八年级数学下册知识点总结

合集下载

八年级数学下册知识点总结

八年级数学下册知识点总结

八年级数学下册知识点总结一、二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

其中“√()”叫做二次根号,a叫做被开方数。

例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。

2. 二次根式有意义的条件。

- 被开方数必须是非负数,即对于√(a),a≥slant0时二次根式有意义。

例如在√(x - 2)中,x - 2≥slant0,解得x≥slant2时该二次根式有意义。

3. 二次根式的性质。

- √(a)(a≥slant0)是一个非负数,即√(a)≥slant0。

- (√(a))^2=a(a≥slant0)。

例如(√(3))^2=3。

- √(a^2)=| a|=<=ft{begin{array}{l}a(a≥slant0) - a(a < 0)end{array}right.。

例如√((-2)^2)=| - 2| = 2。

4. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0)。

例如√(2)×√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b > 0)。

例如(√(8))/(√(2))=√(frac{8){2}}=√(4)=2。

5. 二次根式的加减。

- 先把二次根式化成最简二次根式,再合并同类二次根式。

- 最简二次根式满足两个条件:被开方数不含分母;被开方数中不含能开得尽方的因数或因式。

例如√(8)=√(4×2)=2√(2),2√(2)就是最简二次根式。

- 同类二次根式是指几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

例如√(12)=2√(3)与√(27)=3√(3)是同类二次根式,可以合并,2√(3)+3√(3)=(2 + 3)√(3)=5√(3)。

八年级下学期数学知识点总结

八年级下学期数学知识点总结

八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。

平移不会改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

初二下册数学知识点总结归纳

初二下册数学知识点总结归纳

初二下册数学知识点总结归纳(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初二下册数学知识点总结归纳学会整合知识点。

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。

2. 一元一次方程的概念、解法和实际应用。

3. 一元一次不等式的概念、解法和实际应用。

4. 一元二次方程的概念、解法和实际应用。

5. 代数式的加减乘除、化简和因式分解。

6. 二元一次方程组的概念、解法和实际应用。

7. 一元二次不等式的概念、解法和实际应用。

8. 质因数分解和最大公因数、最小公倍数的求法。

9. 分式的基本概念和运算方法。

二、几何1. 平面图形的基本性质和分类。

2. 勾股定理及其应用。

3. 三角形的相似性质和判定方法。

4. 三角形的内角和及其计算。

5. 空间图形的基本性质和分类。

6. 直线与平面的位置关系及其应用。

7. 圆的基本性质和相关定理。

8. 空间中直线与平面的交角问题和判定方法。

9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。

三、概率统计1. 事件和概率的基本概念。

2. 古典概型和几何概型的概率计算。

3. 条件概率和独立性的概念和计算方法。

4. 排列和组合的概念和应用。

5. 随机变量和概率分布的定义和联系。

6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。

7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。

8. 正态分布的概念和应用。

9. 假设检验的基本概念和方法。

以上就是八年级数学下册的全部知识点总结。

在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。

同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。

八年级数学下册知识点重点总结重点难点

八年级数学下册知识点重点总结重点难点

第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”或“≤”, “>”或“≥”连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系;3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0≥0 <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0≤0 <===> 0和负数 <===> 不大于0 二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:1 不等式的两边加上或减去同一个整式,不等号的方向不变,即: 如果a>b,那么a+c>b+c, a-c>b-c.2 不等式的两边都乘以或除以同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc,cb c a >. 3 不等式的两边都乘以或除以同一个负数,不等号的方向改变,即: 如果a>b,并且c<0,那么ac<bc,cb c a < 2. 比较大小:a 、b 分别表示两个实数或整式 一般地: 如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b; 如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 由此可见,要比较两个实数的大小,只要考察它们的差就可以了. 三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1不等号的改变问题 4. 一元一次不等式基本情形为ax>b 或ax<b ①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为ab x <; 5. 不等式应用的探索利用不等式解决实际问题列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式; ④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. 3. 解一元一次不等式组的步骤:1分别求出不等式组中各个不等式的解集;2利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况a 、b 为实数,且a<b第二章 分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系;因式分解与整式乘法的区别和联系: 1整式乘法是把几个整式相乘,化为一个多项式; 2因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如: )(c b a ac ab +=+2. 概念内涵:1因式分解的最后结果应当是“积”;2公因式可能是单项式,也可能是多项式;3提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+3. 易错点点评:1注意项的符号与幂指数是否搞错;2公因式是否提“干净”; 3多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:1平方差公式: ))((22b a b a b a -+=-2完全平方公式: 222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 3. 因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底.4. 运用公式法:1平方差公式: ①应是二项式或视作二项式的多项式;②二项式的每项不含符号都是一个单项式或多项式的平方;③二项是异号.2完全平方公式:①应是三项式;②其中两项同号,且各为一整式的平方; ③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:1先看各项有没有公因式,若有,则先提取公因式;2再看能否使用公式法;3用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;4因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;5因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法.如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅= , 21c c c ⋅=, 且满足1221c a c a b +=,往往写成c 2a 2c 1a 1的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:3. 规律内涵:1理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.2如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.4. 易错点点评:1十字相乘法在对系数分解时易出错;2分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.第三章 分式一. 分式1. 两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式. 整式A 除以整式B,可以表示成B A 的形式.如果除式B 中含有字母,那么称BA为分式,对于任意一个分式,分母都不能为零.2. 整式和分式统称为有理式,即有: ⎩⎨⎧分式整式有理式3. 进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质: 分式的分子与分母都乘以或除以同一个不等于零的整式,分式的值不变.4. 一个分式的分子分母有公因式时,可以运用分式的基本性质,把这个分式的分子分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分. 二. 分式的乘除1. 分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:BD AC D C B A =⋅, CB DA C DB A DC B A ⋅⋅=⋅=÷ 2. 分式乘方,把分子、分母分别乘方. 即: )(为正整数n B A B A nn n=⎪⎭⎫⎝⎛逆向运用nn n B A B A ⎪⎭⎫ ⎝⎛=,当n 为整数时,仍然有n n nB A B A =⎪⎭⎫⎝⎛成立.3. 分子与分母没有公因式的分式,叫做最简分式. 三. 分式的加减法1. 分式与分数类似,也可以通分.根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.2. 分式的加减法: 分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.1同分母的分式相加减,分母不变,把分子相加减; 上述法则用式子表示是:CBA CBC A ±=± 2异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;上述法则用式子表示是:BDBCAD BD BC BD AD D C B A ±=±=±3. 概念内涵: 通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解. 四. 分式方程1. 解分式方程的一般步骤:①在方程的两边都乘最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去. 2. 列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出分式方程; ④解方程,并验根;⑤写出答案.第四章 相似图形一. 线段的比1. 如果选用同一个长度单位量得两条线段AB, CD 的长度分别是m 、n,那么就说这两条线段的比AB:CD=m:n ,或写成nm B A =. 2. 四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即dcb a =,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.3. 注意点: ①a:b=k,说明a 是b 的k 倍;②由于线段 a 、b 的长度都是正数,所以k 是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b 之外,a:b ≠b:a, b a 与ab互为倒数;⑤比例的基本性质:若d c b a =, 则ad=bc; 若ad=bc, 则dc b a = 二. 黄金分割1. 如图1,点C 把线段AB 分成两条线段AC 和BC,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 2.黄金分割点是最优美、最令人赏心悦目的点. 四. 相似多边形1. 一般地,形状相同的图形称为相似图形.2. 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比. 五. 相似三角形_ 图1 _B_C _A1. 在相似多边形中,最为简简单的就是相似三角形.2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.3. 全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.4. 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.5. 相似三角形周长的比等于相似比.6. 相似三角形面积的比等于相似比的平方. 六.探索三角形相似的条件 1. 相似三角形的判定方法:基本定理:平行于三角形的一边且和其他两边或两边的延长线相交的直线,所截得的三角形与原三角形相似.2. 平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图2, l 1EF BCDE AB3. 平行于三角形一边的直线与其他两边或两边的延长线相交,所构成的三角形与原三角形相似.八. 相似的多边形的性质相似多边形的周长等于相似比;面积比等于相似比的平方.九. 图形的放大与缩小1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.3. 位似变换: ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的相似变换叫做位似变换.这个交点叫做位似中心. ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形. ③利用位似的方法,可以把一个图形放大或缩小.第五章 数据的收集与处理_ 图2 _F_E _D_C_B _A _l _3_l _2 _l _1一. 每周干家务活的时间1. 所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本.2. 为一特定目的而对所有考察对象作的全面调查叫做普查;为一特定目的而对部分考察对象作的调查叫做抽样调查.二. 数据的收集1. 抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.而估计值是否接近实际情况还取决于样本选得是否有代表性.第六章证明一一. 定义与命题1. 一般地,能明确指出概念含义或特征的句子,称为定义.定义必须是严密的.一般避免使用含糊不清的术语,例如“一些”、“大概”、“差不多”等不能在定义中出现.2. 可以判断它是正确的或是错误的句子叫做命题.正确的命题称为真命题,错误的命题称为假命题.3. 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.4. 有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.5. 根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.二. 为什么它们平行1. 平行判定公理: 同位角相等,两直线平行.并由此得到平行的判定定理2. 平行判定定理: 同旁内互补,两直线平行.3. 平行判定定理: 同错角相等,两直线平行.三. 如果两条直线平行1. 两条直线平行的性质公理: 两直线平行,同位角相等;2. 两条直线平行的性质定理: 两直线平行,内错角相等;3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.四. 三角形和定理的证明1. 三角形内角和定理: 三角形三个内角的和等于180°2. 一个三角形中至多只有一个直角3. 一个三角形中至多只有一个钝角4. 一个三角形中至少有两个锐角五. 关注三角形的外角1. 三角形内角和定理的两个推论:推论1: 三角形的一个外角等于和它不相邻的两个内角的和;推论2: 三角形的一个外角大于任何一个和它不相邻的内角.。

八年级数学下册知识点归纳非常全面

八年级数学下册知识点归纳非常全面

八年级下册知识点归纳第十六章 二次根式1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a必须是非负数。

②非负性考点:几个非负数相加为0,那么这几个数都为0.如:-+++=2310a b c 则:30,10,0a b c -=+==2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是小数就化成分数,带分数化成假分数,是多项式就先分解因式。

4.同类二次根式:二次根式化成最简二次根式后,被开方数相同的几个二次根式就是同类二次根式。

5、二次根式有关公式 (1))0()(2≥=a a a (2)⎩⎨⎧<-≥==)0a (a )0a (aa a 2(3)乘法公式)0,0(≥≥∙=b a b a ab (4)除法公式(0,0)a aa b b b=≥> (5)完全平方公式222()2a b a ab b ±=++ 平方差公式:22()()a b a b a b -=+- (6)01(0)a a =≠ 1-=nn aa6、二次根式的加减法则:先将二次根式化为最简,再将被开方数相同的二次根式进行合并。

7、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

二次根式计算的最后结果必须化为最简二次根式.第十七章 勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。

①已知a ,b ,求c ,则c=22a b + ②已知a ,c ,求b,则b=22c a -③已知b ,c 求a ,则a=22c b - 没有指明直角边和斜边时要分类讨论2.勾股定理逆定理:如果一个三角形三边长a,b,c 满足a 2+b 2=c 2。

八年级上下册数学知识点总结

八年级上下册数学知识点总结

数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。

2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。

3.乘方:乘方的概念,乘方的性质,乘方的运算法则。

4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。

5.分数:分数的概念,分数的性质,分数的加减法运算法则。

6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。

7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。

8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。

9.角:角的概念,角的分类,角的性质,角的度量。

10.平行线:平行线的概念,平行线的性质,平行线的判定。

二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。

2.勾股定理:勾股定理的概念,勾股定理的应用。

3.多边形:多边形的概念,多边形的分类,多边形的性质。

4.圆:圆的概念,圆的性质,圆的度量。

5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。

6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。

7.百分数:百分数的概念,百分数的性质,百分数的计算。

8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。

9.概率:概率的概念,概率的计算。

10.函数与图像:函数的概念,函数的性质,函数的图像。

八下数学重点内容总结

八下数学重点内容总结

八下数学重点内容总结
1.有效数字:一个近似数,从左边第一个不为0的数开始,到精确的数位止,
所有的数字都是有效数字。

2.概率:一个事件发生的可能性的大小,就是这个事件发生的概率。

3.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三
角形。

4.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,
这个角的顶点与交点之间的线段叫做三角形的角平分线。

5.三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这
个三角形的中线。

6.全等图形:两个能够重合的图形称为全等图形。

7.变量:变化的数量,就叫变量。

8.自变量:在变化的量中主动发生变化的,变叫自变量。

9.因变量:随着自变量变化而被动发生变化的量,叫因变量。

10.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相
重合,那么这个图形叫做轴对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归 纳
小 贴 示
云 朵
观 察 与 猜 想
回顾与思考
知识结构图 小结
正文
正文边空 选学
信 息 技 术 应 用
综合性 实践性 开放性
练习
数学活动 习题
课上使用
所学 内容 的的 巩固 与延 伸
节、习题 章前图、引言
课内课外作业 复习巩固 综合应用 拓广探索
导入新课材料
供学生预习
体 例 安 排
复习题
复习全章使用
---------八年级数学下册教材分析
一、人教版八年级数学下册内容的安排
四边形
勾股定理
统计与概率
实践活动
反比例函 数
分式
数与代 数
八 年 级 数 学
实践与运用
综合应用
课题学习
二、教材内容分析
乘除 乘方 加减
整数指数幂
定义
解方程 方程的解 应用
性质
通分 约分 意义 应用
第 分 十 式 六 章
定义
第十九章:四边形

1、掌握平行四边形、矩形、菱形、正方形、梯形的概念,了解它们之 间的关系; 2、探索并掌握平行四边形、矩形、菱形、正方形、等腰梯形的有关性 质和常用判别方法,并能运用这些知识进行有关的证明和计算; 3、探索并了解线段、矩形、平行四边形、三角形的重心的物理意义; 4、通过经历特殊四边形性质的探索过程,丰富学生从事数学活动的经 验和体验,进一步培养学生的合情推理能力; 5、结合特殊四边形性质和判定方法以及相关问题的证明,进一步培养 和发展学生的逻辑思维能力和推理论证的表达能力; 6、通过分析四边形与特殊四边形,以及平行四边形与各种特殊平行四 边形概念之间的联系与区别,使学生认识到特殊与一般的关系,从而体 会事物之间总是互相联系又是互相区别的,进一步培养学生的辩证唯物 主义观点。
对于推理的要求
在“勾股定理”一章中,对于勾股定 理及其逆定理的证明方法,实际上是 过计算进行证明的,这种方法与前面 学过的一些判定方法不同。
如:在“勾股定理”一章,
重视文化传承,关注人文教育
教科书结合具体内容,介绍 了我国古算书《周髀算经》 关于“勾三、股四、弦五” 的记载,介绍了赵爽弦图, 以及赵爽利用弦图证明勾股 定理的思路。
三、新课标对本年级、本学科的基本要求
第十八章 :勾股定理
1、体验勾股定理的探索过程,会运用勾股定 理解决简单问题; 2、会运用勾股定理的逆定理判定直角三角形; 3、通过具体的例子,了解定理的含义,了解 逆命题、逆定理的概念,知道原命题成立其 逆命题不一定成立。

三、新课标对本年级、本学科的基来自要求二、教材内容分析反映数据向其中心值聚 集的程度
统计与概率
平 均 数
中 位 数
众 数
极 差
方 差
数据的代表
数据的波动
数据的分析
三、新课标对本年级、本学科的基本要求
第十六章:分式




1、以描述实际问题中的数量关系为背景,抽象出分式的概 念,体会分式是刻画现实世界中数量关系的一类代数式。 2、类比分数的基本性质,了解分式的基本性质,掌握分式 的约分和通分法则。 3、类比分数的四则运算法则,探究分式的四则运算,掌握 这些法则。 4、结合分式的运算,将指数的讨论范围从正整数扩大到全 体整数,构建和发展相互联系的知识体系。 5、结合分析和解决实际问题,讨论可以化为一元一次方程 的分式方程,掌握这种方程的解法,体会解方程中的化归思 想。
六、教材处理
教法与学法
2
鼓励学生自主探 索与合作交流。
师生互动 和谐发展
学生享受合作 探究的乐趣
七、理想的数学课堂
激起学生思 考的火花
三维目标的 落实
谢 谢 大 家! 欢迎 指导
正方形
有一组

边 形
特殊 四边 形
邻边相等
菱 形
有一个角
是直角
两条腰相等 一组对边平 行、另一组 对边不平行
等腰梯形
梯形
有一个角是直角
直角 梯形
重心
中点 四边形
规则的几何图形重心 几何中心 悬线法 不规则的几何图形重 心 对角线相等的四边形的中点四边形是 菱形 对角线互相垂直的四边形的中点四边形是矩 形
命 题
原 命 题 逆 命 题
应用
互逆 命题 互逆 定理 内容
勾股定理 的逆定理
验证 应 用
构造全等的直角三角 形 已知三边判断形 状 实际问题
二、教材内容分析
一般 在平面内,四条线段 四边形 首
两组对边 分别平行
四边形
有一个角 是直角
尾顺次相接组成的图 形
矩形
有一组 邻边相等
平行四边形
有一组邻边相等有一个角是直角
五、值得关注的问题
加强知识之间的相互联系, 在已有经验的基础上进行教学
如:在“分式”一章中,分式的有
值 得 关 注 的 问 题
关概念、性质和运算法则与分数的 相应内容紧密相关,分式方程最后 要转化为整式方程才得以解决,在 分式方程的编写思路上,同整式方 程一样,也强调了分式方程是解决 实际问题的数学模型的思想;
互动提供资源
提高兴趣
创造空间
四、体例安排
介绍与正 文相关的 背景知识 有助于理 解正文的 问题 为加深对相关内容的认识 扩大学生的知识面 运用现代信息技术手段学 习 实 验 与 探 究 阅 读 与 思 考
各栏目以问题、留白、 填空等形式为学生提供 思维发展、合作交流的 空间
观 察
思 考
探 究
讨 论
二、教材内容分析
双曲线 自变量
K>0
表达式
反比例函数的 图象和性质
K<0
解体方法与 一般步骤
定义
反比例 函数的意义
反比例 函数
实际问题与 反比例函数
反第 比十 例七 函章 数
二、教材内容分析
内容 毕达哥拉斯
勾股定理
验 证
赵爽
茄菲尔德
已知直角三角形的两边求第三 边 在数轴上表示无理数 实际问 题
勾 股 定 理
三、新课标对本年级、本学科的基本要求
第十七章:反比例函数




1、使学生理解并掌握反比例函数的概念,能根据实际问题中的条件确 定反比例函数的解析式,能判断一个给定函数是否为反比例函数; 2、能描点画出反比例函数的图象,会用代定系数法求反比例函数的解 析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法 的各自特点; 3.能根据图象数形结合地分析并掌握反比例函数的函数关系和性质, 能利用这些函数性质分析和解决一些简单的实际问题; 4.探索现实生活中数量间的反比例关系,在解决实际问题的过程中, 进一步体会和认识反比例函数这种刻画现实世界中特定数量关系的数学 模型; 5.使学生在学习一次函数之后,进一步理解常量与变量的辨证关系和 反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法。
四、本书编写特点
1 2
加强与实际的联系,体现知识的形成和应用
2
3 6
注意揭示数学的本质
为学生创设探索和交流的机会,加大 学生思维的空间
提高能力
现代技术
培养精神意识 数学课程
改进呈现方式
着眼长远发展
学生
教材
数学
正确处理 关系
社会
遵循认知 规律
教师
营造氛围
更新认识 适应形势 关注需要
编 写 特 点
学生
三、新课标对本年级、本学科的基本要求
第二十章 :数据的分析

1、进一步理解平均数、中位数和众数等统计量的统计意义; 2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示 数据的集中趋势; 3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波 动情况; 4、能用计算器的统计功能进行统计计算,进一步体会计算器的优越性; 5、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样 的必要性,体会用样本估计总体的思想; 6、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据 处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的 作用,养成用数据说话的习惯和实事求是的科学态度。
相关文档
最新文档