第六章 磁共振成像(第一节至第二节)
合集下载
《磁共振成像》课件

缺点
• 扫描时间较长 • 设备和维护成本较高 • 对金属患者和患有心脏起搏器等设备的
患者不适用
结语
磁共振成像在医学领域起着重要的作用,为临床诊断和科学研究提供了宝贵 的工具。我们期待磁共振成像的未来发展,带来更多的创新和突破。
3
频率编码
4
使用不同的频率编码来识别不同的组
织类型。
5
重建图像
6
通过计算和处理信号数据,将图像重 建出来。
静态磁场
通过产生强大的静态磁场对人体进行 磁化。
感应信号
检测和记录由磁共振现象引发的细微 信号。
空间编码
通过空间编码技术将信号对应到具体 的图像位置。
磁共振成像的应用
临床应用
磁共振成像在临床诊断中广泛应用,用于检测和诊断各种疾病。
《磁共振成像》PPT课件
# 磁共振成像PPT课件 ## 一、概述 - 磁共振成像是一种非侵入性的医学影像学技术,通过利用核磁共振现象获取人体内部的详细图像。 - 本课件将介绍磁共振成像的基本原理、应用领域、发展前景以及与其他影像学的对比。
磁共振成像的基本步骤
1
平行磁场
2
施加额外的平行磁场来磁化人体组织。
1 磁共振成像并发症
2 安全风险
虽然磁共振成像是一项相对安全的检查技 术,但仍可能出现一些并发症,如过敏反 应或晕厥。
由于磁共振成像使用强大的磁场,对于携 带金属和电子设备的患者,可能存在引起 伤害的安全风险。
磁共振成像与其他影像学对比
优点
• 无辐射,对人体无害 • 能提供高分辨率的图像 • 可以观察软组织和细节
科学研究
磁共振成像为科学研究提供了非常有价值的工具,帮助了解人体结构和功能。
磁共振成像原理

第一节 概述
1946 年,美国哈佛大学的 E.Purcell 及斯坦福 大学的F.Bloch领导的两个研究小组各自独立 地发现了核磁共振现象,Purcell和Bloch两人 共同获得 1952 年的诺贝尔物理奖。核磁共振 主要用于磁共振波谱,研究物质的分子结构。 1971 年美国纽约州立大学的 R.damadian 用 MRS仪对鼠的正常组织和癌变组织样品研究 发现,癌变组织 T 1 、 T 2 弛豫时间值比正常组 织长。
第一节 概述
1973年美国纽约州立大学的Lauterbur利用梯度 磁场进行空间定位,用两个充水试管获得了第 一幅核磁共振图像。 1974年~1980年MRI得到不断发展,研究出梯 度选层方法、相位编码成像方法、自旋回波成 像方法以及二维傅里叶变换的成像方法。 1978年在英国取得了第一幅人体头部的磁共振 图像。同一年,又取得了人体的第一幅胸、腹 部图像。 1980年磁共振机开始应用于临床。
(二 ) 主 要 用 途
头颈部, MRI 的应用大大改善了眼、鼻窦、鼻 咽腔以及颈部软组织病变的检出、定位、定量 与定性。 磁共振血管成像(magnetic resonance angiography ,MRA) 技术对显示头颈部血管狭 窄、闭塞、畸形以及颅内动脉具有重要价值。 在肌肉关节系统,已成为肌肉、肌腱、韧带、 软骨病变影像检查的主要手段之一。 电影MRI技术还可进行关节功能检查。
接动画
三、静磁场的作用
(二)静磁场中的能级分裂
原子核磁矩μ进入B0后,空间取向发生量子化, 只能取一些确定的方向。自旋量子数为 I ,则 只能2I+1个不同方向。 μ在B0方向的投影是一些不连续的数值。 μ的 不同取向,形成它与B0相互作用能的不同。μ 与B0的相互作用能称为位能。在B0中μ的位能 为:
磁共振成像(MRI)的基本原理

• MZ = M0(1-e-t/T1) • T1的物理学意义:弛豫周期。
47
纵向磁化对比
由于各种组织的T1不同,在纵向弛豫过程中,不同时 刻各种组织在纵向磁化中的比例不同,因而产生了不 同组织间的纵向磁化对比。也称为T1对比。
48
T1加权图像
T1 weighted image
图像的对比主要依赖T1对比称为T1加权(权重) 图像。
80
傅立叶变换
• 将时间——强度的信号关系变换为频率——强度的信号关系。这 种数学变换模式称为傅立叶(Fourier transform)变换。
81
1DFT重建
• 梯度与梯度磁场 • 层面选择及相关因素Δω=γGz·ΔD • 体素的频率编码及投影
82
1
2
3
4
5
6
7
8
9
83
84
空间频率与K-空间
93
磁共振各种特殊成像技术
• 磁共振血管造影技术(MRA) • 时间飞跃法 (Time of flight) • 相位对比法(Phase contrast) • 幅度对比法(Magnitude contrast) • 对比剂增强法(Contrast enhance)
的磁共振靶核。
13
第二节:磁场
• 磁场的概念 • 均匀磁场 • 稳定磁场 • 交变磁场
14
磁场
• 物质场 • 对磁性物质的力效应 • 磁场的强度
15
均匀磁场
大小方向恒定不变的磁场.
16
交变磁场
大小或方向呈规律性变化的磁场
17
Y BX=Bsina
B(RF) a
X BY=Bcosa
18
第三节:磁场对样体的作用
47
纵向磁化对比
由于各种组织的T1不同,在纵向弛豫过程中,不同时 刻各种组织在纵向磁化中的比例不同,因而产生了不 同组织间的纵向磁化对比。也称为T1对比。
48
T1加权图像
T1 weighted image
图像的对比主要依赖T1对比称为T1加权(权重) 图像。
80
傅立叶变换
• 将时间——强度的信号关系变换为频率——强度的信号关系。这 种数学变换模式称为傅立叶(Fourier transform)变换。
81
1DFT重建
• 梯度与梯度磁场 • 层面选择及相关因素Δω=γGz·ΔD • 体素的频率编码及投影
82
1
2
3
4
5
6
7
8
9
83
84
空间频率与K-空间
93
磁共振各种特殊成像技术
• 磁共振血管造影技术(MRA) • 时间飞跃法 (Time of flight) • 相位对比法(Phase contrast) • 幅度对比法(Magnitude contrast) • 对比剂增强法(Contrast enhance)
的磁共振靶核。
13
第二节:磁场
• 磁场的概念 • 均匀磁场 • 稳定磁场 • 交变磁场
14
磁场
• 物质场 • 对磁性物质的力效应 • 磁场的强度
15
均匀磁场
大小方向恒定不变的磁场.
16
交变磁场
大小或方向呈规律性变化的磁场
17
Y BX=Bsina
B(RF) a
X BY=Bcosa
18
第三节:磁场对样体的作用
磁共振(MRI)成像原理

横向弛豫
七、横向弛豫
横向弛豫
七、横向弛豫 由于受磁场不均匀的影响,实际上90°射频脉冲关闭后,宏观横向磁化矢量将呈指数式
的快速衰减,我们把宏观横向磁化矢量的这种衰减称为自由感应衰减也称T2※弛豫。 利用180°聚焦脉冲可以剔除主磁场不均匀造成的宏观横向磁化矢量衰减,组织由于质
子群周围磁场微环境随机波动造成的宏观横向磁化矢量的衰减才是真正的横向弛豫,即T2弛 豫。T2弛豫的能量传递发生于质子群内部,即质子与质子之间,因此T2弛豫也称自旋一自 旋弛豫(spin-spin弛豫)。
横向弛豫
七、横向弛豫 90°脉冲关闭后,组织中的宏观横向磁化矢量将逐渐减小,最后将衰减到零。90°脉冲
使组织中原来相位不一致的质子群处于同相位进动,质子小磁场的横向磁化分矢量相互叠加, 从而产生旋转的宏观横向磁化矢量。
90°脉冲关闭后,宏观横向磁化矢量衰减的原因与之相反,同相位进动的质子群逐渐失 去了相位的一致,其横向磁化分矢量的叠加作用逐渐减弱,因此宏观横向磁化矢量逐渐减小 直至完全衰减。
子核中的质子数是相同的,所不同的是中子数,这种同一元素的不同原子 核被称为同位素,如元素氢的同位素就有H(氢核)、H(氘核)和H(氚 核),一般标为1H(氢核)、H(氘核)和3H(氚核)即可。
物质基础
一、物质基础:自旋和核磁共振 原子核具有一定大小和质量,可以视作一个球体,所有磁性原子核都有一个特性,就
弛豫
六、核磁弛豫
A.在激发前平衡状态下,组织中只有宏观纵向磁化矢量(向上空白 粗箭); B.90°脉冲激发后即刻,组织中宏观纵向磁化矢量消失,产生一 个旋转(带箭头圆圈)的宏观横向磁化矢量(水平空白粗箭); C.等待一段时间后,组织中的宏观横向磁化矢量有所缩小,宏观纵 向磁化矢量有所恢复; D.再等待一段时间后,组织中的宏观横向磁化矢量进一步缩小,宏 观纵向磁化矢量恢复更多; E.再过一段时间,组织中的宏观横向磁化矢量已经完全衰减,而宏 观纵向磁化矢量进一步恢复; F.到最后,组织中的宏观纵向磁化矢量已经完全恢复到平衡状态。
第六章 磁共振成像(第一节至第二节)

医学影像物理学 第六章 磁共振成像
主编:南京医科大学 编者 海 南 医学院 华北理工大学 吴小玲 许建梅 侯淑莲
第六章 磁共振成像
2003年诺贝尔医学或生理学奖获得者
美国科学家保罗·劳特伯
英国科学家彼德·曼斯菲尔德
第六章 磁共振成像
核磁共振成像是利用原子核在强磁场内发生共振产生 的信号经图像重建的成像技术。
M x ' y ' M0eTE /T2
T2弛豫及T2*弛豫
三、自旋回波序列与加权图像
3.自旋回波信号的幅值 除第一个周期外,其它周期开始时的纵向磁化矢量均为 Mz,TE时刻的横向磁化矢量为 M x ' y ' M zeT /T Mz是在前一个脉冲周期结束时恢复的纵向磁化矢量。 当 TR>>TE时,可以证明纵向磁化矢量
T1WI
T2WI 加权图像
PDWI
第一节 磁共振信号与加权图像
一、FID信号加权与图像对比度形成 二、自由感应衰减类序列
三、自旋回波序列与加权图像
四、反转恢复序列与加权图像
一、FID信号加权与图像对比度形成 静磁场均匀时,自由感应衰减信号(FID)的衰减 速度反应了样品自旋-自旋相互作用的时间常数T2 ;但通常静磁场是不均匀的,自旋-自旋相互作用 与磁场的不均匀性共同作用,使FID信号的衰减更 快,用时间常数T2*来描述。
TE长
TE合适
合适的TE保证合适的对比度
TE短
三、自旋回波序列与加Hale Waihona Puke 图像4. SE序列的加权图像
(3)质子密度加权图像(PDWI) : 抑制T1差异对信
B0 1T 时约2000~2500ms );抑 号的影响,选择长 TR ( T1 ,
主编:南京医科大学 编者 海 南 医学院 华北理工大学 吴小玲 许建梅 侯淑莲
第六章 磁共振成像
2003年诺贝尔医学或生理学奖获得者
美国科学家保罗·劳特伯
英国科学家彼德·曼斯菲尔德
第六章 磁共振成像
核磁共振成像是利用原子核在强磁场内发生共振产生 的信号经图像重建的成像技术。
M x ' y ' M0eTE /T2
T2弛豫及T2*弛豫
三、自旋回波序列与加权图像
3.自旋回波信号的幅值 除第一个周期外,其它周期开始时的纵向磁化矢量均为 Mz,TE时刻的横向磁化矢量为 M x ' y ' M zeT /T Mz是在前一个脉冲周期结束时恢复的纵向磁化矢量。 当 TR>>TE时,可以证明纵向磁化矢量
T1WI
T2WI 加权图像
PDWI
第一节 磁共振信号与加权图像
一、FID信号加权与图像对比度形成 二、自由感应衰减类序列
三、自旋回波序列与加权图像
四、反转恢复序列与加权图像
一、FID信号加权与图像对比度形成 静磁场均匀时,自由感应衰减信号(FID)的衰减 速度反应了样品自旋-自旋相互作用的时间常数T2 ;但通常静磁场是不均匀的,自旋-自旋相互作用 与磁场的不均匀性共同作用,使FID信号的衰减更 快,用时间常数T2*来描述。
TE长
TE合适
合适的TE保证合适的对比度
TE短
三、自旋回波序列与加Hale Waihona Puke 图像4. SE序列的加权图像
(3)质子密度加权图像(PDWI) : 抑制T1差异对信
B0 1T 时约2000~2500ms );抑 号的影响,选择长 TR ( T1 ,
磁共振成像诊断学

二、谱仪系统: 包括梯度场、射频场的发生和控制, MR信号接收和控制等部分
三、计算计图像处理系统
第十五页,共62页。
第三节 磁共振成像技术
扫描序列
自旋回波序列(快速自旋回波序列) Spin Echo Sequence, SE(TSE,
FSE) 梯度回波序列
Gradient Echo Sequence, GRE FISP, FAST, GRASS, SSFP, FLASH, 反转恢复序列 Inversion Recovery Sequence, IR STIR
5 顺磁性造影剂无毒性反应
6 无颅底骨伪影
第三十四页,共62页。
第五节 临床应用
MR的优势和限度
限度:
1 扫描时间较长
2 危重病人,不能很好合作和配合病人不能检查
3 磁体扫描膛较小,少数病人会有幽闭恐怖症
4 带有心脏起博器或体内顺磁性医疗装置病人不
能检查 5 费用较高 6 钙无信号,对钙化灶为病理特征的病变诊断受
第十三页,共62页。
第二节 MRI的基本结构
第十四页,共62页。
第三节 MRI的基本结构
一、磁体系统 主磁体:产生静磁场
永磁磁体—永久带有磁体,造价低 场强较低 常导磁体—制造简单,耗电量大,场强稍高 超导磁体—场强高稳定,费用高,消耗液氮
梯度系统:扫描层面的空间定位 射频系统:发射射频脉冲,产生MR信号并接收
第四节 MRI图像特点
组织特性
T1WI
T2WI
水 长T1、很长T2 低信号 明亮高
脂肪 T2短,T2长 很高 中等高
肌肉 T1长,T2短 低 低
骨皮质 活动质子少 黑 黑
气体 无活动质子 黑 黑
流动血液 流动效应
三、计算计图像处理系统
第十五页,共62页。
第三节 磁共振成像技术
扫描序列
自旋回波序列(快速自旋回波序列) Spin Echo Sequence, SE(TSE,
FSE) 梯度回波序列
Gradient Echo Sequence, GRE FISP, FAST, GRASS, SSFP, FLASH, 反转恢复序列 Inversion Recovery Sequence, IR STIR
5 顺磁性造影剂无毒性反应
6 无颅底骨伪影
第三十四页,共62页。
第五节 临床应用
MR的优势和限度
限度:
1 扫描时间较长
2 危重病人,不能很好合作和配合病人不能检查
3 磁体扫描膛较小,少数病人会有幽闭恐怖症
4 带有心脏起博器或体内顺磁性医疗装置病人不
能检查 5 费用较高 6 钙无信号,对钙化灶为病理特征的病变诊断受
第十三页,共62页。
第二节 MRI的基本结构
第十四页,共62页。
第三节 MRI的基本结构
一、磁体系统 主磁体:产生静磁场
永磁磁体—永久带有磁体,造价低 场强较低 常导磁体—制造简单,耗电量大,场强稍高 超导磁体—场强高稳定,费用高,消耗液氮
梯度系统:扫描层面的空间定位 射频系统:发射射频脉冲,产生MR信号并接收
第四节 MRI图像特点
组织特性
T1WI
T2WI
水 长T1、很长T2 低信号 明亮高
脂肪 T2短,T2长 很高 中等高
肌肉 T1长,T2短 低 低
骨皮质 活动质子少 黑 黑
气体 无活动质子 黑 黑
流动血液 流动效应
最全的医学成像原理磁共振成像PPT课件

第26页/共81页
• (三)横向驰豫 • 1.横向驰豫机制 • MXY 的形成是由于射频脉冲激发后,自旋质子处于激发态并在XY 平面继续绕Z
轴进动,其相位趋于一致而叠加形成宏观磁化矢量。在磁场中,每个自旋都受到 静磁场B0 和临近自旋磁矩产生的局部磁场的影响。 • (三)横向驰豫 • 1.横向驰豫机制 MXY 的形成是由于射频脉冲激发后,自旋质子处于激发态并在 XY 平面继续绕Z 轴进动,其相位趋于一致而叠加形成宏观磁化矢量。在磁场中, 每个自旋都受到静磁场B0 和临近自旋磁矩产生的局部磁场的影响。
第29页/共81页
• 2.横向驰豫时间 90°RF 脉冲关闭后,在XY 平面内的MXY 以T2速率特征进行 驰豫,呈指数衰减曲线形式,如下图所示。
第30页/共81页
• T2驰豫过程符合: • 式中:MXY(t)为t 时刻的横向磁化矢量值,M0为平衡态的磁化矢量值,t 为
驰豫时间,T2 为驰豫时间常数。 • 上式中当t=T2时,MXY=M0e-1=37% M0,即MXY 衰减至最大值的37%时所
• 1.空间分辨力低 与X 线摄影、CT 等成像技术相比,MR 图像的空间分辨 力较低。
• 2.成像速度慢 不利于为危重病人及不合作病人的检查。 • 3.禁忌证多 装有心脏起搏器、动脉瘤夹、金属假肢等病人不宜进行MRI
检查。 • 4.不能进行定量分析 因MRI 不能对成像参数值进行有效测定,所以不能
第19页/共81页
第20页/共81页
二、自旋质子弛豫
• (一)驰豫的概念 • 驰豫(relaxation):是指自旋质子
的能级由激发态恢复到它们稳定态 (平衡态)的过程。 • 驰豫过程包含着同步发生但彼此独立 的两个过程:①纵向驰豫 (longitudinal relaxation);②横 向驰豫(transverse relaxation)
• (三)横向驰豫 • 1.横向驰豫机制 • MXY 的形成是由于射频脉冲激发后,自旋质子处于激发态并在XY 平面继续绕Z
轴进动,其相位趋于一致而叠加形成宏观磁化矢量。在磁场中,每个自旋都受到 静磁场B0 和临近自旋磁矩产生的局部磁场的影响。 • (三)横向驰豫 • 1.横向驰豫机制 MXY 的形成是由于射频脉冲激发后,自旋质子处于激发态并在 XY 平面继续绕Z 轴进动,其相位趋于一致而叠加形成宏观磁化矢量。在磁场中, 每个自旋都受到静磁场B0 和临近自旋磁矩产生的局部磁场的影响。
第29页/共81页
• 2.横向驰豫时间 90°RF 脉冲关闭后,在XY 平面内的MXY 以T2速率特征进行 驰豫,呈指数衰减曲线形式,如下图所示。
第30页/共81页
• T2驰豫过程符合: • 式中:MXY(t)为t 时刻的横向磁化矢量值,M0为平衡态的磁化矢量值,t 为
驰豫时间,T2 为驰豫时间常数。 • 上式中当t=T2时,MXY=M0e-1=37% M0,即MXY 衰减至最大值的37%时所
• 1.空间分辨力低 与X 线摄影、CT 等成像技术相比,MR 图像的空间分辨 力较低。
• 2.成像速度慢 不利于为危重病人及不合作病人的检查。 • 3.禁忌证多 装有心脏起搏器、动脉瘤夹、金属假肢等病人不宜进行MRI
检查。 • 4.不能进行定量分析 因MRI 不能对成像参数值进行有效测定,所以不能
第19页/共81页
第20页/共81页
二、自旋质子弛豫
• (一)驰豫的概念 • 驰豫(relaxation):是指自旋质子
的能级由激发态恢复到它们稳定态 (平衡态)的过程。 • 驰豫过程包含着同步发生但彼此独立 的两个过程:①纵向驰豫 (longitudinal relaxation);②横 向驰豫(transverse relaxation)
磁共振成像(MRI)诊断

(3)炎症:各种细菌、病毒、霉菌性脑炎、脑膜炎与 肉芽肿在MRI上可显示,加强后对定性更有价值;对 脑囊虫、脑包虫可定性诊断,并可分期分型。
第一节 MRI的适应征
中枢神经系统
(4)脑退行性病变:可清楚显示皮质性、髓 质性、弥漫性脑萎缩、原发性小脑萎缩;协助 诊断Wilson病、CO中毒、甲旁减等疾病。
TE:称回波时间,即射频脉冲发射后到采 集回波信号之间的时间。
☝
第四节 射频脉冲序列和伪影
一、射频脉冲序列 射频脉冲即一个短的无线电波或射频能量,
其作用就是如何有效获得MRI信号。序列 指检查中使用的脉冲程序。常用的射频脉 冲序列有: 1、自旋回波(SE)序列 2、反转回复(IR)序列 3、部分饱和(PS)序列
第四节 射频脉冲序列和伪影
4、快速成像序列 :
(1)梯度回波(GRE)序列 (2)快速自旋回波(FSE)序列 (3)平面回波成像(EPI)序列
5、脂肪抑制序列:包括STIR、Chemsat等。 6、液体衰减反转回复(FLAIR)序列。
第四节 射频脉冲序列和伪影
MRI成像中的伪影 MRI成像中的假影像称伪影(artifact)常
第五节 特殊成像
脑功能性MRI检查(f MRI)
fMRI主要有造影法、血氧水平依赖对比 法(BOLD)。虽然仍在研究阶段,但已 用于临床的如脑部手术前计划的制定,了 解卒中偏瘫病人脑的恢复能力的评估及精 神疾病神经活动的研究等。
第六节 磁共振对比剂
MRI影像具有良好的组织对比,但正常与 异常组织的弛豫时间有较大的重叠,为提 高MRI影像对比度,一方面选择适当的脉 冲序列和成像参数,另一方面则致力于人 为地改变组织的MRI特征性参数,即缩短 T1和T2弛豫时间,使用对比剂的意义乃在 于此。
第一节 MRI的适应征
中枢神经系统
(4)脑退行性病变:可清楚显示皮质性、髓 质性、弥漫性脑萎缩、原发性小脑萎缩;协助 诊断Wilson病、CO中毒、甲旁减等疾病。
TE:称回波时间,即射频脉冲发射后到采 集回波信号之间的时间。
☝
第四节 射频脉冲序列和伪影
一、射频脉冲序列 射频脉冲即一个短的无线电波或射频能量,
其作用就是如何有效获得MRI信号。序列 指检查中使用的脉冲程序。常用的射频脉 冲序列有: 1、自旋回波(SE)序列 2、反转回复(IR)序列 3、部分饱和(PS)序列
第四节 射频脉冲序列和伪影
4、快速成像序列 :
(1)梯度回波(GRE)序列 (2)快速自旋回波(FSE)序列 (3)平面回波成像(EPI)序列
5、脂肪抑制序列:包括STIR、Chemsat等。 6、液体衰减反转回复(FLAIR)序列。
第四节 射频脉冲序列和伪影
MRI成像中的伪影 MRI成像中的假影像称伪影(artifact)常
第五节 特殊成像
脑功能性MRI检查(f MRI)
fMRI主要有造影法、血氧水平依赖对比 法(BOLD)。虽然仍在研究阶段,但已 用于临床的如脑部手术前计划的制定,了 解卒中偏瘫病人脑的恢复能力的评估及精 神疾病神经活动的研究等。
第六节 磁共振对比剂
MRI影像具有良好的组织对比,但正常与 异常组织的弛豫时间有较大的重叠,为提 高MRI影像对比度,一方面选择适当的脉 冲序列和成像参数,另一方面则致力于人 为地改变组织的MRI特征性参数,即缩短 T1和T2弛豫时间,使用对比剂的意义乃在 于此。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要设备
1.磁体
2.梯度系统 3.射频系统 (1)射频线圈(发射线圈和接收线圈) (2)射频发射放大器
(3)射频接收放大器
(4)射频屏蔽
主要设备
射频线圈
膝关节线圈
乳腺线圈 体部线圈 头部线圈
主要设备
4.輔助部分 (1)检查床:承载病人 (2)操作控制台:操纵MR检査、影像处理、拍摄照片 (3)磁屏蔽
1.反转恢复(inversion recovery,IR)序列 (1)IR序列 一个脉冲周期的RF脉冲时序为:180º —TI—90º ,产生 FID信号。 TR:序列重复时间。 TI:反转时间,指180°RF脉冲到90°RF脉冲之间的时 间。
IR序列及FID信号
四、反转恢复序列与加权图像
(2)反转恢复自旋回波(IRSE)序列 在IR序列的基础上,每个脉冲周期的90°RF脉冲后,增加 一个180°RF脉冲,产生自旋回波。RF脉冲时序为: 180º -TI-90º -TE/2-180º 。 TR:序列重复时间。TI:反转时间。TE:回波时间。
R 1 E 2
SE序列TR时刻纵向磁化矢量的恢复值TE时刻的横向磁化矢量
三、自旋回波信号与加权图像
(1)T1加权图像 1)图像特点(不考虑) T1大的地方I 值较小,图像呈现弱信号;脑脊液T1长,图 像很暗;T1小的地方I 值较大,图像呈现强信号,脂肪组织 T1很短,在图像表现得很亮。
T1WI
正常人SE序列T1加权图像
三、自旋回波信号与加权图像
2)T1 加权原理 加权条件 短TE(820ms) 短TR(合适的短值, B0 1.5T , 200600ms ) 理论原理
图像灰度主要由、T1 决定
I K B 0 (1 e T R / T1 ) e T E / T 2
TE<<T2 ,e-TE/T2 1
一、FID信号加权与图像对比度形成
1. FID信号强度讨论
第一个RF 90°脉冲后纵向磁矩的恢复 M z M 0 (1 et /T1 ) t /T M M e 横向磁矩的衰减 经TR 时间后发射第二 x' y' z 个90°脉冲,t TE 时,FID信号强度为
* 2
I k (1 e
二、自由感应衰减类序列与加权图像
饱和恢复序列(saturation recoery,SR),时序见上图 ,由一系列等间隔的90°RF脉冲组成,每个90°脉冲后采 集FID信号。 缺点: 1.TR很短,纵向磁矩恢复的不好,信号很弱,得不到 清晰的T1加权像 2. T2* 太短,不能得到T2加权像 SE序列解决了该问题
医学影像物理学 第六章 磁共振成像
主编:南京医科大学 编者 海 南 医学院 华北理工大学 吴小玲 许建梅 侯淑莲
第六章 磁共振成像
2003年诺贝尔医学或生理学奖获得者
美国科学家保罗·劳特伯
英国科学家彼德·曼斯菲尔德
第六章 磁共振成像
核磁共振成像是利用原子核在强磁场内发生共振产生 的信号经图像重建的成像技术。
TR /T1
)e
* TE /T2
左图 上面红点显示TR时刻纵向
纵向磁矩的恢复,横向磁矩的衰减
磁化矢量的恢复值,下面 红点显示TE时刻的横向磁 化矢量值。
一、FID信号加权与图像对比度形成 2.FID信号的加权与对比度
( a)
(b)
(a)长TR不能很好显示A、B 组织T1差异,短TR较好显示A 、B 组织T1对比度,(b)短TE不能很好显示A、B 组织T2差
冲到自旋回波峰值之间的 时间。TE=2TI
SE序列与SE信号
三、自旋回波序列与加权图像
(2)自旋回波 施加180°脉冲后,自旋核聚相,横向磁化矢量增大,TE时 刻达到最大值,随后自旋核继续旋时,发生散相,横向磁化 矢量减小。产生一个先增大后减小的信号,称之为自旋回波Байду номын сангаас信号。
SE序列与SE信号
三、自旋回波序列与加权图像
第二节 磁共振图像重建
三、自旋回波序列与加权图像
1.自旋回波(spin echo,SE)序列组成及信号产生的物理机制 (1)单回波自旋回波序列
一个脉冲周期里发射RF脉冲时序:
90o脉冲—TI—180o脉冲 TR:序列重复时间。
TI :90°RF脉冲到
180°RF脉冲之间的时间。 TE:回波时间
(echo time)指90°RF脉
I K B 0 (1 e T R / T1 )
(文字分析加权原理省略)
三、自旋回波序列与加权图像
短TE实现了 T1加权,合适的TR保证了合适的对比度
TR长
TR合适 合适的TR保证合适的对比度
TR短
三、自旋回波序列与加权图像
(2)T2加权图像 1)图像特点 T2大的组织,横向磁化矢量衰减得慢,在图像上表现为高信号。 脑脊液具有较长的T2 ,在T2WI中表现得非常亮。 T2小的地方I 值较小,图像呈现弱信号,脂肪T2短,比T1加权像暗。
(a)与(b)
三、自旋回波序列与加权图像
图(c): t=TI时,沿x’轴施加 180°RF脉冲。自旋核绕x’轴转180°,
t =TI
快速远离y’轴的自旋核落在了后面。
随后继续以原速度按原方向旋进。 图(d):经过相同的时间TI,所有 核磁矩在- y’轴汇聚,实现了聚相,此时 180° RF 脉冲可以消除主磁场的不
目 录
第一节 磁共振信号与加权图像 第二节 磁共振图像重建 第三节 快速成像序列 第四节 磁共振血管成像 第五节 磁敏感加权成像
第一节 磁共振信号与加权图像
MR信号实质上是横向磁化强度在xy平面旋进时,接收线圈上 所产生的感应电动势。
、T1 、T2(组织相关参数
MRI图像取决于 MR信号强弱 取决于 像素明暗
I KB 0 e T E / T2
优点:能得到最佳对比度,对病变组织进行定性分析 由于质子密度对信号的影响是永远存在的,如果T1和 质子密度对信号的影响相反,情况会变得复杂。我们 简单讨论质子密度相同时,其它组织相关参数的加权 情况。
三、自旋回波序列与加权图像
长TR实现了 T2加权,合适的长TE保证了合适的对比度
图像对比度主要由质子密度
决定,得到质子密度加权像。 质子密度越大的组织,在图 像上越亮。
PDWI
三、自旋回波序列与加权图像
人体正常组织在T1WI和T2WI的灰度
脑白 质
T1WI T2WI 白 灰
脑灰 质
灰 灰白
脑脊 液
黑 白
脂肪
白 白灰
骨皮 质
黑 黑
骨髓 质
白 灰
脑膜
黑 黑
四、反转恢复序列与加权图像
一、FID信号加权与图像对比度形成
3. FID信号的加权图像 通过调整序列重复时间TR来控制T1对图像对比度的影响, 调整信号采集时间TE来控制T2*对图像对比度的影响,从而得 到不同的加权图像。 ①PDWI 选择长TR (>>T1) 、 短TE (<< T2*) ②T1WI选择短TR (≈ T1)、短TE (<< T2*) ③T2*WI选择长TR (>>T1) 、长TE (≈ T2)
IRSE序列及SE信号
四、反转恢复序列与加权图像
(3)IR序列的特点 1) 当 TR足够长时,纵向磁化矢量在一个脉冲周期结束 时得到充分恢复,使每次发射反转180°脉冲时,纵向磁化 矢量基本上为M0。随后,纵 向磁化矢量恢复为 M z M0 (1 2et /T1 ) 纵向磁化在恢复过程中存在 M z 0 的零点(拐点), 对应的时间为
复到 Mz ,恢复的程度与T1有关。
组织A的T1短,纵向磁化矢量恢
复得快,产生的信号强。选择合适的TR,组织之间的T1差别 被突出。
一、FID信号加权与图像对比度形成
(2)TE 与FID信号 TE足够短,组织的横向弛豫还没来得及展开,产生的 FID信号基本上与T2*无关。 选择短TE(TE<< T2*),可 以抑制组织的T2*差别对信号的 影响。 TE 较长,横向磁化矢量发 生弛豫衰减,衰减程度与T2*有 关,T2* 将对FID信号产生影响。 TE对T2* 加权的影响 * 组织B的T2 较长,横向磁化矢量 (组织A、B的质子密度相同, 衰减较慢,产生的信号较强。选 且TR足够长) 择合适的TE,组织之间的T2*差别被突出。
客观量 不可调)
TE、TR、TI(脉冲序列参 数 主观量 可调节) T1决定,调整TE、TR实现
加权图像(weighted imaging,WI)
T1WI
T2WI PDWI
图像灰度主要由
T2决定,调整TE、TR实现
质子密度决定,调整TE、TR实现
第一节 磁共振信号与加权图像
加权图像(weighted imaging,WI)
异,长TE较好显示A、B 组织T2对比度
一、FID信号加权与图像对比度形成
(1)TR 与FID信号
TR足够长,纵向磁化矢量接近
恢复到M0 ,产生的FID信号强度基 本上与T1无关。
选择长的TR(TR>> T1),可以
抑制组织的T1差别对信号的影响。 TR较短,纵向磁化矢量只能恢
TR对T1加权的影响 (组织A、B的质子密度相同)
TE长
TE合适
合适的TE保证合适的对比度
TE短
三、自旋回波序列与加权图像
4. SE序列的加权图像
(3)质子密度加权图像(PDWI) : 抑制T1差异对信
B0 1T 时约2000~2500ms );抑 号的影响,选择长 TR ( T1 ,
制T2差异对信号的影响,选短 TE ( T2 ,约1~20ms)。
均匀引起的散相对MR信号的影响,称之