因式分解与分式化简求值
八年级上册数学分式计算题

八年级上册数学分式计算题
一、分式化简求值
1. 化简并求值:公式,其中公式。
解析:
- 首先对分子分母进行因式分解:
- 对于分子公式;
- 对于分母公式。
- 然后将原式进行化简:
- 原式公式
- 约分后得到:公式。
- 当公式时,代入化简后的式子:
- 把公式代入公式,得到公式。
2. 化简求值:公式,其中公式。
解析:
- 先对分子分母因式分解:
- 分子公式;
- 分母公式。
- 然后化简式子:
- 原式公式。
- 当公式时:
- 代入化简后的式子得:公式。
二、分式的加减运算
1. 计算:公式。
解析:
- 先通分,找到两个分式分母的最简公分母为公式。
- 对两个分式进行通分变形:
- 公式;
- 公式。
- 然后进行减法运算:
- 原式公式。
2. 计算:公式。
解析:
- 先对分母进行因式分解,公式。
- 通分,最简公分母为公式。
- 公式;
- 公式。
- 进行加法运算:
- 原式公式。
三、分式的乘除运算
1. 计算:公式。
解析:
- 先对分子分母因式分解:
- 分子公式; - 分母公式。
- 然后将除法转化为乘法:
- 原式公式。
- 约分得到:
- 原式公式。
2. 计算:公式。
解析:
- 对分子分母因式分解:
- 分子公式; - 分母公式。
- 然后进行乘法运算:
- 原式公式。
整式的因式分解和分式的简化

整式的因式分解和分式的简化在初中数学学习中,我们经常会遇到整式的因式分解和分式的简化的问题。
本文将介绍整式的因式分解和分式的简化的基本概念和方法。
一、整式的因式分解首先,我们来了解什么是整式。
整式是由常数、变量及其系数以及加、减、乘运算符号构成的算式。
例如,2x² + 3x - 6就是一个整式。
整式的因式分解是将一个整式写成若干个因子相乘的形式。
这样做的好处是使得整式更简洁、易于计算和理解。
下面,我们来看一个例子。
假设我们有一个整式:12x² + 8xy。
我们可以通过观察和分解公因式的方法进行因式分解。
首先,我们可以找到这个整式的公因式,即4x。
通过提取公因式,我们可以得到:4x(3x + 2y)。
这样,我们就将整式成功地因式分解了。
需要注意的是,有些整式可能无法进行因式分解,这时我们就需要通过其他方法进行处理。
二、分式的简化接下来,我们来了解分式的简化。
分式是由分子和分母组成的,其中分子和分母都是整式。
分式的简化是将一个分式约去它的最简形式,即分子和分母没有公因式。
这样做的好处是使得分式更易于计算和理解。
比如,我们有一个分式:(4x² + 2x) / (2x)。
我们可以通过分子和分母的公因式进行约分。
可以发现,分子和分母都可以被2x整除。
因此,我们可以约去2x,得到简化后的分式:2x + 1。
同样地,有些分式可能无法进行简化,这时我们就需要对分子和分母进行其他的处理。
三、整式的因式分解和分式的简化的联系整式的因式分解和分式的简化在一定程度上是密切相关的。
在进行因式分解时,我们常常需要对整式进行简化,以便于提取公因式。
而在进行分式的简化时,有时也需要将分式转化为整式,然后对整式进行因式分解,再转化为分式的最简形式。
总结起来,整式的因式分解和分式的简化都是数学中的基本操作,可以帮助我们更好地理解和计算问题。
在实际应用中,我们经常需要利用这些技巧来简化复杂的式子,使问题更易于解决。
第9章 分式—分式的化简求值 22--23学年沪科版数学七年级下册

=
1
1
(代入 + = 4)
1
15
1
配方常见的式子有 + = , − = , 2 +
1
2
1
1
= ( + )2 −2 = ( − )2 +2等,要熟练掌握
并会灵活运用配方法. 次数高的要降幂,构造完
1
所以原分式的值为 15 .
全平方式,代入求值即可.
【例】若 + = 2019, + = 2020, + = 2021,且 =
分式化简的基
本理论知识
分式的基本性质:分子分母同乘除一个
不为0的整式,分式不变.
约分:把分式的分子和分母的公因式约去
通分:把异分母化成同分母
分式的四则运算
化简:用因式分解的方法化简分子分母
分式的化简求值
分式化简的
基本步骤
分式化简求值
的常见方法
通分:根据分式的基本性质,把几个异分母的
分式分别化成与原来的分式相等的同分母的分
− 2
−
1
将 = 4代入得
2(−)
+3 2×1+3
4
−
1
−2
−2
4
=
= −2, 所以原分式的值为−2
方法总结:一般题干给出条件难以得出可以直接代入的简易结论,我们可以将整个条件看成一个整体,
化简分式时向着这个式子的方向去化简,然后整体直接代入即可求值.
配方法
1
【例】已知 + =
将条件等式整
体代入即可求
值
方法总结:当条件式为等式时,
中考数学复习第五节 因式分解与分式

第五节因式分解与分式本节知识导图河北中考命题规律考什么怎么考考点年份题号题型考查方式考频命题趋势因式分解2019 13 选择题分式化简与求值,涉及完全平方公式5年4考因式分解常与分式化简结合考查,多为选择题,2019年首次分式化简及求值与数轴相结合,形式新颖,预计2020年仍会考查2018 14 选择题分式化简,涉及提公因式2016 4 选择题分式化简,涉及平方差公式、完全平方公式2015 18 填空题分式化简与求值,涉及平方差公式和提公因式分式的运算2019 13 选择题分式化简,判断结果在数轴上的位5年4考2018 14 选择题四名同学接力完成分式化简2017 13 选择题两项分式减法2016 4 选择题两项的分式减法、乘法、除法运算2015 18 填空题涉及平方差公式和提公因式,化简并求值5年1考河北中考考题试做因式分解1.(2013·河北中考)下列等式从左到右的变形,属于因式分解的是(D)A.a(x-y)=ax-ayB.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)分式化简及求值2.(2019·河北中考)如图,若x为正整数,则表示(x+2)2x2+4x+4-1x+1的值的点落在(B)A.段①B.段②C.段③D.段④3.(2018·河北中考)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是(D ) A .只有乙 B .甲和丁 C .乙和丙 D .乙和丁4.(2016·河北中考)下列运算结果为x -1的是( B ) A .1-1x B .x 2-1x ·x x +1C .x +1x ÷1x -1D .x 2+2x +1x +15.(2017·河北中考)若3-2x x -1=( )+1x -1,则( )中的数是(B )A .-1B .-2C .-3D .任意实数6.(2015·河北中考)若a =2b ≠0,则a 2-b 2a 2-ab 的值为__32__.中考考点清单因式分解及其基本方法1.因式分解:把一个多项式分解成几个__整式乘积__的形式,叫做多项式的因式分解. 2.因式分解与整式乘法的关系多项式因式分解整式乘法整式的积.3.提公因式法:ma +mb +mc =__m(a +b +c)__.【方法点拨】公因式的确定:(1)系数:取各项系数的最大公约数;(2)字母:取各项相同的字母;(3)指数:取各项相同字母的最低次数.4.运用公式法(1)平方差公式:a 2-b 2=__(a +b)(a -b)__. (2)完全平方公式:a 2±2ab +b 2=__(a±b)2__.【方法点拨】因式分解的一般步骤例如,分解因式:3x -6=3(x -2),a 3-4a =a(a +2)(a -2),4x 2-4x +1=(2x -1)2.分式的有关概念5.分式:一般地,我们把形如__AB__的代数式叫做分式,其中,A ,B 都是整式,且B 含有字母.A 叫做分式的分子,B 叫做分式的分母.6.与分式有关的“五个条件” (1)分式AB 没有意义时,B__=0__;(2)分式AB有意义时,B__≠0__;(3)分式AB的值为零时,A__=0__且B__≠0__;(4)分式AB 的值为正时,A ,B__同号__,即⎩⎪⎨⎪⎧A>0,B > 0或⎩⎪⎨⎪⎧A<0,B < 0;(5)分式AB 的值为负时,A ,B__异号__,即⎩⎪⎨⎪⎧A>0,B < 0或⎩⎪⎨⎪⎧A<0,B > 0.7.最简分式:分子和分母没有__公因式__的分式.分式的基本性质及运用8.分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为AB=A ×MB ×M ,A B =A÷MB÷M .其中,M 是不等于0的整式.9.约分与通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.约分的关键是确定分式的分子与分母的公因式.【方法点拨】确定最大公因式的方法 (1)分子、分母能因式分解的先因式分解;(2)取分子、分母中相同因式的最低次幂(数字因式取最大公约数).(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式的值相等的同分母的分式,叫做分式的通分.通分的关键是确定几个分式的最简公分母.【方法点拨】确定最简公分母的方法(1)先观察各分母,能因式分解的先因式分解;(2)取各分母公有因式的最高次幂(数字因式取最小倍数);(3)对于只在一个分母中含有的因式,则连同它的指数作为最简公分母的因式.分式运算10.分式的加减运算法则:同分母的两个分式相加(减),分母不变,把分子相加(减);异分母的两个分式相加(减),先通分,化为同分母的分式,再相加(减),即A B ±C B =A±C B ;A B +D C =AC +BD BC. 11.分式的乘除运算法则:分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘,即A B ·C D =A·C B·D ;A B ÷C D =A B ·D C =A·D B·C. 12.分式乘方的运算法则:分式乘方是把分子、分母各自乘方,即⎝⎛⎭⎫A B n=A nB n (n 为整数).13.分式的混合运算:在分式的混合运算中,应先算乘方,再算乘除,最后进行加减运算,遇到括号,先算__括号里面的__.分式运算的结果要化成整式或最简分式.【方法点拨】分式化简求值的一般步骤:(1)若有括号的,先计算括号内的分式运算,括号内如果是异分母加减运算时,需将异分母分式通分化为同分母分式运算,然后将分子合并同类项,把括号去掉,简称:去括号;(2)若有除法运算的,将分式中除号(÷)后面的式子分子分母颠倒,并把这个式子前的“÷”变为“×”,保证几个分式之间除了“+”“-”就只有“×”或“·”,简称:除法变乘法;(3)利用因式分解、约分进行分式乘法运算;(4)最后按照式子顺序,从左到右计算分式加减运算,直到化为最简形式;(5)将所给数值代入求值,代入数值时要注意使原分式有意义(即使原分式的分母不为0).例如,化简:x +1x -1x =1,(a -1)÷(1a -1)·a =-a 2,1x +1+2x 2-1=1x -1.典题精讲精练因式分解【例1】(2019·哈尔滨中考)把多项式a 3-6a 2b +9ab 2分解因式的结果是a(a -3b)2. 【解析】本题考查因式分解,涉及提公因式和完全平方公式. a 3-6a 2b +9ab 2=a(a 2-6ab +9b 2)=a(a -3b)2.【方法点拨】有公因式的先提公因式,然后再考虑套公式,最后注意要分解到不能再分解为止.1.(2019·贺州中考)把多项式4a 2-1分解因式,结果正确的是(B ) A .(4a +1)(4a -1) B .(2a +1)(2a -1) C .(2a -1)2 D .(2a +1)22.(2019·绥化中考)下列因式分解正确的是(D )A .x 2-x =x(x +1)B .a 2-3a -4=(a +4)(a -1)C .a 2+2ab -b 2=(a -b)2D .x 2-y 2=(x +y)(x -y)分式的概念及其基本性质【例2】下列分式的变形中不一定成立的是(C ) A .y x =xy x 2 B .y x =πy πxC .y x =y (x -y )x (x -y )D .y x =y (y 2+1)x (y 2+1)【解析】A 选项从左边变化到右边是将分子、分母同乘x ,依题意知x ≠0,故A 选项成立;B 选项从左边变化到右边是将分子、分母同乘π,又π≠0,故B 选项成立;C 选项从左边变化到右边是将分子、分母同乘(x -y),(x -y)是否等于0不能确定,故C 选项不一定成立;D 选项从左边变化到右边是将分子、分母同乘(y 2+1),且y 2+1≠0,故D 选项成立.,【例3】(2019·贵港中考)若分式x 2-1x +1的值等于0,则x 的值为(D )A .±1B .0C .-1D .1【解析】分式的值为零时,分子为零且分母不为零需满足x 2-1=0且x +1≠0,故x =1.3.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是(A ) A .3x 2y B .3x 2y 2 C .3x 22y D .3x 32y2 4.(2019·北京中考)若分式 x -1x的值为0,则x 的值为1.分式化简求值【例4】(2019·广东中考)先化简,再求值: ⎝⎛⎭⎫x x -2-1x -2÷x 2-x x 2-4,其中x = 2.【解析】本题考查分式化简求值.先计算括号内的同分母分式减法,再分解因式,同时将分式的除法改为乘法,分子分母进行约分,将分式化为最简分式,再将字母x 的值代入最简分式,从而求出原式的值.【解答】解:原式=x -1x -2·(x +2)(x -2)x (x -1)=x +2x. 当x =2时,原式=2+22=2(2+2)2=1+ 2.5.(2019·河南中考)先化简,再求值:⎝ ⎛⎭⎪⎫x +1x -2-1÷x 2-2x x 2-4x +4,其中x = 3.解:原式=x +1-x +2x -2÷x (x -2)(x -2)2=3x -2·x -2x =3x .当x =3时,原式=33= 3. 请完成限时训练A 本P A 7~A 8,选做B 本P B 7本章复习完毕后,请完成限时训练A 本“阶段测评(一)”。
初二数学16道经典题及解析

初二数学16道经典题及解析一、代数部分经典题。
(一)分式化简求值题。
题目:先化简,再求值:(x^2 4)/(x^2 4x + 4) ÷ (x + 2)/(x 2),其中x = 3。
解析:化简过程:先对分子分母进行因式分解,x^2 4可以分解为(x + 2)(x 2),x^2 4x + 4可以分解为(x 2)^2。
那么原式就变成了((x + 2)(x 2))/((x 2)^2) ÷ (x + 2)/(x 2)。
除法变乘法,除以一个数等于乘以它的倒数,所以式子变为((x + 2)(x 2))/((x 2)^2) × (x 2)/(x + 2)。
约分后得到结果为1。
求值:因为化简结果为1,和x的值无关,所以当x = 3时,原式的值还是1。
举例:比如说,就好像你要分苹果,原来的式子就是一堆苹果的不同分法,化简就是把分法变得简单清晰,最后发现不管具体有多少个苹果(这里的x的值),按照这个简单分法结果都是一样的。
(二)一元二次方程应用题。
题目:某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件。
根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件。
如何提高售价,才能在半个月内获得最大利润?解析:设销售单价提高了x元,那么销售单价就是(30 + x)元。
因为单价每提高1元,销售量减少20件,所以销售量就是(400 20x)件。
利润 =(售价进价)×销售量,所以利润y=(30 + x 20)(400 20x)。
化简这个式子:y=(10 + x)(400 20x)=4000 200x + 400x 20x^2=-20x^2 + 200x + 4000。
对于二次函数y = ax^2 + bx + c(a≠0),当a<0时,在x = -(b)/(2a)处取得最大值。
这里a = -20,b = 200,x = -(200)/(2×(-20)) = 5。
分式化简求值的若干方法与技巧

分式化简求值的若干方法与技巧
分式化简是指将一个分式写成一个最简形式的过程。
下面列举一些分式化简的方法与技巧:
1. 因式分解法:如果分子和分母都可以被一个公因子因式分解,可以先进行因式分解,然后约去公因子。
2. 公约法:将分子和分母的公因子约去,使分子和分母无公因子。
3. 分子与分母分别除以最大公约数法:先求出分子和分母的最大公约数,然后将分子和分母都除以最大公约数,使得分子和分母互质。
4. 乘法逆元法:如果分子和分母互为乘法逆元,即分子和分母互为倒数关系,可以将分式化简为整数。
5. 积化和差法:对于有相同分子或分母的分式,可以将其化为积或差的形式,然后进行约分或运算。
6. 公倍数法:如果分式的分子和分母都是整数,可以找到一个公倍数使得分子和分母变为整数,然后约去公倍数。
7. 有理化法:对于含有根号的分式,可以通过有理化的方法将其转化为整数或分数。
8. 倒数法:对于一个分式,可以将其倒数的分子和分母对换位
置,然后约分。
以上是一些常见的分式化简的方法与技巧,根据具体的情况选择合适的方法进行求解。
化简求值(解析版)--中考数学抢分秘籍(全国通用)

化简求值--中考数学抢分秘籍(全国通用)概率预测☆☆☆☆☆题型预测解答题☆☆☆☆☆考向预测①分式的化简求值②整式的化简求值化简求值题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,加减乘除运算是数学的基础,也是高频考点、必考点,所以必须提高运算能力。
2.从题型角度看,以解答题的第一题或第二题为主,分值8分左右,着实不少!一、分式1.分式的加减乘除运算,注意去括号,添括号时判断是否需要变号,分子计算时要看作整体。
2.分式有意义、无意义的条件:因为0不能做除数,所以在分式AB中,若B≠0,则分式AB有意义;若B=0,那么分式AB没有意义.3.分式的加减法同分母的分式相加减,分母不变,把分子相加减,即ac±bc=a±bc.异分母的分式相加减,先通分,变为同分母的分式,然后相加减,即ab±cd=ad±bcbd.4.分式的乘除法分式乘以分式,用分子的积做积的分子,分母的积做积的分母,即ab·cd=acbd.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即ab÷cd=ab·dc=adbc.5.分式的混合运算在分式的加减乘除混合运算中,应先算乘除,进行约分化简后,再进行加减运算,遇到有括号的,先算括号里面的.运算结果必须是最简分式或整式.二、因式分解因式分解的方法:(1)提公因式法公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法①运用平方差公式:a 2-b 2=(a +b )(a -b ).②运用完全平方公式:a 2±2ab +b 2=(a ±b )2.化简求值的解法第一种是直接代入求值,已知给出了字母的值或通过已知能求出字母的值。
因式分解与分式化简求值

因式分解与分式化简求值因式分解的几种常用方法(1)提公因式法(2)运用公式法: ①平方差公式:a 2-b 2=(a+b)(a-b)②完全平方公式:a 2±2ab+b 2=(a ±b)2(3)二次三项式型:x 2+(a+b)x+ab=(x+a)(x+b);及十字相乘法(4)分组分解法: ①分组后能提公因式;②分组后能运用公式.(5)求根公式法:因式分解的一般步骤可归纳为:一提二公三分组,十字相乘要彻底;若遇二次三项式,求根公式来帮忙。
(1)一“提”:先看多项式的各项是否有公因式,若有必须先提出来。
(2)二“公”:若多项式的各项无公因式(或已提出公因式),第二步则看能不能用公式法用x 2+(p+q)x+pq 型分解。
(3)三“分组”:若以上两步都不行,则应考虑分组分解法,将能用上述方法进行分解的项分成一组,使之分组后能“提”或能“公”,当然要注意其要分解到底才能结束。
(4)十字相乘法、求根公式法均针对二次三项式的因式分解。
(5)“查”:可以用整式乘法检查因式分解的结果是否正确。
(6)若有几个因式乘积再加减单项式的,可以先将几个因式的乘积求出,再进行多项式的因式分解。
(7)要注意整体思想的应用。
典型试题解析:【例1】 因式分解:(1)-4x 2y+2xy 2-12xy ;(2)3x 2(a-b)-x(b-a); (3)9(x+y)2-4(x-y)2;(4)81a 4-1;(5)(x 2+2x)2+2(x 2+2x)+1; (6)(a 2+b 2)2-4a 2b 2.(7)m 3+2m 2-9m-18;(8)a 2-b 2-c 2-2bc ; (9) x 4 -5x 2+4; (10) x 3-2x 2-5x+6.专题二 有效分组再分解因式【例2】(2007年广东中山)因式分解xy y x 844122+--,正确的分组是( ) A .)()(xy y x 844122---B .xy y x 844122+--)(C .)44()8122y x xy +-+(D .)844(122xy y x -+-专题三 在实数范围内分解因式 【例3】(2007年潍坊市)在实数范围内分解因式:4m 2+8m -4= .分式化简求值:一、填空题1.(2009年滨州)化简:2222444m mn n m n -+-= . 2.(2009年成都)化简:22221369x y x y x y x xy y +--÷--+=_______ 3.(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= 二、选择题1.(2009年陕西省8.)化简ba a ab a -⋅-)(2的结果是 ( )A .b a -B .b a +C .b a -1D .b a +1 2.(2009年黄冈市4.)化简a a a a a a 2422-⋅⎪⎭⎫ ⎝⎛+--的结果是( )A .-4B .4C .2aD .-2a 3.(2009年内蒙古包头)化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 4.(2009年吉林省)化简2244xy y x x --+的结果是( ) A .2x x + B .2x x - C .2y x + D .2y x - 5.(2009年深圳市)化简62962-+-x x x 的结果是( ) A .23+x B .292+x C .292-x D .23-x 6.(2009烟台市)学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的7.(2009年包头)化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 8.(2009临沂)化简22422b a a b b a+--的结果是( ) A .2a b -- B .2b a - C .2a b - D .2b a +三、解答题1.(2009年株洲市)先化简,再求值:23393x x x ++--,其中1x =-.2.(2009年重庆市江津区)先化简,再求值:4421642++-÷-x x x x ,其中 x = 3 .3.(2009年泸州)化简:xx x x x 2)242(2-÷+-+4.(2009仙桃)先化简,再求值:22424412x x x x x x x -+÷--++-,其中x =2-2.5.(2009年常德市)化简:35(2)482y y y y -÷+---6.(2009年桂林市、百色市)先化简,再求值:2211()22x y x y x x y x +--++,其中3x y ==.7.(2009重庆綦江)先化简,再求值:2241222x x x x x⎛⎫-⨯ ⎪--+⎝⎭,其中14x =.8.((2009年安顺)先化简,再求值:244(2)24x x x x -+⋅+-,其中x =9.(2009年贵州省黔东南州)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .10.(2009恩施市)求代数式的值:22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =+11.(2009年娄底)先化简,再求值:-4-2x x +24-4+4x x ÷-2x x ,其中x12.(2009年清远)化简:222692693x x x x x x-+-÷-+13.(2009 黑龙江大兴安岭)先化简:⎪⎪⎭⎫ ⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,请你为a 任选一个适当的数代入求值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解与分式化简求值因式分解的几种常用方法(1)提公因式法(2)运用公式法: ①平方差公式:a 2-b 2=(a+b)(a-b)②完全平方公式:a 2±2ab+b 2=(a ±b)2(3)二次三项式型:x 2+(a+b)x+ab=(x+a)(x+b);及十字相乘法 (4)分组分解法: ①分组后能提公因式;②分组后能运用公式.(5)求根公式法: 因式分解的一般步骤可归纳为:一提二公三分组,十字相乘要彻底;若遇二次三项式,求根公式来帮忙。
(1)一“提”:先看多项式的各项是否有公因式,若有必须先提出来。
(2)二“公”:若多项式的各项无公因式(或已提出公因式),第二步则看能不能用公式法用x 2+(p+q)x+pq 型分解。
(3)三“分组”:若以上两步都不行,则应考虑分组分解法,将能用上述方法进行分解的项分成一组,使之分组后能“提”或能“公”,当然要注意其要分解到底才能结束。
(4)十字相乘法、求根公式法均针对二次三项式的因式分解。
(5)“查”:可以用整式乘法检查因式分解的结果是否正确。
(6)若有几个因式乘积再加减单项式的,可以先将几个因式的乘积求出,再进行多项式的因式分解。
(7)要注意整体思想的应用。
典型试题解析: 【例1】 因式分解: (1)-4x 2y+2xy 2-12xy ; (2)3x 2(a-b)-x(b-a);(3)9(x+y)2-4(x-y)2;(4)81a 4-1; (5)(x 2+2x)2+2(x 2+2x)+1;(6)(a 2+b 2)2-4a 2b 2.(7)m 3+2m 2-9m-18; (8)a 2-b 2-c 2-2bc ; (9) x 4 -5x 2+4;(10) x 3-2x 2-5x+6.专题二 有效分组再分解因式【例2】(2007年广东中山)因式分解xy y x 844122+--,正确的分组是( ) A .)()(xy y x 844122--- B .xy y x 844122+--)( C .)44()8122y x xy +-+(D .)844(122xy y x -+-专题三 在实数范围内分解因式【例3】(2007年潍坊市)在实数范围内分解因式:4m 2+8m -4= .专题四 因式分解的开放性问题【例4】(2007年温州市)给出三个多项式:1212-+x x 、13212++x x 、x x -221请你选择其中两个进行加法运算,并把结果因式分解.专题五 因式分解的创新应用 【例5】(2007年衢州)下面的图1是由边长为a 的正方形剪去一个边长为b 的小正方形后余下的图形.把图1剪开后,再拼成一个四边形,可以用来验证公式:a 2-b 2=(a+b) (a -b). (1)请你通过对图(1)的剪拼,画出三种不同拼法的示意图.要求: ①拼成的图形是四边形;②在图1上画剪切线(用虚线表示); ③在拼出的图形上标出已知的边长.(2)选择其中一种拼法写出验证上述公式的过程.【例6】如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图2),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( ) 。
A. a 2-b 2=(a+b)(a-b) B.(a+b)2= a 2+b 2+2ab C. (a-b)2=a 2-2ab+b 2D.(a+2b)(a-b)= a 2+b 2-2ab 1.因式分解应进行到底. 如:分解因式:x 4-4=应在实数范围内将它分解到底.2.不要将因式分解的结果又用整式的乘法展开而还原. 如: :(a 2+b 2)2-4a 2b 23.注意解题的技巧的应用,不能死算. 如:分解因式(x+1)(x+3)(x+5)(x+7)-9分式化简求值: 一、填空题1.(2009年滨州)化简:2222444m mn n m n -+-= .2.(2009年成都)化简:22221369x y x y x y x xy y+--÷--+=_______ 3.(2009年佳木斯)计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= 二、选择题1.(2009年陕西省8.)化简b a aa b a -⋅-)(2的结果是 ()A .b a -B .b a +C .b a -1D .ba +12.(2009年黄冈市4.)化简a a a a a a2422-⋅⎪⎭⎫ ⎝⎛+--的结果是( )A .-4B .4C .2aD .-2ab baa(1)3.(2009年内蒙古包头)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x +4.(2009年吉林省)化简2244xy yx x --+的结果是( )A .2x x +B .2x x -C .2y x +D .2y x -5.(2009年深圳市)化简62962-+-x x x 的结果是()A .23+xB .292+xC .292-xD .23-x 6.(2009烟台市)学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++.其中正确的是( )A .小明B .小亮C .小芳D .没有正确的7.(2009年包头)化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x +8.(2009临沂)化简22422b a a b b a+--的结果是( ) A .2a b -- B .2b a - C .2a b - D .2b a +三、解答题1.(2009年株洲市)先化简,再求值:23393x x x ++--,其中1x =-.2.(2009年重庆市江津区)先化简,再求值: 4421642++-÷-x xx x ,其中 x = 3 .3.(2009年泸州)化简:xx x x x 2)242(2-÷+-+4.(2009仙桃)先化简,再求值:22424412x x xx x x x -+÷--++-,其中x =2-2.5.(2009年常德市)化简:35(2)482y y y y -÷+---6.(2009年桂林市、百色市)先化简,再求值:2211()22x y x y x x y x+--++,其中3x y ==.7.(2009重庆綦江)先化简,再求值:2241222x x x x x⎛⎫-⨯ ⎪--+⎝⎭,其中14x =.8.((2009年安顺)先化简,再求值:244(2)24x x x x -+⋅+-,其中x =9.(2009年贵州省黔东南州)先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x .10.(2009恩施市)求代数式的值:22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =11.(2009年娄底)先化简,再求值:-4-2x x +24-4+4x x ÷-2xx ,其中x12.(2009年清远)化简:222692693x x x x x x-+-÷-+13.(2009 黑龙江大兴安岭)先化简:⎪⎪⎭⎫⎝⎛++÷--a b ab a ab a b a 22222,当1-=b 时,请你为a 任选一个适当的数代入求值.解方程(组)一、 一元一次方程方程 例1、解方程14156112=+--x x拓展训练:①31652--=+-x x x ;②2.02x --5.01+x =3; ③03.01.0x -7.02.09.0x-=1二、 二元一次方程组 考点1:解二元一次方程组: (2009年湘西自治州)解方程组:2725x y x y -=⎧⎨+=⎩①②(2009年茂名市)化简或解方程组: 241x y x y +=⎧⎨+=⎩①②(2009桂林百色)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( ). A .1 B .-1 C . 2 D .3 考点2:构造二元一次方程组并求解(2009呼和浩特)如果|21||25|0x y x y -++--=,则x y +的值为考点3:待定系数法求(一次、二次)函数解析式已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值.已知一次函数的图象如下图,写出它的关系式.求直线y=2x和y=x+3的交点坐标.三、一元二次方程㈡、考点例析:题型1:用配方法解一元二次方程【例1】(2005·北京)用配方法解一元二次方程:x2-4x+1=0。
题型2:用公式法解一元二次方程【例2】(2005·山西)解方程:3x2-6x+1=0。
题型3:用分解因式法解一元二次方程【例3】(2005·深圳)方程x2=2x的解()。
A.x=2;B.x1=-2,x2=0;C.x1=2,x2=0 D.x=0㈢、对应练习1.(2004·贵州)用配方法解一元二次方程:2x2-6x-1=02.(2005·武汉)解一元二次方程:x2+5x+3=03.(2005·黑龙江)解方程:(x-2)=5x(2-x)四、分式方程 例1.解方程(1) 2223-=---x x x (2) 114112=---+x x x1.若关于x 的方程313292-=++-x x x m 有增根, 则增根是多少?产生增根的m 值又是多少?2. 若方程xx x --=+-34731有增根,则增根为 . 3.若方程3323-+=-x x x 有增根,则增根为 . 4. 若方程113122-=-++x kx x 有增根,则k 的值为 . 例2.(1)1432222-=++-x x x x x (2) 1114132+-=-+-x x x x练一练1. (2007荆门)若方程xmx x -=--223无解,求m 的值.2. 若关于x 的方程11+=+x m x x 无解, 则m 的值为 . 3. 若关于x 的方程2221+-=--x mx x 无解, 则m 的值为 . 4. 若关于x 的方程8334=-+--xkx x 无解, 则k 的值为 . 5.若关于x 的方程3232-=--x m x x 无解, 则m 的值为 . 思考:已知关于x 的方程m x mx =-+3无解,求m 的值.例3.解方程(1))1(1≠=+-b b a x a (2))0,(01≠≠=+-mn n m x nx m练一练:1.若关于x 的方程81=+x ax 的解为41=x ,则a = . 2.若分式方程52)1()(2-=--x a a x 的解为3=x ,则a = .3.(2007黑龙江) 若关于x 的分式方程211=--x m 的解为正数,求m 的取值范围.4.当p 为何值时, 关于x 的分式方程)1(7142-+=-+x x p x x x 有根?5.关于x 的方程12-=-+x mx 的解大于零, 求m 的取值范围.。