人教版因式分解---提公因式法
数学人教版八年级上册14.3因式分解----提公因式法、公式法的综合运用

3
课后巩固
m m 2 ( 1 )p p
3 2 2 x 6 x 9 x
2 ( 3 ) 4 x 3 y 25 y 2
2 ( 4 ) x 4 16 x 2
2
4 2 ( 5 ) x 2 x 1
( 6 ) 4 a b a b
22 2
2 2
归纳总结
先提取公因式再平方差公式
例1.因式分解
(1) 4 -16a2
变式: 4 -64a4
(2) m3 (m-2)-4m(m-2)
变式: m ² (a-b)+4n2(b-a)
先提取公因式再完全平方公式
例2.因式分解:
1 3 变式: 1 a a a 4
5 4
1 2x 2x 2
2
2 7 x 14 x 7 x
因式分解的方法
(三)完全平方公式法:
x2+2xy+y2=(x+y)2 x2–2xy+y2=(x–y)2
一个多项式能用完全平方公式因式分解具备的特征: (1)有三项; (2)其中有两个平方项且符号相同 (3)有乘积的2倍;
下列多项式能否用完全平方公式因式分解?
(1) – x2 +2xy – y2 (2)x2+x+1 (3) – a2 –2a+1
(3)m(a – 2) –平方差公式法:
x2 – y2=(x+y)(x – y)
一个多项式能用平方差公式因式分解具备的特征: 有两个平方项,且符号相反。
下列多项式能否用平方差公式因式分解?
(1) – m2 – n2 (2) – m2n2 +1
9.13因式分解-提取公因式法

因式分解---提取公因式法一、教材分析:(一)教材所处的地位学习因式分解一是为解高次方程作准备,二是学习代数式恒等变形。
它是在学生学习了整式运算的基础上提出的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系。
同时也是后续学习分式化简、解方程、解不等式等内容的基础,因此,分解因式这一章在代数部分起到了承上启下的作用。
另外,分解因式体现了“化归”、“整体”以及“逆向”的数学思想,是数学学习的重点。
根据《课标》的要求,介绍最基本的4种分解因式的方法,而运用提公因式法分解因式,作为本部分内容的起始课,具有重要的意义。
(二)说教学目标知识与技能目标理解因式分解的意义;掌握提公因式法,并能够运用提公因式法进行因式分解。
过程与方法目标经历探索提公因式法分解因式的过程,提高学生的观察分析能力、判断能力以及计算能力,同时渗透化归、整体的数学思想。
情感与价值观目标体验运用数学知识解决问题的成就感;引导学生养成积极思考、独立思考的良好学习习惯,同时培养学生合作交流的团队精神。
二、重点、难点分析:本着数学新课程标准的要求,在吃透教材基础上,我确定了以下教学重点和难点:教学重点:找出多项式的公因式,并运用提公因式法分解因式。
教学难点:迅速找出多项式的公因式。
三、教法分析学生是学习的主体,教师是学习的组织者、引导着、合作者。
因此在教学过程中,我以激发学生积极性、主动性、凸显学生主体地位为出发点,采用启发式教学法。
具体地,我将通过引导发现、实例探究、讲练结合等教学过程,让学生积极主动地参与到教学活动中,经历完整的知识形成过程,从而使学生“知其然”,还“知其所以然”。
四、说学法有这样一句话--“现代的文盲不是不懂字的人,而是没有掌握学习方法的人”,因而,我在教学过程中特别重视学法的指导。
让学生从“学会”向“会学”转变,成为学习的真正的主人。
这节课主要采用自主探索、合作交流结合的研讨式学习方式。
学生思考问题,获取知识,掌握方法,同时培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.五、教学过程设计六、板书设计八、结束语本节课我根据初二年级学生的心理特征及其认知规律,采用直观教学和活动探究的教学方法,放手让学生自主探索的学习,主动地参与到知识形成的整个思维过程,力求使学生在积极、愉快的课堂气氛中提高自己的认识水平,从而达到预期的教学效果。
最新人教版八年级数学上册《14.3.1 提公因式法》优质教学课件

② 24x2y=3x ·8xy 因式分解的对象是多项式
③ x2–1=(x+1)(x–1)
④ (2x+1)2=4x2+4x+1 是整式乘法
⑤
x2+x=x2(1+
1
)
x
每个因式必须是整式
⑥ 2x+4y+6z=2(x+2y+3z)
探究新知
知识点 2
用提公因式法分解因式
问题1: 观察下列多项式,它们有什么共同特点?
例2 计算:
(1)39×37–13×91;
(2)29×20.16+72×20.16+13×20.16–20.16×14.
解:(1)原式=3×13×37–13×91
=13×(3×37–91)
=13×20=260;
(2)原式=20.16×(29+72+13–14)
=2016.
方法总结:在计算求
值时,若式子各项都
–2xy
探究新知
素养考点 1 利用提公因式法分解因式
例1
把下列各式分解因式.
(1) 8a3b2 + 12ab3c;
公因式既可以是一个单
项式的形式,也可以是
一个多项式的形式.
(2) 2a(b+c) – 3(b+c).
分析:提公因式法步骤(分两步)
第一步:找出公因式;
第二步:提取公因式 ,即将多项式化为两个因式的乘积.
注意:首项有负常提负.
探究新知
归纳总结
提取公因式分解因式的技巧:
①当公因式是多项式时,把多项式看成一个整体提
取公因式;②分解因式分解到不能分解为止;③某一项
全部提取后,不要漏掉“1”;④首项有负号常提负号;
14.3.1因式分解(提公因式法)八年级数学上册课件(人教版)

拓展训练
人教版数学八年级上册
3.△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请 判断△ABC是等边三角形、等腰三角形还是直角三角形?并 说明理由. 解:整理a+2ab=c+2bc得,a+2ab-c-2bc=0,
(a-c)+2b(a-c)=0,(a-c)(1+2b)=0,
∴a-c=0或1+2b=0,
解:原式=-(a2-ab+ac)=-2a(a-2b+3c) (6)-2x3+4x2-2x
解:原式=-(2x3-4x2+2x)=-2x(x2-2x+1)
人教版数学八年级上册
拓展训练
人教版数学八年级上册
1.已知m-4n=-2,mn=5,求-m3n+8m2n2-16mn3的值. 解:-m3n+8m2n2-16mn3=-mn(m2-8mn+16n2)=-mn(m-4n)2 .
典例精析
例1 把8a3b2+12ab3c分解因式.
分析:找公因式
1.系数的最大公约数 4
2.找相同字母
ab
3.相同字母的最低指数 a1b2
公因式为:4ab2
解:8a3b2+12ab3c =4ab2•2a2+4ab2•3bc =4ab2(2a2+3bc)
人教版数学八年级上册
典例精析
人教版数学八年级上册
复习引入
人教版数学八年级上册
单项式与多项式相乘的法则:单项式与多项式相乘,就是 用单项式去乘多项式的每一项,再把所得的积相加.
p(a+b+c)=pa+pb+pc
多项式与多项式相乘的法则: 多项式与多项式相乘,先用一个多项式的每一项乘另一个 多项式的每一项,再把所得的积相加.
2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 提公因式法

第十四章整式的乘法与因式分解14.3 因式分解14.3.1 提公因式法一、教学目标【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】因式分解的概念;提公因式法分解因式.【教学难点】正确理解因式分解的概念,准确找出公因式.五、课前准备教师:课件、三角尺、直尺等.学生:直尺、练习本、铅笔、钢笔或圆珠笔.六、教学过程(一)导入新课我们知道,利用整式的乘法运算,可以将几个整式的积化为一个多项式的形式,反过来,能不能将一个多项式化成几个整式的积的形式呢?若能,这种变形叫做什么呢?(出示课件2)(二)探索新知1.创设情境,探究提公因式法分解因式教师问1:请同学们先完成下列计算,看谁算得又准又快.(1)20×(-3)2+60×(-3);(2)1012-992;(3)572+2×57×43+432.学生回答:如下:解:方法一:(1)20×(-3)2+60×(-3)=20×9-180=180-180=0;(2)1012-992=10201-9801=400;(3)572+2×57×43+432=3249+4902+1849=8151+1849=10000.方法二:(1)20×(-3)2+60×(-3)=-3×[20×(-3)+60]=1-3×[-60+60]=0;(2)1012-992=(101+99)(101-99)=200×2=400;(3)572+2×57×43+432=3(57+43)2=1002=10000.教师问2:上边两种方法,哪一种简单呢?学生回答:方法二简单.教师讲解:在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形成,这就是我们从今天开始要探究的内容——因式分解.(板书课题)教师问3:如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?(出示课件4)学生回答:方法一:m(a+b+c);方法二:ma+mb+mc教师问4:m(a+b+c)=ma+mb+mc是整式的乘法,那么ma+mb+mc=m(a+b+c),你猜想是什么呢?学生回答:因式分解.教师问5:请同学们运用整式乘法法则或公式填空:(出示课件5)(1) m(a+b+c)= ____________________ ;(2) (x+1)(x–1)=___________________;(3) (a+b)2 = ______________________.学生回答:(1) m(a+b+c)= ma+mb+mc ;(2) (x+1)(x–1)=x2-1;(3) (a+b)2 = a2+2ab+b2.教师问6:根据等式的性质填空:(1) ma+mb+mc=( )( )(2) x2–1 =( )( )(3) a2 +2ab+b2 =( )2学生回答:(1) ma+mb+mc=( m)( a+b+c )(2) x2–1 =( x+1)( x-1)(3) a2 +2ab+b2 =( a+b)2教师问7:比一比,这些式子有什么共同点?学生讨论后回答:左边是多项式,右边是多相式的乘积.教师总结:(出示课件6)把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.教师问8:你认为因式分解与整式乘法有什么关系?(出示课件7)学生思考回答,师生共同解答如下:因式分解与整式乘法是互逆变形关系,整式乘法是一种运算,而因式分解是对多项式的一种变形,不是运算.教师问9:x2–1 = (x+1)(x–1)有何特征呢?学生回答:左边是多项式,右边是几个整式的乘积例1:下列从左到右的变形中是因式分解的有( )(出示课件8)①x2–y2–1=(x+y)(x–y)–1;②x3+x=x(x2+1);③(x–y)2=x2–2xy+y2;④x2–9y2=(x+3y)(x–3y).A.1个B.2个C.3个D.4个因式分解是积的形式,①是和的形式,所以不是因式分解,②是因式分解,③是整式的乘法,④是因式分解.故选B.答案:B.总结点拨:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式.教师问10:再观察下面问题中的第(1)题和第(3)题,你能发现什么特点?(1)x2+x=________;(2)x2-1=________;(3)am+bm+cm=________.学生独立思考后回答:发现(1)中各项都有一个相同的因式x,(3)中各项都有一个相同的因式m.教师问11:观察下列多项式,它们有那些相同的因式?(出示课件10)pa+pb+pc,x2+x学生回答:前者的相同因式为p,后者的相同因式为x。
14.3因式分解(1)——提公因式法+课件+2023-2024学年人教版数学八年级上册

知识点 2 提公因式法分解因式 (1)公因式:多项式中每项都有的__因__式__; (2)一般地,如果多项式的各项有_公__因__式___,可以把这个公因式提取出 来,将多项式写成公因式与另一个因式的__乘__积__的形式,这种分解因 式的方法叫做提公因式法.
多项式2a2b3+4ab2c的公因式是_2_a_b_2__. 多项式m(a-x)-mn(a-x)的公因式是_m__(_a_-__x_) _.
计算: 3×24+6×24+4×22. 解:原式=3×24+6×24+24
=(3+6+1)×24 =160.
计算: 42×20.23+72×20.23-20.23×14. 解:原式=(42+72-14)×20.23
=100×20.23 =2 023.
如图,长方形的长、宽分别为a,b,周长为10,面积为6, 则a2b+ab2的值为( B ) A.60 B.30 C.15 D.16
5.确定下列多项式的公因式,并分解因式. (1)ax+ay; 解:ax,ay的公因式为a, 原式=a(x+y). (2)3mx-6nx2; 解:3mx,-6nx2的公因式为3x, 原式=3x(m-2nx).
(3)4a2b+10ab-2ab2. 解:4a2b,10ab,-2ab2的公因式为2ab, 原式=2ab(2a+5-b).
八年级上册 人教版数学
第十四章 整式的乘法与因式分解 因式分解(1)——提公因式法
复习导入
计算: (1)2(x+y)=__2_x_+__2_y_; (2)(x+1)(x-1)=__x_2_-__1_; (3)(a+b)2=__a_2_+__2_a_b_+__b_2_.
新知探究
知识点 1 因式分解的概念 把一个多项式化成了几个整式的_积___的形式,像这样的式子变形叫做 这个多项式的因式分解,也叫做把这个多项式分解因式.
《因式分解--提公因式法》教案

《因式分解——提公因式法》教案
一、教学目标
㈠、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
㈡、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观
察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
㈢、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点
重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
-1)=
个整式的。
因式分解-提公因式法

提公因式法的应用场景
• 可提取公因式简化 多项式
• 需要进一步分解剩 余部分
配方法
• 适用于二次方程式 • 通过转化为平方完
成因式分解 • 适用范围有限
根式法
• 适用于含有平方根 的多项式
• 通过提取平方根进 行因式分解
• 限制较多
提公因式法的优点
简单易用
提公因式法是一种较为简单的因式分解方法,易于掌握和应用。
通用性强
因式分解-提公因式法
因式分解是一种重要的数学概念,提公因式法是常用的因式分解方法之一。
提公因式法的定义
提公因式法是一种通过找出多项式中的公因式,将其进行提取,从而达到进 行因式分解的目的的方法。
提公因式法的步骤
1. 找出多项式中的公因式 2. 提取公因式 3. 将剩余部分进行因式分解
示例:使用提公因式法进行因式分解
提公因减少计算量
通过提取公因式,可以简化多项式,减少计算的复杂度。
结论
提公因式法是一种重要的因式分解方法,能够帮助我们简化复杂的代数表达 式,解决方程,以及进行数学建模。
1 简化表达式
提公因式法可以帮助我们简化复杂的代数表达式,使计算更加简便。
2 解方程
提公因式法可以用于解决一些复杂方程,帮助我们找到方程的根。
3 数学建模
提公因式法是数学建模中常用的一种方法,可以帮助我们更好地理解和描述实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、例题讲解。
例3,把9x2y + 6x3z分解因式。
例4.把下列各式分解因式
(1)ax+xy(2)3mx-6my (3)4x2y+xy2
(4)15a2+5a(5)8a3b -12ab3c+ab
(6)x(x-2)-3(2-x)
学生拿出草稿本计算,让一个学生回答问题,让学生回忆整式乘法。
3、经历探索提公因式法分解因式的过程,学会逆向思考和整体看待的数学思想。
重点
学会用提公因式法分解因式。
难点
熟练运用提公因式法的技巧,把多项式因式分解。
教学流程设计(第1课时)
教师指导
学生活动
研讨意见
一、复习引入。
计算下列各式:
x(x+1)=(x+1)(x-1)=。
二、探究新知。
1、把下列多项式写成几个整式的乘积的形式:
学生在草稿纸上独立完成,让其中一个学生回答。引导学生探究观察,归纳总结出因式分解的概念。
仔细观察,让学生有因式分解与整式乘法的逆向思维。
学生回答此题,学生纠错。让学生进一步理解因式分解与整式乘法互逆运算。
仔细观察,找四名基础差的学生找出(1)(2)(3)(4)相同的特点,师生一起归纳公因式的概念。
两名基础差的学生演板(1)(2)题,两名基础中等学生演板(3)(4)题,
2.把下列多项式分解因式
(1)16x4+32x3-8x2;(2)-7ab-14abx+49aby
五、拓展。
(a﹢c)2(a-b)-(a-c)(b-a)
全班学生动手做题,找基础差的学生完成第一题三个小题,找三个中等学生完成第二小题
学生小组合作思考,完成拓展题。
本课总结
研讨意见
用提公因式法因式分解,对于学生来说是个难点问题,学生在做题过程中,基础差的学生找不到公因式,大部分学生能找到公因式,但是易出现公因式没提干净,或者提公因式出现符号错的问题,还有的提完后,剩下1忘写,针对这些问题,应在设计问题有针对性,有层次性,加大训练力度。
x2+ x=,x2-1=
你能总结出因式分解的定义吗?
2、因式分解与乘法分配律有什么关系?
例1、下列各式从左到右的变形中,属于因式分解的是。(填序号)
(1) 2x(x-3y)=2x2-6xy;
(2)(a-3)(a+3)=a2-9
(3)x2-4y2=(x+2y)(x-2y)
(4)x2+4x+4=x(x+4)+4;
蕲州镇中学集体备课及“青蓝计划”备课稿(初案)
主备教师
余和芳
指导教师
学科组长
张国喜
课题
人教版数学八年级上册第十四章第四节
因式分解----提公因式法
研讨意见
知识与能力目标
1、能记住公因式、提公因式法的概念,会说出提公因式法和乘法分配律的关系。
过程与方法目标
2、会熟练运用提公因式法分解因式。
情感、态度与价值观
(5) 2x(x-3y)+3y(3y-x) (6) xn+1-2xn
3、P119/6
参加集体备课研讨人签字:
教学流程设计(第课时)
教师指导
学生活动
研讨意见
本课总结
研讨意见
Байду номын сангаас板书设计
研讨意见
练习设计
研讨意见
参加集体备课研讨人签字:
(5) 2πR+ 2πr= 2π(R+r)
(6)a2+1=a(a+1/a)
2、观察多项式。
⑴5×3+5×(-6)+5×2⑵aR+ar
⑶2ma+4mb⑷c(x-y)-d(y-x)
观察多项式的每一项,它们有什么共同特点?
你能总结出公因式的定义吗?
例2、找出下列每组单项式的公因式:
①a与a2②πa3与3aπ
板书设计
研讨意见
1.把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解(或分解因式)
2.确定公因式的方法:
(1)定系数:各项系数的最大公约数(2)定字母:各项都含有的相同字母
(3)定指数:相同字母的“最低次幂
3、提公因式法分解因式步骤:
第一步,找出公因式第二步,提公因式第三步,整式乘法检验
4、提公因式法分解因式应注意的问题:
(1)公因式要提尽(2)不遗漏1项(3)多项式的首项取正号
练习设计
研讨意见
六、课堂作业
1、写出下列多项式各项的公因式.
(1)ax+bx(2)8mx-4my
(3)15y3+20y2(4)12a3b2-24a2b3+18ab2
2、将下列各式因式分解
(1)10a3+15a2(2) 12abc-3bc2
(3) 6p(p-q)2- 4q(q-p)3(3) m(a-3)+3-a
由学生纠错。
老师讲解例3,和学生一起归纳提公因式法因式分解的步骤,学生在指定位置做好笔记
前面三题找基础差一点的学生,后面三题找中等学生演板
四、达标训练
1.下列因式分解正确吗?
(1)-x2+xy-xz=x(x+y-z)
(2)2x3+6x2+2=2x(x2+3x)
(3)12x2y+18xy2=3xy(4x+6y)