 加减法解方程组- 应用题的解决二、几何知识点1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 平行线间的角关系2. 三角形- 三角形的基本概念- 三角形的内角和定理- 三角形的外角性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念- 矩形、菱形、正方形的性质- 平行四边形的性质与判定- 四边形的面积计算4. 圆的基本性质- 圆的定义与性质- 圆的直径、弦、弧、切线- 圆周角与圆心角的关系- 切线长定理三、统计与概率知识点1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 概率的计算方法- 等可能事件的概率四、数列知识点1. 数列的概念- 数列的定义- 常见的数列类型(等差数列、等比数列)2. 等差数列- 等差数列的定义与通项公式- 等差数列的前n项和公式- 等差数列的性质与应用3. 等比数列- 等比数列的定义与通项公式- 等比数列的前n项和公式- 等比数列的性质与应用五、函数知识点1. 函数的概念- 函数的定义- 函数的表示方法(解析式、图像、表格)2. 一次函数- 一次函数的定义与图像- 一次函数的性质- 一次函数的应用题3. 二次函数- 二次函数的定义与图像- 二次函数的性质- 二次函数的应用题六、实数与根式知识点1. 实数- 实数的基本概念- 有理数与无理数- 实数的运算2. 根式- 平方根与立方根的定义- 根式的运算- 无理数的估算七、解题技巧与策略1. 解题步骤的规范化- 理解题意- 制定解题计划- 执行解题过程- 检查验证结果2. 常见解题误区与避免方法- 忽略题目条件- 计算失误- 逻辑推理错误3. 提高解题效率的方法- 练习典型题目- 分类记忆公式与定理- 定期复习巩固以上是对八年级下册数学知识点的一个全面归纳总结。
初二数学下册知识点人教版

初二数学下册知识点人教版一、有理数的运算初二数学下册的第一个章节是有理数的运算。
有理数分为正有理数、负有理数和零,包括整数、分数、小数等。
有理数进行加、减、乘、除运算时,有一些基本的规律需要掌握。
例如:1.同号两数相加,异号两数相减;2.负数与正数相乘结果为负数,同号两数相乘结果为正数;3.除法的规律为“乘倒数”。
需要注意的是,运算时要进行数学推导,属于数学的精髓之一。
二、图形的认识初二数学下册的第二个章节是图形的认识。
这一章节主要介绍了平面几何和立体几何两部分内容。
1.平面几何中,需要掌握解题方法和步骤,如平移、旋转、对称等操作。
平面几何中的图形有:点、线、面的基本概念、直线、角、三角形、四边形、圆等。
需要掌握图形性质、判定定理和证明方法。
2.立体几何中,需要认识各种几何体的性质和分类方法。
例如,球体、棱锥、棱柱等,需要掌握计算它们的面积和体积的方法。
三、统计与概率初二数学下册的第三个章节是统计与概率。
这一章节侧重于对各种数据进行统计和分析,同时介绍了概率的基本知识,包括概率的定义、计算公式等。
1.在统计方面,需要掌握数据的收集、整理、展示和分析方法。
例如,频数表和频数直方图的制作方法、比较数据的方法、数据的变化趋势等。
2.在概率方面,要掌握基本概念和计算方法。
例如,“肯定事件”和“不可能事件”等概念,掌握计算概率的方法,如加法原理和乘法原理等。
四、函数初二数学下册的第四个章节是函数。
函数是数学中一个非常重要的概念,是数学中的基础。
1.需要掌握函数的定义、图象、性质和分类等内容,同时也要学习函数的运算、逆函数及它的性质和计算方法等。
2.对于图象的绘制和解析,需要掌握函数的参数、函数的变化趋势,通过散点图等方法来进行分析和研究。
五、线性关系初二数学下册的第五个章节是线性关系。
线性关系是又函数的一种,是对直线上的变化趋势的分析。
1.需要掌握直线的方程和一次函数的定义及性质,并且要掌握一次函数与几何直线之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 5)邻角互补 .
A
C B
4.平行四边形的判定:
(1)两组对边分别平行
D
(2)两组对边分别相等 (3)两组对角分别相等
ABCD 是平行四边形
.
O
(4)一组对边平行且相等
A
(5)对角线互相平分
5.矩形的性质:
D
( 1)具有平行四边形的所有通性 ;
因为四边形 ABCD 是矩形( 2)四个角都是直角;
2
高)
2.S 平行四边形 =ah. a 为平行四边形的边,h 为 a 上的高)
3.S 梯形 = 1 (a+b)h=Lh.(a、b 为梯形的底,h 为梯形的高,L 为梯形的中位
2
线)
二、常识:
n (n 3) 1.若 n 是多边形的边数,则对角线条数公式是: 2 .
2.如图:平行四边形、矩形、菱形、正方形的从属关系.
CD= 1 AB=BD=AD 2
6.常用关系式
由三角形面积公式可得:AB CD=AC BC
7.直角三角形的判定
1、有一个角是直角的三角形是直角三角形。 2、如果三角形一边上的中线等于这边的一半,那么 这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长 a,b,c 有关系 a 2 b 2 c 2 ,
三、函数中自变量取值范围的求法(即有意义):
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为 0 的一切实数。 (3)用奇次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。 (4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再 求其公共范围,即为自变量的取值范围。 (5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。 四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对 应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是 这个函数的图象.
A
D
因为四边形 ABCD 是等腰梯形 ( 2)同一底上的底角相等 ;
O
( 3)对角线相等 .
B
C
12.等腰梯形的判定:
(1)梯形 两腰相等
(2)梯形 底角相等
四Hale Waihona Puke 形ABCD是等腰梯形
(3)梯形
对角线相等
A
D
O
B
C
(3)∵四边形 ABCD 是梯形且 AD∥BC 又∵AC=BD ∴四边形 ABCD 四边形是等腰梯形
OC
B
O
A
B (1)
A
10.正方形的判定:
B (2)(3)
(1)平行四边形 一组邻边等 一个直角
(2)菱形 一个直角
四边形
ABCD
是正方形.
(3)矩形 一组邻边等
D
C
(3)∵四边形 ABCD 是矩形 且 AD=AB
∴四边形 ABCD 是正方形
A
B
11.等腰梯形的性质:
( 1)两底平行,两腰相等;
等
5.直角三角形的性质
(1)直角三角形的两个锐角互余。可表示如下:∠C=90° ∠A+∠B=90°
(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
可表示如下: ∠A=30°
BC= 1 AB 2
∠C=90°
(3)直角三角形斜边上的中线等于斜边的一半
可表示如下: ∠ACB=90°
D 为 AB 的中点
14.三角形中位线定理:
∵DE 是△ABC 的中位线
三角形的中位线平行第三边, ∴DE∥BC,DE= 1 BC
D
并且等于它的一半.
2
15.梯形中位线定理: 梯形的中位线平行于两底,并
且等于两底和的一半.
D E
B
C
F
A
B
A E C
附:一、 公式:
1.S 菱形 = 1 ab=ch.(a、b 为菱形的对角线 ,c 为菱形的边长 ,h 为 c 边上的
当 b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例. 特征: (1) k 不为零 ; (2)x 指数为 1 (3) 自变量的取值范围为全体实数; (4)b 取任意实数
2、图象:
(1)一次函数 y=kx+b 的图象是经过(0,b)和(- b ,0)两点的一条直线, k
我们称它为直线 y=kx+b,它可以看作由直线 y=kx 平移|b|个单位长度得到.(当 b>0 时,向上平移;当 b<0 时,向下平移)
根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的
积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
ab = a · b (a≥0,b≥0);
b a
b a (b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配
那么这个三角形是直角三角形。
8.命题、定理、证明
1、命题的概念 判断一件事情的语句,叫做命题。 理解:命题的定义包括两层含义: (1)命题必须是个完整的句子; (2)这个句子必须对某件事情做出判断。 2、命题的分类(按正确、错误与否分)
真命题(正确的命题):如果题设成立,那么结论一定成立的命题。
命题 假命题(错误的命题):如果题设成立,不能证明结论总是成立的命题。
A B
2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于 360°.
3.平行四边形的性质:
D
C
A4
1 B
D
3 2
C
( 1)两组对边分别平行;
因为四边形 ABCD 是平行四边形 (( 32))两两组组对对角边分分别别相相等等;;
D
O
( 4)对角线互相平分;
那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
4.勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即 a2 b2 c2 中,a ,b , c 为正整数时,称 a , b , c 为一组勾股数
②记住常见的勾股数可以提高解题速度,如 3,4,5; 6,8,10; 5,12,13; 7,24,25
D
A
OC
8.菱形的判定:
(1)平行四边形 一组邻边等
(2)四个边都相等
四边形四边形
ABCD
是菱形.
(3)对角线垂直的平行四 边形
A
9.正方形的性质
( 1)具有平行四边形的所有通性;
因为四边形 ABCD 是正方形( 2)四个边都相等,四个角都是直角;
( 3)对角线相等垂直且平分对角 .
D
C
D
C
B D
b>0
b<0
b=0
过第一、二、三象限 过第一、三、四象限 过第一、三象限
k>0
图象从左到右上升,y 随 x 的增大而增大 过第一、二、四象限 过第二、三、四象限 过第二、四象限
k<0
图象从左到右下降,y 随 x 的增大而减小
a ( a >0)
(1)( a )2= a ( a ≥0);(2) a 2 a
5.二次根式的运算:
0 ( a =0); a (a <
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可
以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,
变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到
10.数学口诀.
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式 相混淆。 完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中 央;首±尾括号带平方,尾项符号随中央。
十八章:平行四边形
1.四边形的内角和与外角和定理: (1)四边形的内角和等于 360°; (2)四边形的外角和等于 360°.
(2)性质:当 k>0 时,直线 y= kx 经过第三,一象限,从左向右上升,即随着 x 的增大 y 也增大;当 k<0 时,直线 y= kx 经过二,四象限,从左向右下降,即随 着 x 的增大 y 反而减小。
八、一次函数
1、定义:一般地,形如 y=kx+b(k,b 为常数,且 k≠0)的函数叫做一次函数.
(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。
2.勾股定理逆定理:如果三角形三边长 a,b,c 满足 a2+b2=c2,那么这个三角
形是直角三角形。(应用:判定一个三角形是否是直角三角形的重要方法。)
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。) 注意:列表时自变量由小到大,相差一样,有时需对称。 2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标, 描出表格中数值对应的各点。 3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
矩 形
正 方 形
菱 形
平行四边形
3.常见图形中,仅是轴对称图形的有:
角、等腰三角形、等边三角形、正奇边形、等腰梯形 ……
注意:线段有两条对称轴.
十九章:一次函数
一.常量、变量:
在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。