提公因式法有答案

合集下载

2019-2020年初中数学八年级下册第四章 因式分解2 提公因式法北师大版课后练习九

2019-2020年初中数学八年级下册第四章 因式分解2 提公因式法北师大版课后练习九

2019-2020年初中数学八年级下册第四章因式分解2 提公因式法北师大版课后练习九第1题【单选题】把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是( )A、8(7a-8b)(a-b)B、2(7a-8b)^2C、8(7a-8b)(b-a)D、-2(7a-8b)【答案】:【解析】:第2题【单选题】多项式x^3+x^2提取公因式后剩下的因式是( )A、x+1B、x^2C、xD、x^2+1【答案】:【解析】:第3题【单选题】下列多项式中,含有因式(y+1)的多项式是( )A、y^2﹣2xy﹣3x^2B、(y+1)^2﹣(y﹣1)^2C、(y+1)^2﹣(y^2﹣1)D、(y+1)^2+2(y+1)+1【答案】:【解析】:第4题【单选题】下列多项式应提取公因式5a^2b的是( )A、15a^2b-20a^2b^2B、30a^2b^3-15ab^4-10a^3b^2C、10a^2b-20a^2b^3+50a^4D、5a^2b^4-10a^3b^3+15a^4b^2【答案】:【解析】:第5题【单选题】下列分解因式正确的是( )A、x^3﹣x=x(x^2﹣1)B、m^2+m﹣6=(m﹣3)(m+2)C、1-a^2+2ab﹣b^2=(1-a+b)(1+a-b)D、x^2+y^2=(x+y)(x-y)【答案】:【解析】:第6题【单选题】将3a(x-y)-b(x-y)用提公因式法分解因式,应提出的公因式是( )A、3a-bB、3(x-y)C、x-yD、3a+b【答案】:【解析】:第7题【填空题】(﹣2)^2014+(﹣2)^2015=______.A、﹣2^2014<\/sup>【答案】:【解析】:第8题【填空题】因式分解:x﹣x^2=______.【答案】:【解析】:第9题【填空题】因式分解x^3-2x^2y+xy^2=______.【答案】:【解析】:第10题【填空题】多项式3a^2b^2﹣6a^3b^3﹣12a^2b^2c的公因式是______.A、3a^2<\/sup>b^2<\/sup>【答案】:【解析】:第11题【填空题】因式分解:a^3﹣9ab^2=______【答案】:【解析】:第12题【填空题】分解因式:a^2﹣6a=______.【答案】:【解析】:第13题【填空题】分解因式:ax^2+2ax﹣3a=______.【答案】:【解析】:第14题【填空题】分解因式:2a^2+ab=______.A、a(2a+b)【答案】:【解析】:第15题【综合题】用提公因式法分解因式:6m^2n-15n^2m+30m^2n^2;-4x^3+16x^2-26x;x(x+y)+y(x+y).【答案】:【解析】:。

八年级数学人教版上册同步练习提公因式法(解析版)

八年级数学人教版上册同步练习提公因式法(解析版)

14.3.1提公因式法一、单选题1.在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为( )A .2B .2-C .6D .6- 【答案】A【分析】根据因式分解的意义可设()()322572x x x k x x mx n +++=+++,再利用整式乘法计算()()22x x mx n +++后得()()32222x m x n m x n +++++,即可根据因式分解与整式乘法的关系求解.【详解】设()()322572x x x k x x mx n +++=+++, ∵()()22x x mx n +++ 322222x mx nx x mx n =+++++()()32222x m x n m x n =+++++3257x x x k =+++,∴25m ,27n m +=, 2k n =,解得3m =,1n =,2k =.故选:A .【点评】本题考查了因式分解的意义,掌握因式分解与整式乘法的关系是解题的关键.2.下列各式由左边到右边是因式分解且分解结果正确的是( )A .()3a 43a 12-=-B .()()24x 94x 34x 3-=+-C .()22x 4x 4x 2-+=-D .()3224a 6a 2a 2a 2a 3a ++=+ 【答案】C【分析】根据因式分解的意义求解即可.【详解】A 、()34312a a -=-是整式的乘法,故A 不符合题意;B 、()()2492323x x x -=+-,原式分解不正确,故B 不符合题意;C 、()22442x x x -+=-,分解正确,故C 符合题意;D 、()3224622231a a a a a a ++=++,原式分解不正确,故D 不符合题意;故选:C .【点评】本题考查了因式分解的意义,利用因式分解是把一个多项式转化成几个整式积的形式.3.下列从左到右是因式分解的是( ).A .(a +b )(a -b )=a 2-b 2B .(a +b )2 =a 2+2ab +b 2C .(x +2)(x -5)=x 2-3x +10D .x 2+2x -15=(x -3)(x +5) 【答案】D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、是整式的乘法,故B 错误;C 、是整式的乘法,故C 错误;D 、符合因式分解,故D 正确;故选:D .【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.4.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=-【答案】C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点评】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.5.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解【答案】D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点评】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义. 6.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 【答案】C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点评】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.7.下列各式从左到右的变形中,属于分解因式的是( )A .a (m+n )=am+anB .10x 2﹣5x =5x (2x ﹣1)C .x 2﹣16+6x =(x+4)(x ﹣4)+6xD .a 2﹣b 2﹣c 2=(a ﹣b )(a+b )﹣c 2【答案】B【分析】根据分解因式的定义逐个判断即可.【详解】A .等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;B .等式由左到右的变形属于分解因式,故本选项符合题意;C .等式由左到右的变形不属于分解因式,故本选项不符合题意;D .等式由左到右的变形不属于分解因式,故本选项不符合题意;故选:B .【点评】此题考查了因式分解的定义.掌握其定义是解答此题的关键.8.(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【答案】C【分析】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.二、填空题目9.多项式39x -,29x -与269x x -+的公因式为______.【答案】3x -【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】因为3x ﹣9=3(x ﹣3),x 2﹣9=(x +3)(x ﹣3),x 2﹣6x +9=(x ﹣3)2,所以多项式3x ﹣9,x 2﹣9与x 2﹣6x +9的公因式为(x ﹣3).故答案:3x -.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.已知22()()24x my x ny x xy y -+=+-,则22m n mn -的值为______.【答案】8.-【分析】由22()()24x my x ny x xy y -+=+-可得()222224,x n m xy mny x xy y +--=+-可得:2,4,n m mn -=-=-即2,4,m n mn -=-=再把22m n mn -分解因式,再整体代入求值即可.【详解】 22()()24x my x ny x xy y -+=+-,222224,x nxy mxy mny x xy y ∴+--=+-()222224,x n m xy mny x xy y ∴+--=+-2,4,n m mn ∴-=-=-2,4,m n mn ∴-=-=∴ ()22m n m n mn mn =--()428.=⨯-=-故答案为:8.-【点评】本题考查的是整式的乘法,多项式的恒等,因式分解的应用,掌握以上知识是解题的关键. 11.多项式22y y m ++因式分解后有一个因式是(1)y -,则m =_______.【答案】3-【分析】由于x 的多项式y 2+2y+m 分解因式后有一个因式是(y-1),所以当y=1时多项式的值为0,由此得到关于m 的方程,解方程即可求出m 的值.【详解】∵多项式y 2+2y+m 因式分解后有一个因式为(y-1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=-3.故答案为:-3.【点评】本题考查了因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解. 12.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.【答案】4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点评】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.三、解答题13.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值.解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ).则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n ,解得n =3,m =6,∴另一个因式为x +3,m 的值为6依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ;(2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ;(3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值.【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5.【分析】(1)仿照题干中给出的方法计算即可;(2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】(1)∵2(3)()33x x a x x ax a -+=-+-=2(3)3x a x a +--=2712x x -+.∴a ﹣3=﹣7,﹣3a =12,解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +-=+--=226x x --.=226x bx +-.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++-=-++.对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++-=-++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++-=-+-+-=+-+--.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k .解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点评】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.14.解答下列各题:(1)计算:()()()22x 12x 52x 5+-+-(2)分解因式:()225m 2x y 5mn --. 【答案】(1)426x +;(2)()()5m 2x y+n 2x y n ---【分析】(1)利用完全平方公式和平方差公式分别计算前后两部分,然后进行加减运算即可;(2)先提取公因式5m ,再利用平方差公式计算.【详解】(1)原式2241=4425x x x +++-=426x +(2)原式()22=5m 2x y n -⎡⎤-⎣⎦()()=5m 2x y+n 2x y n ---【点评】本题考查整式的混合运算和因式分解,解题的关键是熟练掌握完全平方公式和平方差公式的法则. 15.将下列各式因式分解:(1)324x xy -;(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y .【答案】(1)x (x+2y )(x-2y );(2)(x ﹣y )2(3)x y -.【分析】(1)先提取公因式x ,后变形成为22(2)x y -,用平方差公式分解即可;(2)先将6xy (y ﹣x )变形为-6xy (x﹣y),后提取公因式,再用完全平方公式分解即可.【详解】(1)324x xy -=22(4)x x y -=22[(2)]x x y -=x (x+2y )(x-2y );(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y=(x ﹣y )2x -6xy (x ﹣y )+9(x ﹣y )2y=(x ﹣y )(2x -6xy +92y )=(x ﹣y )2(3)x y -.【点评】本题考查了提取公因式法,平方差公式法,完全平方公式法分解因式,熟练掌握先提后套用公式分解因式是解题的关键.16.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()<b b a 的小正方体,如图1所示,则得到的几何体的体积为________;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为________,长方体③的体积为________;(结果不需要化简)(3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为________;(4)用不同的方法表示图1中几何体的体积,可以得到的等式为________.(5)已知4a b -=,2ab =,求33a b -的值.【答案】(1)33a b -;(2)()2b a b -,()2a a b -;(3)()+ab a b -()2b a b -()2+a a b -()()22a b a ab b =-++;(4)()()3322a b a b a ab b -=-++;(5)88.【分析】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b 从而可得答案;(2)由,,ED OD b DM a b ===-,,GH HJ a HN a b ===-利用长方体的体积公式直接可得答案; (3)提取公因式-a b ,即可得到答案;(4)由(1)(3)的结论结合等体积的方法可得答案;(5)利用()2222,a b a b ab +=-+先求解22,a b + 再利用()()3322a b a b a ab b -=-++,再整体代入求值即可得到答案.【详解】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b所以截去后得到的几何体的体积为:33,a b -故答案为:33.a b -(2),,ED OD b DM a b ===-由长方体的体积公式可得:长方体②的体积为()2b a b -,,,GH HJ a HN a b ===-所以长方体③的体积为()2,aa b - 故答案为:()2b a b -,()2.a a b -(3)由题意得:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++故答案为:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++(4)由(1)(3)的结论,可以得到的等式为:()()3322.a b a b a ab b -=-++故答案为:()()3322.a b a b a ab b -=-++(5) 4a b -=,2ab =,()222216420,a b a b ab ∴+=-+=+=()()3322a b a b a ab b -=-++,()33420288.a b ∴-=⨯+=【点评】本题考查的是完全平方公式的变形,提公因式分解因式,代数恒等式的几何意义,掌握利用不同的方法表示同一个几何体的体积得到代数恒等式,以及应用得到的恒等式解决问题是解题的关键. 17.已知7,12a b ab -==-(1)求22ab a b -的值(2)求22a b +的值【答案】(1)84;(2)25.【分析】(1)先提取公因式ab -将所求式子因式分解为()ab a b --,再将已知式子的值代入即可得; (2)利用完全平方公式进行变形求值即可得.【详解】(1)7,12a b ab -==-,()22ab a b ab a b ∴-=--,()127=--⨯,84=;(2)7,12a b ab -==-,()249a b ∴-=,22249a b ab ∴+-=,()2221249a b ∴+-⨯-=,2225a b ∴+=.【点评】本题考查了利用因式分解和完全平方公式进行变形求值,熟练掌握因式分解的方法和完全平方公式是解题关键.18.设333201720182019x y z ==,322222x mx nx x mx n =+++++,且=.求111x y z++的值. 【答案】1.【分析】由322222x mx nx x mx n =+++++,可得000x y z >>>,,,令333201720182019x y z k ===,由=变形得=可得2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭因式分解11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭,由000x y z >>>,,,1110x y z ++>,可得1111x y z ++=. 【详解】∵322222x mx nx x mx n =+++++,∴000x y z >>>,,,或,,x y z 一正,两负,333201720182019x y z ==说明x ,y ,z 同号,∴000x y z >>>,,,令333201720182019x y z k ===,=++,=+,=+,111x y z ⎛⎫=++ ⎪⎝⎭,111x y z=++, ∴2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭, ∴11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭, ∵000x y z >>>,,,1110x y z++>, ∴1111x y z++=. 【点评】本题考查立方根条件求值问题,掌握立方根的性质,巧秒恒等变形使实际问题简化,利用等式两边平方,因式分解求出代数式的值是解题关键.19.已知5x y +=,4xy =,求下列各式的值.(1)x y -;(2)33x y xy +.【答案】(1)3±;(2)68【分析】(1)根据完全平方公式的变形公式(x ﹣y )2=(x+y)2﹣4xy 进行求解即可;(2)利用完全平方公式求解x 2+y 2,再将所求代数式因式分解,进而代入数值即可求解.【详解】(1)∵5x y +=,4xy =,∴(x ﹣y )2=(x+y)2﹣4xy=52﹣4×4=9,∴x ﹣y=±3;(2)∵(x+y )2= x 2+y 2+2xy ,∴x 2+y 2=52﹣2×4=17,∴33x y xy +=xy(x 2+y 2)=4×17=68.【点评】本题考查代数式求值、完全平方公式、平方根、因式分解、有理数的混合运算,熟记完全平方公式,灵活运用公式是解答的关键.20.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值.解:设另一个因式为x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++,25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6.依照以上方法解答下列问题:(1)若二次三项式254x x -+可分解为(1)()x x a -+,则a =________;(2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =________;(3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值.【答案】(1)4-;(2)1-;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a -+展开,根据所给出的二次三项式即可求出a 的值;(2)(2x +3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x +n ),得2x 2+9x ﹣k =(2x ﹣1)(x +n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】(1)∵(1)()x x a -+=x 2+(a ﹣1)x ﹣a =254x x -+,∴a ﹣1=﹣5,解得:a =﹣4;故答案是:﹣4(2)∵(2x +3)(x ﹣2)=2x 2﹣x ﹣6=2x 2+bx ﹣6,∴b =﹣1.故答案是:﹣1.(3)设另一个因式为(x+n),得2x2+9x﹣k=(2x﹣1)(x+n),则2x2+9x﹣k=2x2+(2n﹣1)x﹣n,∴2n﹣1=9,﹣k=﹣n,解得n=5,k=5,∴另一个因式为x+5,k的值为5.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.祝福语祝你考试成功!。

中考数学专题复习第4讲因式分解(含详细答案)

中考数学专题复习第4讲因式分解(含详细答案)

第四讲 因式分解 【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。

2、因式分解与整式乘法是 运算,即:多项式 整式的积 【名师提醒:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。

】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。

提公因式法分解因式可表示为:ma+mb+mc= 。

【名师提醒:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。

2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。

3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。

】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。

①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。

【名师提醒:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。

如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。

】三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。

2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。

3、 三查:分解因式必须进行到每一个因式都不能再分解为止。

【名师提醒:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【重点考点例析】考点一:因式分解的概念例1 (•株洲)多项式x 2+mx+5因式分解得(x+5)(x+n ),则m= ,n= .思路分析:将(x+5)(x+n )展开,得到,使得x 2+(n+5)x+5n 与x 2+mx+5的系数对应相等即可.解:∵(x+5)(x+n )=x 2+(n+5)x+5n ,∴x 2+mx+5=x 2+(n+5)x+5n ∴555n m n +=⎧⎨=⎩,∴16n m =⎧⎨=⎩, 故答案为6,1.点评:本题考查了因式分解的意义,使得系数对应相等即可.对应训练1.(•河北)下列等式从左到右的变形,属于因式分解的是( )( ) ( )A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)1.D考点二:因式分解例2 (•无锡)分解因式:2x2-4x= .思路分析:首先找出多项式的公因式2x,然后提取公因式法因式分解即可.解:2x2-4x=2x(x-2).故答案为:2x(x-2).点评:此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.例3 (•南昌)下列因式分解正确的是()A.x2-xy+x=x(x-y)B.a3-2a2b+ab2=a(a-b)2C.x2-2x+4=(x-1)2+3 D.ax2-9=a(x+3)(x-3)思路分析:利用提公因式法分解因式和完全平方公式分解因式进行分解即可得到答案.解:A、x2-xy+x=x(x-y+1),故此选项错误;B、a3-2a2b+ab2=a(a-b)2,故此选项正确;C、x2-2x+4=(x-1)2+3,不是因式分解,故此选项错误;D、ax2-9,无法因式分解,故此选项错误.故选:B.点评:此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.例4 (•湖州)因式分解:mx2-my2.思路分析:先提取公因式m,再对余下的多项式利用平方差公式继续分解.解:mx2-my2,=m(x2-y2),=m(x+y)(x-y).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.对应训练2.(•温州)因式分解:m2-5m= .2.m(m-5)3.(•西宁)下列分解因式正确的是()A.3x2-6x=x(3x-6)B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)23.B4.(•北京)分解因式:ab2-4ab+4a= .4.a(b-2)2考点三:因式分解的应用例5 (•宝应县一模)已知a+b=2,则a2-b2+4b的值为.思路分析:把所给式子整理为含(a+b)的式子的形式,再代入求值即可.解:∵a+b=2,∴a2-b2+4b=(a+b)(a-b)+4b=2(a-b)+4b=2a+2b=2(a+b)=2×2=4.故答案为:4. 点评:本题考查了利用平方差公式分解因式,利用平方差公式和提公因式法整理出a+b 的形式是求解本题的关键,同时还隐含了整体代入的数学思想.对应训练5.(•鹰潭模拟)已知ab=2,a-b=3,则a 3b-2a 2b 2+ab 3= .5.18【聚焦山东中考】1.(•临沂)分解因式4x-x 2= .1.x (4-x )2.(•滨州)分解因式:5x 2-20= .2.5(x+2)(x-2)3.(•泰安)分解因式:m 3-4m= .3.m (m-2)(m+2)4.(•莱芜)分解因式:2m 3-8m= .4.2m (m+2)(m-2)5.(•东营)分解因式:2a 2-8b 2= .5.2(a-2b )(a+2b )6.(•烟台)分解因式:a 2b-4b 3= .6.b (a+2b )(a-2b )7.(•威海)分解因式:-3x 2+2x-13= . 7.21(31)3x --8.(•菏泽)分解因式:3a 2-12ab+12b 2= .8.3(a-2b )2【备考真题过关】一、选择题1.(•张家界)下列各式中能用完全平方公式进行因式分解的是() A .x 2+x+1 B .x 2+2x-1 C .x 2-1D .x 2-6x+9 1.D2.(•佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1) 2.C3.(•恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )23.C二、填空题4.(•自贡)多项式ax 2-a 与多项式x 2-2x+1的公因式是 .4.x-15.(•太原)分解因式:a 2-2a= .5.a (a-2)6.(•广州)分解因式:x 2+xy= .6.x (x+y )7.(2013•盐城)因式分解:a 2-9= .7.(a+3)(a-3)8.(•厦门)x2-4x+4=()2.8.x-29.(•绍兴)分解因式:x2-y2= .9.(x+y)(x-y)10.(•邵阳)因式分解:x2-9y2= .11.(x+3y)(x-3y)12.(•南充)分解因式:x2-4(x-1)= .12.(x-2)213.(•遵义)分解因式:x3-x= .13.x(x+1)(x-1)14.(•舟山)因式分解:ab2-a= .14.a(b+1)(b-1)15.(•宜宾)分解因式:am2-4an2= .15.a(m+2n)(m-2n)16.(•绵阳)因式分解:x2y4-x4y2= .16.x2y2(y-x)(y+x)17.(•内江)若m2-n2=6,且m-n=2,则m+n= .17.318.(•廊坊一模)已知x+y=6,xy=4,则x2y+xy2的值为.18.2419.(•凉山州)已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b= .19.-31。

提公因式法 专项提升训练 (解析版)【浙教版】

提公因式法 专项提升训练 (解析版)【浙教版】

4.2提公因式法专项提升训练一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•周至县期末)将多项式a2x+ay﹣a2xy因式分解时,应提取的公因式是()A.a B.a2C.a x D.a y【分析】直接利用公因式的定义得出答案.【解答】解:a2x+ay﹣a2xy=a(ax+y﹣axy),则应提取的公因式是a.故选:A.2.(2021秋•紫阳县期末)多项式a2b3+3abc中各项的公因式是()A.ab B.a2b C.3ab D.abc【分析】根据公因式的定义求即.【解答】解:多项式a2b3+3abc中各项的公因式为ab.故选:A.3.(2022秋•青浦区校级期中)单项式3a3b与单项式9a2b3的公因式是()A.3a2b B.3a3b3C.a2b D.a3b3【分析】根据公因式的概念分别求得系数的最大公因数,相同字母的次数的最低次数即可.【解答】解:单项式3a3b与单项式9a2b3的公因式是3a2b.故选:A.4.(2022秋•鼓楼区期中)9998﹣993的结果最接近于()A.9998B.9997C.9996D.9995【分析】原式提公因式993分解因式可得答案.【解答】解:9998﹣993=993×(9995﹣1),∵9995﹣1≈9995,∴993×(9995﹣1)≈9998,即9998﹣993的结果最接近于9998,故选:A.5.(2022秋•乳山市期中)多项式x2y+2xy与x2y﹣4y的公因式是()A.y B.x+2C.x﹣2D.y(x+2)【分析】先对多项式式x2y+2xy与x2y﹣4y进行因式分解,再根据公因式的定义解决此题.【解答】解:x2y+2xy=xy(x+2),x2y﹣4y=y(x+2)(x﹣2),∴多项式x2y+2xy与x2y﹣4y的公因式是y(x+2).故选:D.6.(2022秋•莱州市期中)多项式12m3n2+8m2n﹣20m2n3的公因式是()A.4m2n B.4m2n2C.2mn D.8m2n【分析】根据找公因式的方法得出答案即可.【解答】解:多项式12m3n2+8m2n﹣20m2n3的公因式是4m2n,故选:A.7.(2022春•运城月考)计算320﹣318×6的值是()A.319B.318C.32D.0【分析】直接提取公因式318,进而计算得出答案.【解答】解:320﹣318×6=318×(32﹣6)=318×3=319.故选:A.8.(2022秋•辉县市校级月考)把多项式(x﹣y)+x2(y﹣x)因式分解,结果正确的是()A.(x﹣y)(1+x2)B.(x﹣y)(1﹣x2)C.(x﹣y)(1+x)(1﹣x)D.(x﹣y)(x+1)(x﹣1)【分析】x先利用提公因式法,再利用平方差公式即可,注意符号的变换.【解答】解:原式=(x﹣y)(1﹣x2)=(x﹣y)(1﹣x)(1+x);故答案选:C.9.(2022春•济阳区期末)边长为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为()A.15B.30C.60D.120【分析】根据题意可得ab=6,a+b=5,然后再把所求的式子进行提公因式,进行计算即可解答.【解答】解:由题意得:2(a+b)=10,ab=6,∴a+b=5,∴a2b+ab2=ab(a+b)=6×5=30,故选:B.10.(2022•邯郸二模)若20222022﹣20222020=2023×2022n×2021,则n的值是()A.2020B.2021C.2022D.2023【分析】先提取公因式,再套用平方差公式分解20222022﹣20222020,再根据等式的性质确定n的值.【解答】解:∵20222022﹣20222020=20222020×(20222﹣1)=20222020×(2022+1)×(2022﹣1)=2023×20222020×2021,又∵20222022﹣20222020=2023×2022n×2021,∴2023×20222020×2021=2023×2022n×2021.∴n=2020.二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.﹣2x3+4x5的公因式是﹣2x3.【分析】根据公因式的定义解答即可.【解答】解:﹣2x3+4x5的公因式是﹣2x3.故答案为:﹣2x3.12.(2022秋•海淀区校级期末)在多项式4x3y2+8x2y3﹣6xy2中,各项的公因式是2xy2.【分析】直接找出公因式,进而提取公因式得出答案.【解答】解:4x3y2+8x2y3﹣6xy2y=2xy2(2x2y+4xy2﹣3).故答案为:2xy2.13.(2022春•南海区校级月考)因式分解:9(a﹣b)(a+b)﹣3(a﹣b)2=6(a﹣b)(a+2b).【分析】原式提取公因式分解即可.【解答】解:原式=3(a﹣b)[3(a+b)﹣(a﹣b)]=3(a﹣b)(3a+3b﹣a+b)=3(a﹣b)(2a+4b)=6(a﹣b)(a+2b).故答案为:6(a﹣b)(a+2b).14.(2021秋•泸县期末)分解因式3x(x﹣2)﹣2(2﹣x)=(x﹣2)(3x+2).【分析】先变形再提取公因式(x﹣2),进而分解因式得出答案.【解答】解:3x(x﹣2)﹣2(2﹣x)=3x(x﹣2)+2(x﹣2)=(x﹣2)(3x+2).故答案为:(x﹣2)(3x+2).15.(2022秋•嘉定区期中)当a=3,b=14时,代数式﹣a2+4ab的值为﹣6.【分析】将原式变形为﹣a(a﹣4b),把a与b的值分别代入计算即可得到结果.【解答】解:当a=3,b=14时,﹣a2+4ab=﹣a(a﹣4b)=﹣3×(3﹣4×1 4)=﹣3×2=﹣6.故答案为:﹣6.16.(2022秋•海淀区校级期末)已知x2y+xy2=48,xy=6,则x+y=8.【分析】直接将已知提取公因式xy,进而分解因式得出答案.【解答】解:∵x2y+xy2=48,xy=6,∴xy(x+y)=48,故答案为:8.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.把下列各式分解因式:(1)4x3﹣6x2;(2)2a2b+5ab+b;(3)6p(p+q)﹣4q(p+q);.(4)(x﹣1)2﹣x+1;(5)﹣3a2b+6ab2﹣3ab.【分析】(1)直接找出公因式2x2,进而分解因式得出答案;(2)直接找出公因式2x2,进而分解因式得出答案;(3)直接找出公因式2(p+q),进而分解因式得出答案;(4)直接找出公因式(x﹣1),进而分解因式得出答案;(5)直接找出公因式﹣3ab,进而分解因式得出答案.【解答】解:(1)4x3﹣6x2=2x2(2x﹣3);(2)2a2b+5ab+b=b(2a2+5a+1);(3)6p(p+q)﹣4q(p+q)=2(p+q)(3p﹣2q);(4)(x﹣1)2﹣x+1=(x﹣1)2﹣(x﹣1)=(x﹣1)(x﹣2);(5)﹣3a2b+6ab2﹣3ab=﹣3ab(a﹣2b+1).18.把下列各式因式分解:(1)x(a+b)+y(a+b);(2)3a(x﹣y)﹣(x﹣y);(3)6(p+q)2﹣12(q+p);(4)a(m﹣2)+b(2﹣m);(5)2(y﹣x)2+3(x﹣y).【分析】各项变形后,提取公因式即可得到结果.【解答】解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x﹣y)﹣(x﹣y)=(x﹣y)(3a﹣1);(3)6(p+q)2﹣12(q+p)=6(p+q)(p+q﹣2);(4)a(m﹣2)+b(2﹣m)=a(m﹣2)﹣b(m﹣2)=(m﹣2)(a﹣b);(5)2(y﹣x)2+3(x﹣y)=2(x﹣y)2+3(x﹣y)=(x﹣y)(2x﹣2y+3).19.把下列各式分解因式:(1)18a3bc﹣45a2b2c2;(2)﹣20a﹣15ab;(3)18x n+1﹣24x n;(4)(m+n)(x﹣y)﹣(m+n)(x+y);(5)15(a+b)2+3y(b+a);(6)2a(b﹣c)+3(c﹣b).【分析】(1)直接提取公因式9a2bc进而得出答案;(2)直接提取公因式﹣5a进而得出答案;(3)直接提取公因式6x n进而得出答案;(4)直接提取公因式(m+n)进而得出答案;(5)直接提取公因式3(a+b)进而得出答案;(6)直接提取公因式(b﹣c)进而得出答案.【解答】解:(1)18a3bc﹣45a2b2c2=9a2bc(2a﹣5bc);(2)﹣20a﹣15ab=﹣5a(4+3b);(3)18x n+1﹣24x n=6x n(3x﹣4);(4)(m+n)(x﹣y)﹣(m+n)(x+y)=(m+n)(x﹣y﹣x﹣y)=﹣2y(m+n);(5)15(a+b)2+3y(b+a)=3(a+b)[5(a+b)+y]=3(a+b)(5a+5b+y);(6)2a(b﹣c)+3(c﹣b)=(2a﹣3)(b﹣c).20.已知x﹣y+z=﹣4,求x(x﹣y+z)+y(y﹣x﹣z)+z(z+x﹣y)的值.【分析】原式变形提取公因式后,将已知的等式代入计算即可求出值.【解答】解:∵x﹣y+z=4,∴原式=x(x﹣y+z)﹣y(x﹣y+z)+z(x﹣y+z)=(x﹣y+z)(x﹣y+z)=16.21.(2022春•南海区校级月考)某老师在讲因式分解时,为了提高同学们的思维训练力度,他补充了一道这样的题:对多项式(.x2﹣4+2)(x2﹣4+6)+4进行因式分解,有个学生解答过程如下,并得到了老师的夸奖:解:设x2﹣4x=y.原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)根据以上解答过程回答以下问题:(1)第四步的结果继续因式分解得到结果为(x﹣2)4;(2)请你模仿以上方法对多项式(x2+6x)(x2+6x+10)+25进行因式分解.【分析】(1)原式底数利用完全平方公式分解,再利用幂的乘方运算法则计算即可得到结果;(2)仿照题中换元思想将原式分解即可.【解答】解:(1)第四步的结果继续因式分解得到结果为(x﹣2)4;故答案为:(x﹣2)4;(2)设x2+6x=y,原式=y(y+10)+25=y2+10y+25=(y+5)2=(x2+6x+5)2=(x+1)2(x+5)2.22.(2022春•市中区期末)阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是提公因式法,共用了2次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则结果是(1+x)2022.(3)依照上述方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).【分析】(1)利用提公因式法,进行分解即可解答;(2)仿照已知的计算过程,即可解答;(3)仿照已知的计算过程,即可解答.【解答】解:(1)上述分解因式的方法是提公因式法,共用了2次,故答案为:提公因式法,2;(2)1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需要用上述方法2021次,结果是(1+x)2022,故答案为:(1+x)2022;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)=(1+x)[1+x+x(x+1)+...+x(x+1)n﹣1]=(1+x)2[(1+x+x(x+1)+...+x(x+1)n﹣2]...=(1+x )n +1.23.(2022•庐阳区校级三模)先阅读、观察、理解,再解答后面的问题:第1个等式:1×2=13(1×2×3﹣0×1×2)=13(1×2×3)第2个等式:1×2+2×3=13(1×2×3﹣0×1×3)+13(2×3×4﹣1×2×3)=13(1×2×3﹣0×1×2+2×3×4﹣1×2×3)=13(2×3×4)第3个等式:1×2+2×3+3×4=13(1×2×3﹣0×1×2)+13(2×3×4﹣1×2×3)+13(3×4×5﹣2×3×4) =13(1×2×3﹣0×1×3+2×3×4﹣1×2×3+3×4×5﹣2×3×4)=13(3×4×5)(1)依次规律,猜想:1×2+2×3+3×4+……+n (n +1)= 13n (n +1)(n +2) (直接写出结果);(2)根据上述规律计算:10×11+11×12+12×13+……+29×30.【分析】(1)观察已知等式得到一般性规律,写出即可;(2)原式利用得出的规律计算即可求出值.【解答】解:(1)根据题意得:1×2+2×3+3×4+……+n (n +1)=13n (n +1)(n +2);故答案为:13n (n +1)(n +2); (2)原式=(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9+9×10+……+29×30)﹣(1×2+2×3+3×4+4×5+5×6+6×7+7×8+8×9)=13×29×30×31−13×8×9×10 =8990﹣240=8750.。

因式分解精选例题(附答案)

因式分解精选例题(附答案)

因式分解 例题解说及练习【例题优选】:(1) 5x 2 y 15x 3 y 2 20x 2 y 3评析:先查各项系数(其余字母临时不看) ,确立 5,15,20 的最大公因数是 5,确立系数是 5 ,再查各项能否都有字母 X ,各项都有时,再确立 X 的最低次幂是几,至此确认提取 X 2,同法确立提 Y ,最后确立提公因式 5X 2Y 。

提取公因式后,再算出括号内各项。

解: 5x 2 y15x 3 y 2 20x 2 y 3=5x 2y(1 3xy4y 2 )(2)3x 2 y 12x 2 yz 9x 3 y 2评析:多项式的第一项系数为负数,应先提出负号,各项系数的最大公因数为 3,且同样字母最低次的项是 X 2Y解:3x 2 y 12 x 2 yz 9x 3 y 2= (9x 3 y 212x = 3(3x 3 y 2 4x22yz 3x 2 y)yz x 2 y)=3x 2 y(3xy 42 1)( 3)(y-x)(c-b-a)-(x-y)(2a+b-c)-(x-y)(b-2a)评析:在本题中, y-x 和 x-y 都能够做为公因式,但应防止负号过多的状况出现,所以应提取 y-x解:原式 =(y-x)(c-b-a)+(y-x)(2a+b-c)+(y-x)(b-2a)=(y-x)(c-b-a+2a+b-c+b-2a)=(y-x)(b-a)(4)(4) 把32x 3 y 4 2x 3分解因式评析:这个多项式有公因式 2x 3,应先提取公因式,节余的多项式16y 4-1 具备平方差公式的形式解: 32x 3y42x3=2x 3 (16y 4 1)=2x 3 (4 y 2 1)(4 y 2 1) =2 x3 (2y 1)( 2y 1)( 4y 21)(5)(5) 把 x 7 y 2xy 8 分解因式评析:第一提取公因式xy 2,剩下的多项式x 6-y6能够看作( x 3 ) 2( y 3 ) 2 用平方差公式分解,最后再运用立方和立方差公式分解。

鲁教版数学八年级上册 1.2《因式分解提公因式法》同步测试(含答案)

鲁教版数学八年级上册 1.2《因式分解提公因式法》同步测试(含答案)

因式分解-提公因式法一、选择题(本大题共10小题,共30.0分)a2b−ab2提公因式后,另一个因式是()1.将−12A. a+2bB. −a+2bC. −a−bD. a−2b2.计算a2(2a)3−a(3a+8a4)的结果是()A. 3a2B. −3aC. −3a2D. 16a53.当a,b互为相反数时,代数式a2+ab−2的值为()A. 2B. 0C. −2D. −14.用提取公因式法将多项式4a2b3−8a4b2+10a3b分解因式,得公因式是()A. 2a2bB. 2a2b2C. 4a2bD. 4ab25.(−2)2014+3×(−2)2013的值为()A. −22013B. 22013C. 22014D. 220146.若代数式x2+ax可以分解因式,则常数a不可以取()A. −1B. 0C. 1D. 27.分解因式x3+4x的结果是()A. x(x2+4)B. x(x+2)(x−2)C. x(x+2)2D. x(x−2)28.若a+b=6,ab=3,则3a2b+3ab2的值是()A. 9B. 27C. 19D. 549.下列因式分解错误的是()A. 2a−2b=2(a−b)B. x2−9=(x+3)(x−3)C. a2+4a−4=(a+2)2D. −x2−x+2=−(x−1)(x+2)10.多项式b2n−b n提公因式b n后,另一个因式是()A. b n−1B. b2n−1−1C. b2n−1D. b n二、填空题(本大题共10小题,共30.0分)11.已知x+y=10,xy=16,则x2y+xy2的值为______ .12.因式分解:x2−2x+(x−2)=______.13.分解因式:m2+2m=______.14.因式分解a(x−3)2+b(3−x)2=______ .15.因式分解:3ab2+a2b=______.16.若m−n=3,mn=−2,则2m2n−2mn2+1的值为______ .17.把多项式−16x3+40x2y提出一个公因式−8x2后,另一个因式是______ .18.若x+y=1,xy=−7,则x2y+xy2=______.19.如图,边长为m,n的长方形,它的周长为10,面积为6,则m2n+mn2的值为______.20.分解因式:x3+2x2−3x=______.三、计算题(本大题共4小题,共24.0分)21.已知2x−y=1,xy=3,求2x4y3−x3y4的值.3第 1 页22.化简求值:当a=2005时,求−3a2(a2−2a−3)+3a(a3−2a2−3a)+2005的值.23.(6分)分解因式:6xy 2−9x 2y−y 324.在三个整式x2+2xy,y2+2xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.四、解答题(本大题共2小题,共16.0分)25.已知(19x−31)(13x−17)−(17−13x)(11x−23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.26.简便计算:①1.992+1.99×0.01②20132+2013−20142.答案1. A2. C3. C4. A5. A6. B7. A8. D9. C10. A11. 16012. (x+1)(x−2)13. m(m+2)14. (x−3)2(a+b)15. ab(3b+a)16. −1117. 2x−5y18. −719. 3020. x(x+3)(x−1)21. 解:∵2x−y=1,xy=3,3=9.∴原式=(xy)3(2x−y)=27×1322. 解:−3a2(a2−2a−3)+3a(a3−2a2−3a)+2005=−3a2(a2−2a−3)+3a2(a2−2a−3)+2005=2005.23. 解:6xy 2−9x 2y−y 3=−y(y 2−6xy+9x 2)=−y(3x−y) 224. 解:x2+2xy+x2=2x2+2xy=2x(x+y).25. 解:(19x−31)(13x−17)−(17−13x)(11x−23)=(19x−31)(13x−17)+(13x−17)(11x−23)=(13x−17)(30x−54)∴a=13,b=−17,c=−54,∴a+b+c=−58.26. 解:①1.992+1.99×0.01=1.99×(1.99+0.01)=3.98;②20132+2013−20142=2013[(2013+1)]−20142=2013×2014−20142=2014×(2013−2014)=−2014.第 1 页。

提公因式法(有答案解析)

提公因式法(有答案解析)

2.2 提公因式法A卷:基础题一、选择题1.下列各组代数式中,没有公因式的是()A.5m(a-b)和b-a B.(a+b)2和-a-bC.mx+y和x+y D.-a2+ab和a2b-ab22.下列多项式中,能用提公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2D.x2-xy+y23.下列用提公因式法分解因式不正确的是()A.12abc-9a2b2c=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy+y=y(x2+5x+1)4.(-2)2007+(-2)2008等于()A.2 B.22007C.-22007D.-220085.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9)B.x(y+3)2C.x(y+3)(y-3)D.x(y+9)(y -9)二、填空题6.9x2y-3xy2的公因式是______.7.分解因式:-4a3+16a2b-26ab2=_______.8.多项式18x n+1-24x n的公因式是______,提取公因式后,另一个因式是______.9.a,b互为相反数,则a(x-2y)-b(2y-x)的值为________.10.分解因式:a3-a=______.三、解答题11.某中学有三块草坪,第一块草坪的面积为(a+b)2m2,第二块草坪的面积为a(•a+b)m2,第三块草坪的面积为(a+b)bm2,求这三块草坪的总面积.12.观察下列等式,你得出了什么结论?并说明你所得的结论是正确的.1×2+2=4=22;2×3+3=9=32;3×4+4=16=42;4×5+5=25=52;…B卷:提高题一、七彩题1.(巧题妙解题)计算:123369510157142113539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯.2.(多题一思路路)(1)将m 2(a -2)+m (2-a )分解因式,正确的是( ) A .(a -2)(m 2-m ) B .m (a -2)(m+1) C .m (a -2)(m -1) D .m (2-a )(m -1) (2)若x+y=5,xy=10,则x 2y+xy 2=_______;(3)mn 2(x -y )3+m 2n (x -y )4分解因式后等于_______. 二、知识交叉题3.(科内交叉题)你对分解因式的了解是不是多了一些?请你猜一猜: 32005-4×32004+•10×32003能被7整除吗?4.(科内交叉题)已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9Ω,R2=18.5Ω,R3=18.6Ω,I=2.3A时,求U的值.三、实际应用题5.在美丽的海滨步行道上,整齐地排着十个花坛,栽种了蝴蝶兰等各种花奔,•每个花坛的形状都相同,中间是矩形,两头是两个半圆形,半圆的直径是中间矩形的宽,若每个花坛的宽都是6m,每个花坛中间矩形长分别为36m,25m,30m,28m,•25m,•32m,24m,24m,22m和32m,你能求出这些花坛的总面积吗?你用的方法简单吗?四、经典中考题6.(2008,重庆,3分)分解因式:ax-ay=______.7.(2007,上海,3分)分解因式:2a2-2ab=_______.C卷1.(规律探究题)观察下列等式:12+2×1=1×(1+2);22+2×2=2×(2+2);32+2×3=3×(3+2);…则第n个等式可以表示为_______.2.(结论开放题)如图2-2-1,由一个边长为a的小正方形与两个长,宽分别为a,•b 的小矩形组成图形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.3.(阅读理解题)先阅读下面的例子,再解答问题.求满足4x(2x-1)-3(1-2x)=0的x的值.解:原方程可变形为(2x-1)(4x+3)=0.所以2x-1=0或4x+3=0,所以x1=12,x2=-34.注:我们知道两个因式相乘等于0,那么这两个因式中至少有一个因式等于0;•反过来,如果两个因式中有一个因式为0,它们的积一定为0,请仿照上面的例子,求满足5x (x-2)-4(2-x)=0的x的值.3.先阅读下面的材料,再分解因式:要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出a;•把它的后两项分成一组,并提出b,从而得到a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)•又有公因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+•an+•bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.•如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.请用上面材料中提供的方法分解因式:(1)a2-ab+ac-bc;(2)m2+5n-mn-5m.参考答案A卷一、1.C 点拨:A中公因式是(a-b),B中公因式是(a+b),D中公因式是(a-b).2.B 点拨:x2+2x=x(x+2).3.B 点拨:3x2y-3xy+6y=3y(x2-x+2).4.B 点拨:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-1)×(-2)2007=22007.5.C 点拨:xy2-9x=x(y2-9)=x(y2-32)=x(y+3)(y-3).二、6.3xy 点拨:9x2y-3xy2=3xy·3x-3xy·y=3xy(3x-y).7.-2a(2a2-8ab+13b2)点拨:-4a3+16a2b-26ab2=-2a(2a2-8ab+13b).8.6x n;3x-4 点拨:18x n+1-24x n=6x n·3x-6x n·4=6x n(3x-4).9.0 点拨:因为a+b=0,所以a(x-2y)-b(2y-x)=a(x-2y)+b(x-2y)=(x-2y)(a+b)=0.10.a(a+1)(a-1)点拨:a3-a=a(a2-1)=a(a+1)(a-1).三、11.解:(a+b)2+a(a+b)+b(a+b)=(a+b)[(a+b)+a+b]=(a+b)(2a+2b)=2(a+b)2(m2)点拨:本题是整式的加法运算,利用提公因式法,很快得到运算结果.12.解:结论是:n(n+1)+(n+1)=(n+1)2.说明:n(n+1)+(n+1)=(n+1)(n+1)=(n+1)2.点拨:本题是规律探究题,把所给等式竖着排列,易于观察它们之间存在的规律.B卷一、1.解:原式=33333333123(1357)1232 135(1357)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯.点拨:本题的巧妙之处是利用提公因式法分解因式可使计算过程简化,且不易出错.2.(1)C (2)50 (3)mn(x-y)3(n+mx-my)点拨:(1)m2(a-2)+m(2-a)=m2(a-2)-m(a-2)=m(a-2)(m -1),故选C.(2)x2y+xy2=xy(x+y).因为x+y=5,xy=10,所以原式=10×5=50.(3)mn2(x-y)3+m2n(x-y)4=mn(x-y)3[n+m(x-y)]=mn(x-y)3(n+mx-my).以上三题的思路是一致的,都是利用提公因式法分解因式,其中第(2)•题分解因式后再代入求值.二、3.解:能,理由:32005-4×32004+10×32003=32003×(32-4×3+10)=32003×7,故能被7整除.点拨:对一个算式进行运算,运算的结果若有因数7,说明它能被7整除.4.解:U=IR1+IR2+IR3=I(R1+R2+R3)=2.3×(12.9+18.5+18.6)=2.3×50=115(V).点拨:遇到运算比较复杂的题目,可尝试用分解因工的方法把式子化简.三、5.解:S=(π·32+36×6)+(π·32+25×6)+(π·32+30×6)+…+(π·32+32×6)=10×π·32+6×(36+25+30+…+32)≈1951(m2).四、6.a(x-y)7.2a(a-b)C卷1.n2+2n=n(n+2)2.解:a(a+b)+ab=a(a+2b);a(a+2b)-ab=a(a+b);a(a+2b)-a2=2ab;a2+2ab=a(a+2b);a(a+2b)-a·2b=a2;a(a+2b)-a(a+b)=ab.点拨:答案不唯一,从上述等式中任写三个即可.3.解:5x(x-2)-4(2-x)=0,5x(x-2)+4(x-2)=0,(x-2)(5x+4).=0,所以x-2=0•或5x+4=0,所以x1=2,x2=-45点拨:观察以上解题特点发现等号左边为0,左边为因式乘积的形式,所以只要把5x(x-2)-4(2-x)=0左边因式分解即可.3.解:(1)a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c).(2)m2+5n-mn-5m=(m2-mn)+(5n-5m)=m(m-n)+5(n-m)=m(m-n)-5(m-n)=(m-n)(m-5).。

人教版八年级下册数学专题复习及练习(含解析):因式分解

人教版八年级下册数学专题复习及练习(含解析):因式分解

专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 提公因式法A卷:基础题一、选择题1.下列各组代数式中,没有公因式的是()A.5m(a-b)和b-a B.(a+b)2和-a-bC.mx+y和x+y D.-a2+ab和a2b-ab22.下列多项式中,能用提公因式法分解因式的是()A.x2-y B.x2+2x C.x2+y2D.x2-xy+y23.下列用提公因式法分解因式不正确的是()A.12abc-9a2b2c=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy+y=y(x2+5x+1)4.(-2)2007+(-2)2008等于()A.2 B.22007C.-22007D.-220085.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9)B.x(y+3)2C.x(y+3)(y-3)D.x(y+9)(y -9)二、填空题6.9x2y-3xy2的公因式是______.7.分解因式:-4a3+16a2b-26ab2=_______.8.多项式18x n+1-24x n的公因式是______,提取公因式后,另一个因式是______.9.a,b互为相反数,则a(x-2y)-b(2y-x)的值为________.10.分解因式:a3-a=______.三、解答题11.某中学有三块草坪,第一块草坪的面积为(a+b)2m2,第二块草坪的面积为a(•a+b)m2,第三块草坪的面积为(a+b)bm2,求这三块草坪的总面积.12.观察下列等式,你得出了什么结论?并说明你所得的结论是正确的.1×2+2=4=22;2×3+3=9=32;3×4+4=16=42;4×5+5=25=52;…B卷:提高题一、七彩题1.(巧题妙解题)计算:1233695101571421 13539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯.2.(多题一思路路)(1)将m2(a-2)+m(2-a)分解因式,正确的是()A.(a-2)(m2-m)B.m(a-2)(m+1)C.m(a-2)(m-1)D.m(2-a)(m-1)(2)若x+y=5,xy=10,则x2y+xy2=_______;(3)mn2(x-y)3+m2n(x-y)4分解因式后等于_______.二、知识交叉题3.(科交叉题)你对分解因式的了解是不是多了一些?请你猜一猜:32005-4×32004+•10×32003能被7整除吗?(科交叉题)已知串联电路的电压U=IR1+IR2+IR3,当R1=12.9Ω,R2=18.5Ω,R3=18.6Ω,4.I=2.3A时,求U的值.三、实际应用题5.在美丽的海滨步行道上,整齐地排着十个花坛,栽种了蝴蝶兰等各种花奔,•每个花坛的形状都相同,中间是矩形,两头是两个半圆形,半圆的直径是中间矩形的宽,若每个花坛的宽都是6m,每个花坛中间矩形长分别为36m,25m,30m,28m,•25m,•32m,24m,24m,22m和32m,你能求出这些花坛的总面积吗?你用的方法简单吗?四、经典中考题6.(2008,,3分)分解因式:ax-ay=______.7.(2007,,3分)分解因式:2a2-2ab=_______.C卷1.(规律探究题)观察下列等式:12+2×1=1×(1+2);22+2×2=2×(2+2);32+2×3=3×(3+2);…则第n个等式可以表示为_______.2.(结论开放题)如图2-2-1,由一个边长为a的小正方形与两个长,宽分别为a,•b 的小矩形组成图形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.3.(阅读理解题)先阅读下面的例子,再解答问题.求满足4x(2x-1)-3(1-2x)=0的x的值.解:原方程可变形为(2x-1)(4x+3)=0.所以2x-1=0或4x+3=0,所以x1=12,x2=-34.注:我们知道两个因式相乘等于0,那么这两个因式中至少有一个因式等于0;•反过来,如果两个因式中有一个因式为0,它们的积一定为0,请仿照上面的例子,求满足5x (x-2)-4(2-x)=0的x的值.3.先阅读下面的材料,再分解因式:要把多项式am+an+bm+bn分解因式,可以先把它的前两项分成一组,并提出a;•把它的后两项分成一组,并提出b,从而得到a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n)•又有公因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+•an+•bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.•如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来分解因式了.请用上面材料中提供的方法分解因式:(1)a2-ab+ac-bc;(2)m2+5n-mn-5m.参考答案A卷一、1.C 点拨:A中公因式是(a-b),B中公因式是(a+b),D中公因式是(a-b).2.B 点拨:x2+2x=x(x+2).3.B 点拨:3x2y-3xy+6y=3y(x2-x+2).4.B 点拨:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-1)×(-2)2007=22007.5.C 点拨:xy2-9x=x(y2-9)=x(y2-32)=x(y+3)(y-3).二、6.3xy 点拨:9x2y-3xy2=3xy·3x-3xy·y=3xy(3x-y).7.-2a(2a2-8ab+13b2)点拨:-4a3+16a2b-26ab2=-2a(2a2-8ab+13b).8.6x n;3x-4 点拨:18x n+1-24x n=6x n·3x-6x n·4=6x n(3x-4).9.0 点拨:因为a+b=0,所以a(x-2y)-b(2y-x)=a(x-2y)+b(x-2y)=(x-2y)(a+b)=0.10.a(a+1)(a-1)点拨:a3-a=a(a2-1)=a(a+1)(a-1).三、11.解:(a+b)2+a(a+b)+b(a+b)=(a+b)[(a+b)+a+b]=(a+b)(2a+2b)=2(a+b)2(m2)点拨:本题是整式的加法运算,利用提公因式法,很快得到运算结果.12.解:结论是:n(n+1)+(n+1)=(n+1)2.说明:n(n+1)+(n+1)=(n+1)(n+1)=(n+1)2.点拨:本题是规律探究题,把所给等式竖着排列,易于观察它们之间存在的规律.B卷一、1.解:原式=33333333123(1357)1232 135(1357)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯.点拨:本题的巧妙之处是利用提公因式法分解因式可使计算过程简化,且不易出错.2.(1)C (2)50 (3)mn(x-y)3(n+mx-my)点拨:(1)m2(a-2)+m(2-a)=m2(a-2)-m(a-2)=m(a-2)(m -1),故选C.(2)x2y+xy2=xy(x+y).因为x+y=5,xy=10,所以原式=10×5=50.(3)mn2(x-y)3+m2n(x-y)4=mn(x-y)3[n+m(x-y)]=mn(x-y)3(n+mx-my).以上三题的思路是一致的,都是利用提公因式法分解因式,其中第(2)•题分解因式后再代入求值.二、3.解:能,理由:32005-4×32004+10×32003=32003×(32-4×3+10)=32003×7,故能被7整除.点拨:对一个算式进行运算,运算的结果若有因数7,说明它能被7整除.4.解:U=IR1+IR2+IR3=I(R1+R2+R3)=2.3×(12.9+18.5+18.6)=2.3×50=115(V).点拨:遇到运算比较复杂的题目,可尝试用分解因工的方法把式子化简.三、5.解:S=(π·32+36×6)+(π·32+25×6)+(π·32+30×6)+…+(π·32+32×6)=10×π·32+6×(36+25+30+…+32)≈1951(m2).四、6.a(x-y)7.2a(a-b)C卷1.n2+2n=n(n+2)2.解:a(a+b)+ab=a(a+2b);a(a+2b)-ab=a(a+b);a(a+2b)-a2=2ab;a2+2ab=a(a+2b);a(a+2b)-a·2b=a2;a(a+2b)-a(a+b)=ab.点拨:答案不唯一,从上述等式中任写三个即可.3.解:5x(x-2)-4(2-x)=0,5x(x-2)+4(x-2)=0,(x-2)(5x+4)=0,所以x-2=0•或5x+4=0,所以x1=2,x2=-45.点拨:观察以上解题特点发现等号左边为0,左边为因式乘积的形式,所以只要把5x(x-2)-4(2-x)=0左边因式分解即可.3.解:(1)a2-ab+ac-bc=(a2-ab)+(ac-bc)=a(a-b)+c(a-b)=(a-b)(a+c).(2)m2+5n-mn-5m=(m2-mn)+(5n-5m)=m(m-n)+5(n-m)=m(m-n)-5(m-n)=(m-n)(m-5).。

相关文档
最新文档