20XX成人高考专升本《高等数学》考点复习(2)-成人高考.doc

合集下载

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020年成人高考专升本高等数学二知识点复习第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于f(x)=A一个常数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。

limf(x)=Ax→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则f(x)=0称在该变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越f(x)=∞大,则称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系为无穷小量;在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα(2)如果limβα=∞,则称β是α比较低阶的无穷小量(3)如果lim βα=c ≠0,则称β是与α同阶的无穷小量(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。

成人高考—专升本—高等数学(二) 备考 知识点 复习

成人高考—专升本—高等数学(二) 备考 知识点 复习

(4)如果 limx→x0f(x)=a,且 a>0(或 a<0),则必存在点 x0 的某一个邻域(x0 -δ,x0+δ),在该邻域内,有 f(x)>0(或 f(x)<0).
(5)如果在点 x0 的某一去心邻域(x0-δ,x0)∪(x0,x0+δ)内有 f(x)≥0(或 f(x) ≤0),且 limx→x0f(x)=a,则必有 a≥0(或 a≤0).
limn→∞Cxn=C·limn→∞xn=CA (C 为常数).
数列极限的四则运算法则的作用在于把求复杂数列的极限的运算化为简
单数列的极限值的代数运算,从而简化计算. 常用的数列极限有
limn→∞c=c limn→∞1nk=0 (k>0,常数),
(c 为常数),
limn→∞qn=0 (|q|<1),
limn→∞(1+1n)n=e.
二、函数的极限
1.函数极限的定义
(1)x→∞时函数极限的定义 如果对于任意给定的ε>0,存在 X=X(ε)>0, 使当|x|>X 时, 不等式|f(x) -A|<ε恒成立,则称常数 A 为 x→∞时函数 f(x)的极限,记为 limx→∞f(x)=A 或 f(x)→A(当 x→∞时). 如果对于任意给定的ε>0,存在 X=X(ε)>0,使当 x>X(或 x<-X)时, 不等式|f(x)-A|<ε恒成立,则称常数 A 为 x→+∞(或为 x→-∞)时函数 f(x) 的极限,记为 limx→+∞f(x)=A (或 limx→-∞f(x)=A). 定理 1 函数极限 limx→∞f(x)存在且等于 A 的充分必要条件是极限 limx →+∞f(x)和 limx→-∞f(x)都存在且都等于 A,即有 limx→∞f(x)=A limx→+∞

成考专升本高等数学(二)重点及解析(精简版)

成考专升本高等数学(二)重点及解析(精简版)

解: ∂z = 2x sin 2 y , ∂z = 2x2 cos 2 y
∂x
∂y
三、全微分
1、全微分公式:函数 z = f (x, y) 在点 (x, y) 处全微分公式为: dz = ∂z dx + ∂z dy ∂x ∂y
2、全微分求法:(1)、先求出两个一阶偏导数 ∂z 和 ∂z . (2)、然后代入上述公式即可. ∂x ∂y
一、多元函数的定义:由两个或两个以上的自变量所构成的函数,称为多.元.函.数.。其自 变量的变化范围称为定.义.域.,通常记作 D 。 例如:二元函数通常记作: z = f (x, y) , (x, y) ∈ D
二、二元函数的偏导数 1、偏导数的表示方法: (1)设二元函数 z = f (x, y) ,则函数 z 在区域 D 内对 x 和对 y 的偏导数记为:
或 dy
x= x0
dx
x = x0
(2)函数 f (x) 在区间(a,b)内的导数记作:
f '(x ) , y' 或 dy dx
二、求导公式(必须熟记) (1) (c)' = 0 (C 为常数) (3) (ex )' = ex (5) (sin x)' = cos x
(2) (xα )' = α xα −1 (4) (ln x)' = 1
x2
− 2x + x2 −1
1
.
……… 0未定式,提取公因式 0
解:原式=
lim
x→1
(
x
( x −1)2 −1)( x +1)
=
lim
x→1
( (
x x
−1) +1)
=

成人高考升本高等数学复习资料汇总

成人高考升本高等数学复习资料汇总

成人高考升本高等数学复习资料汇总成人高考升本高等数学复习资料汇总成人高考如何备考是每个考生都会关注的一个问题,为帮助考生复习,小编为考生整理了成人高考升本高等数学复习资料,希望能帮到你。

希望你能考出一个好成绩。

成人高考升本高等数学复习资料:函数1、知识范围(1)函数的概念函数的定义、函数的表示法、分段函数、隐函数(2)函数的性质单调性、奇偶性、有界性、周期性(3)反函数反函数的定义、反函数的图像(4)基本初等函数幂函数、指数函数、对数函数、三角函数、反三角函数(5)函数的四则运算与复合运算(6)初等函数2、要求(1)理解函数的概念,会求函数的表达式、定义域及函数值,会求分段函数的定义域、函数值,会作出简单的分段函数的图像。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的性质及其图像。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

成人高考升本高等数学复习资料:一元函数微分学(一)导数与微分1、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020成人高考专升本高等数学二知识点汇总复习(自编)本文介绍了成人高考专升本高等数学二的第一章:极限与连续,其中包括极限的概念、无穷小量与无穷大量、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的比较与替换、两个重要极限和求极限的方法。

另外,还介绍了函数在某一点上的连续性。

极限的概念是指当自变量趋近于某一值时,函数值趋近于某一常数。

左极限、右极限存在且唯一时,称该点极限存在。

无穷小量和无穷大量是指在某一变化过程中,函数值趋近于零或无穷大的量。

它们之间有一定的关系,比如同阶无穷小量可以相互替换,等价无穷小量的极限相等。

函数的连续性是指函数在某一点上的极限等于函数在该点的函数值。

如果函数在某一点上连续,则该点的左右极限存在且等于该点的函数值。

求极限的方法包括直接代入法、分子分母消去公因子、分子分母同除最高次幂、利用等价代换法、利用两个重要极限和洛必达求导法则等。

最后,需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要删除和改写。

第二章一元函数微分学2-1 导数与微分1.导数概念在函数y=f(x)的某个邻域内,当自变量x在点x处的改变量为Δx时,相应的函数改变量Δy=f(x+Δx)-f(x)。

如果极限lim(Δy/Δx)存在,则称此极限为函数y=f(x)在x处的导数,表示形式如下:lim(Δy/Δx) Δx→0存在,则称此极限为函数y=f(x)在x处连续。

2.常见的求导公式1) (c)'=02) (xa)'=ax^(a-1)3) (log_a x)'=xlna4) (ln x)'=1/x5) (ax)'=a^xlna6) (e^x)'=e^x7) (sin x)'=cos x8) (cos x)'=-sin x 3.导数的运算法则1) (u±v)'=u'±v'2) (uv)'=u'v+uv'3) (cu)'=cu'4) (v/u)'=(u'v-uv')/u^24.复合函数求导如果函数u=φ(x)在点x处可导,函数y=f(u)在对应点u处也可导,则复合函数y=f[φ(x)]在点x处可导,且有:dy/dx)=(dy/du)(du/dx)5.隐函数求导隐函数:x与y之间的函数关系是由一个方程F(x,y)=0来确定。

成考总复习专科起点升本科 高等数学(二)考点精解与真题总结

成考总复习专科起点升本科 高等数学(二)考点精解与真题总结

全国各类成人高考总复习教材专科起点升本科高等数学(二)考点精解与真题解析成人高考专科起点升本科经管类高数二第一章极限和连续一、常见的考试知识点1.极限(1)函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件.(2)极限的性质、极限的四则运算.(3)无穷小量的概念、性质及无穷小量阶的比较.等价无穷小量代换及其应用.(4)两个重要极限及其应用.2.连续(1)函数在一点处连续与间断的概念及连续的判定.(2)闭区间上连续函数的性质.3.试卷内容比例本章内容约占试卷总分的15%,共计22分左右.二、常用的解题方法与技巧(一)极限求函数(或数列)极限的常用方法主要有:(1)利用极限的四则运算法则.(2)(3)(4)(5)方法求解.(6)利用两个重要极限:注意两个重要极限的结构式分别为:其中方块“口”内可以为x,也可以为x的函数,只要满足上述结构形式,公式都正确.特别要记住下列常用的公式:其中的a,b,d为常数.(7)利用无穷小量的性质.主要是“无穷小量与有界变量之积为无穷小量”以及“无穷大量的倒数为无穷小量”.(8)利用等价无穷小量代换.利用等价无穷小量代换常能简化运算,但是等价无穷小量代换能在乘除法中使用,限于知识面的原因不要在加减法中使用.常用的等价无穷小量代换有:当x→0时,(9)求分段函数在分段点处的极限时,一定要分别求左极限与右极限,然后再判定极限是否存在.(二)连续1.判定ƒ (x)在点x。

处连续性的方法先考察ƒ(x)是否为初等函数,x0点是否为ƒ(x)的定义区间内的点.如果给定函数为分段函数,且x0又是分段点,则需利用连续性定义来判定,特别是在分段点两侧函数表达式不同的时候,应该用左连续、右连续判定.2.判定ƒ(x)间断点的方法连续性的三个要素之一得不到满足的点,即为函数的间断点,因此判定函数间断点的步骤通常是:(1)(2)断点.(3)三、常见的考试题型与评析(一)无穷小量的概念及无穷小量的比较本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试颢(1)A.高阶的无穷小量B.等价的无穷小量C.非等价的同阶无穷小量D.低阶的无穷小量(2)(0408)(3)(1012)2.解题方法与评析【解析】(I)选B.无穷小量阶的比较就是先求两个无穷小量之比的极限,再根据定义来确定选项.解法1利用等价无穷小量代换.解法2利用重要极限Ⅱ.(2)填1.利用等价无穷小量的定义.(3)填1.利用等价无穷小量的定义.(二)型不定式的极限本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0521)(2)(0621)(3)(0721)(4)(0821)(5)(0921)(6)(1021)(7)(1221)(8)(1321)2.解题方法与评析【解析】型不定式极限的求法是每年专升本试题中必考的内容之一,考生必须熟练掌握.求型不定式极限的常用方法是利用等价无穷小量代换以及洛必达法则求解.对于极限式中有根式的,首先有理化,再进行计算较简捷.常用的等价无穷小量代换有:当x→0时,(1) 或(2) 或(3) 或或(4)或(5)(6)(7)(8)【评析】(1)(2)等价无穷小量代换:此方法常用于一些可直接用等价无穷小量代换的函数,如题(3).由于知识面的原因,希望考生不要在加减运算中使用等价无穷小量代换,只能在乘除运算中(3)(4)捷的方法.求极限的最佳方法是等价无穷小量代换与洛必达法则的混合使用.例如:(三)“”型不定式的极限本部分内容1994--2013年共考了5次,考到的概率为25%.1.典型试题(1)(0116)(2)(0308)(3)(0701)A.0B.1/2C.1D.2(4)(0801)A.1/4B.0C.2/3D.1(5)(1011)2.解题方法与评析【解析】型不定式极限的计算,常用的办法是约去分子与分母中最高阶无穷因子或直接用洛必达法则求解.(1)(2)填了1/3.或(3)选B.(4)选C.或(5)填0.或【评析】型不定式极限的计算,主要是约去分子与分母中最高阶的无穷因子或直接用洛必达法则求解.在用洛必达法则求解时,一定要注意分子与分母是否满足洛必达法则定理中的条件.本大题的题(1)与题(3)就不满足洛必达法则定理中的条件,因为分子与分母都是离散变量的函数,既不连续,也不可导.(四)重要极限I本部分内容1994—2013年共考了11次,考到的概率为55%.1.典型试题(1)(0403)A.1/3B.1C.2D.3(2)(0501)A.0B.1/5C.1D.5(3)(0612)(4)(0712)(5)(0812)(6)(1021)(7)(1112)(8)(1212)2.解题方法与评析【解析】(1)所以α=3.也可这样求解:(2)选D.或(3)填3.或(4)填1/2.或(5)填2.(6)与题(4)相同.(7)填1.(8)填2/3.【评析】重要极限I是特殊的型不定式极限,所以前面介绍的求型不定式极限的方法均适用.上述各题均可用洛必达法则求解.如果极限式中含有三角函数或反三角函数,应优先考虑用重要极限I求解.(五)重要极限Ⅱ本部分内容1994——2013年共考了13次,考到的概率为65%.1.典型试题(1)(0118)(2)(0521)(3)(0601)A.1B.EC.2eD.e2(4)(0912)(5)(1121)(6)(1315)2.解题方法与评析【解析】(1)(2)(3)选D.(4)(5)(6)【评析】(六)连续性本部分内容1994——2013年共考了12次,考到的概率为60%.1.典型试题(1)(9801)A.一1B.1C.2D.3(2)(0007)(3)(0209)(4)(0613)(5)(0811)(6)(0913)(7)(1013)(8)(1111)(9)(1213)(10)(1312)2.解题方法与评析【解析】(1)(2)填2.所以k=2.(3)填1.方法同题(2),可得α=1.(4)填2.方法同题(2),可得α=2.(5)填1.因为ƒ(0)=(2x+1)|x=0=1.(6)填8.因为则(7)填1.因为则由ƒ (0-0)= ƒ (0+0),得α=1.(8)填0.(9)填1.(10)填1.【评析】判定函数ƒ (x)在一点X0处连续,需依次检查连续性的三个要素.如果X0为ƒ (x)的分段点,且在X0两侧ƒ (x)的表达式不同,需分别计算X0的左极限与右极限以及在X0处的函数值,从而确定在点X0处的连续性.成人高考专科起点升本科经管类高数二第二章一元函数微分学一、常见的考试知识点1.导数与微分(1)导数的概念及几何意义,用定义求函数在一点处的导数值.(2)曲线上一点的切线方程和法线方程.(3)导数的四则运算及复合函数的求导.(4)隐函数的求导及对数求导法.(5)高阶导数的求法.(6)微分法则.2.洛必达法则及导数的应用(1)用洛必达法则求各类不定式的极限.(2)用导数求函数的单调区间.(3)函数的极值、最值.(4)曲线的凹凸性、拐点及曲线的水平渐近线与铅直渐近线.(5)证明不等式.3.试卷内容比例本章内容约占试卷总分的30%,共计45分左右.二、常用的解题方法与技巧(一)导数与微分1.导数的定义2.导数的几何意义3.可导与可微的关系可微必定可导,反之也对,且如果求微分dx可以先求出yˊ,再代入上式即可.4.求导数的常见方法(1)利用基本初等函数的求导公式与导数的四则运算法则.(2)利用复合函数链式法则,为了不遗漏每一个复合层次,可以由外到里一次求得一个层次的导数.(3)对隐函数求导时,只需将所给式子两端出现的y当作中间变量,两端分别关于x求导,整理并解出yˊ.(4)对数求导法,主要解决幂指函数求导与连乘除、乘幂形式的函数的求导问题.(二)导数的应用1.利用导数判定函数ƒ (x)单调性的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出(x)的所有驻点,并求出ƒ(x)不可导的点.(3)判定上述两相邻点间ƒ '(x)的符号,其中ƒ (x)>0时名的取值范围即为ƒ (x)单调递增的范围; ƒˊ(x)<0时x的取值范围即为ƒ (x)单调递减的范围.2.利用导数判定函数f(x)极值的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出八ƒ(x)的所有驻点,并求出定义域内ƒ(x)不可导的点.(3)若f(x)在上述点的某邻域内可导,可以利用极值的第一充分条件判定上述点是否为极值点.(4)若在ƒ(x)的驻点处ƒ(x)二阶可导,且二阶导数易求,则可以利用极值的第二充分条件判定驻点是否为极值点.3.利用导数求连续函数ƒ(x)在区间[a,b]上的最大、最小值的通常步骤(1)求出ƒ(x)在(a,b)内所有的驻点(即ƒˊ(x)=0的点)及不可导的点:x1,…,x k4.利用导数判定曲线y=ƒ (x)的凹凸性与拐点的通常步骤(1)求出ƒ (x)在(a,b)内二阶导数为0的点及二阶导数不存在的点.(2)判定ƒ″(x)在上述点的两侧是否异号.若在x0两侧ƒ″(x)异号,则点x0,ƒ (x0))为曲线的拐点.在ƒ″(x)<0的x取值范围内,曲线y=ƒ (x)为凸的;在ƒ″(x)>0的x取值范围内,曲线y=ƒ (x)为凹的.三、常见的考试题型与评析(一)利用导数的定义求极限或求函数在某点的导数值本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试题(1)(0222)(2)(0303)( ).A.0B.1C.2D.4(3)(0702)A.一2B.0C.2D.4(4)(0802)A.0B.1C.3D.62.解题方法与评析【解析】函数y=ƒ (x)在点X0处导数的定义,其结构式为x0处的导数.如果不符合上式结构,则应通过变形或化简后变成上式结构才成立.(1)(2)选D.(3)选D.方法同(1).(4)选C.方法同(1).(二)利用四则运算法则求函数的导数(微分)或求函数在某点的导数值本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0210)(2)(0310)(3)(0419)(4)(0522)(5)(0622)(6)(0705)A.B.C.D.(7)(0822)(8)(0903)A.0B.1C.eD.2e(9)(1022)(10)(1122)(11)(1203)A.-1B.-1/2C.0D.1(12)(1302)A.B.C.1/3D.2.解题方法与评析【解析】这些题都可以利用基本初等函数的求导公式及导数的四则运算法则来计算.(1)(2)填1.(3)(4)(5)(6)选C.(7)(8)选C.因为(9)因为所以(10)(11)选A.(12)选A.【评析】这些试题都是考试大纲要求熟练掌握的基本运算,因此希望考生一定要牢记基本初等函数的导数公式及四则运算法则.对其他求微分的试题,考生可自行练习.(三)复合函数的求导本部分内容1994—2013年共考了18次,考到的概率为90%。

成人高考专升本《高等数学》复习考点

成人高考专升本《高等数学》复习考点

成人高考专升本《高等数学》复习考点函数、极限和连续函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。

会求函数的表达式、定义域及函数值。

会求分段函数的定义域、函数值,会作出简单的分段函数的图像。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的性质及其图像。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

(4)熟练掌握用两个重要极限求极限的方法。

(三)连续1.知识范围(1)函数连续的概念函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类(2)函数在一点处连续的性质连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质有界性定理最大值与最小值定理介值定理(包括零点定理)(4)初等函数的连续性2.要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020成人高考专升本高等数学二知识点汇总复习(自编)

2020年成人高考专升本高等数学二知识点复习第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于f(x)=A一个常数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。

limf(x)=Ax→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则f(x)=0称在该变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越f(x)=∞大,则称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系为无穷小量;在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα(2)如果limβα=∞,则称β是α比较低阶的无穷小量(3)如果lim βα=c ≠0,则称β是与α同阶的无穷小量(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点击查看:2018成人高考专升本《高等数学》考点复习汇总
(三)连续
1.知识范围
(1)函数连续的概念
函数在一点处连续的定义左连续与右连续函数在一点处连续的充分必要条件函数的间断点及其分类
(2)函数在一点处连续的性质
连续函数的四则运算复合函数的连续性反函数的连续性(3)闭区间上连续函数的性质
有界性定理最大值与最小值定理介值定理(包括零点定理) (4)初等函数的连续性
2.要求
(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。

(2)会求函数的间断点及确定其类型。

(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。

(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。

二、一元函数微分学
(一)导数与微分
1.知识范围
(1)导数概念
导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系
(2)求导法则与导数的基本公式
导数的四则运算反函数的导数导数的基本公式
(3)求导方法
复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数
(4)高阶导数
高阶导数的定义高阶导数的计算
(5)微分
微分的定义微分与导数的关系微分法则一阶微分形式不变性
2.要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简单函数的阶导数。

(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)微分中值定理及导数的应用
1.知识范围
(1)微分中值定理
罗尔(Rolle)定理拉格朗日(Lagrange)中值定理
(2)洛必达(L‘Hospital)法则
(3)函数增减性的判定法
(4)函数的极值与极值点最大值与最小值
(5)曲线的凹凸性、拐点
(6)曲线的水平渐近线与铅直渐近线。

相关文档
最新文档