2017版高考数学一轮复习第十一章计数原理、随机变量及其分布第2讲排列与组合练习理

合集下载

高三数学一轮复习 第11章第1课时课件

高三数学一轮复习 第11章第1课时课件
=2 100 元.
两个计数原理的综合应用
对于某些复杂的问题,有时既要用分类计数原理, 又要用分步计数原理,重视两个原理的灵活运用, 并注意以下几点: (1)认真审题,分析题目的条件、结论,特别要理 解题目中所讲的“事情”是什么,完成这件事情 的含义和标准是什么. (2)明 确 完 成 这 件 事 情 需 要 “ 分 类 ” 还 是 “ 分
2.混合问题一般是先分类再分步. 3.分类时标准要明确,做到不重复不遗漏. 4.要恰当画出示意图或树状图,使问题的分
析更直观、清楚,便于探索规律.
从近两年的高考试题来看,分类加法计数 原理和分步乘法计数原理是考查的热 点.题型为选择题、填空题,分值在5分左 右,属中档题.两个计数原理较少单独考 查,一般与排列、组合的知识相结合命 题.
(2010·广东卷)为了迎接 2010 年广州亚运会,某大
楼安装了 5 个彩灯,它们闪亮的顺序不固定,每
个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜
色,且这 5 个彩灯所闪亮的颜色各不相同,记这 5
个彩灯有序地各闪亮一次为一个闪烁,在每个闪
烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两
个闪烁的时间间隔均为 5 秒,如果要实现所有不
(2)确定第二象限的点,可分两步完成:第一 步确定 a,由于 a<0,所以有 3 种确定方法; 第二步确定 b,由于 b>0,所以有 2 种确定方 法.由分步乘法计数原理,得到第二象限点 的个数是 3×2=6.
(3)点 P(a,b)在直线 y=x 上的充要条件是 a =b.因此 a 和 b 必须在集合 M 中取同一元素, 共有 6 种取法,即在直线 y=x 上的点有 6 个.由(1)得不在直线 y=x 上的点共有 36- 6=30(个).

旧教材适用2023高考数学一轮总复习第十一章计数原理概率随机变量及分布列第2讲排列与组合课件

旧教材适用2023高考数学一轮总复习第十一章计数原理概率随机变量及分布列第2讲排列与组合课件

(5)至多有 2 种假货在内,不同的取法有多少种?
解 (5)解法一:(间接法)选取 3 种的总数为 C335,因此共有 C335-C315=6545 -455=6090 种取法.
所以至多有 2 种假货在内的不同取法有 6090 种. 解法二:(直接法)共有 C320+C220C115+C120C215=6090 种取法. 所以至多有 2 种假货在内的不同取法有 6090 种.
解析 符合题意的情况有两种:2 名医生、3 名护士和 3 名医生、2 名 护士.选取 2 名医生、3 名护士的方法有 C25C34=40 种;选取 3 名医生、2 名 护士的方法有 C35C24=60 种.综上所述,满足题意的选取方法共有 40+60= 100 种.
精准设计考向,多角度探究突破
考向三 排列、组合的综合应用
2
PART TWO
核心考向突破
考向一 排列问题 例 1 有 3 名男生、4 名女生,在下列不同条件下,求不同的排列方法 总数. (1)选其中 5 人排成一排;
解 (1)A57=2520 种方法.
(2)排成前后两排,前排 3 人,后排 4 人; 解 (2)A77=5040 种方法.
(3)全体排一排,甲不站排头也不站排尾;
解 (3)解法一:先排甲,有 5 种方法,其余 6 人有 A66种方法,故共有 5×A66 =3600 种方法.
解法二:先排排头和排尾有 A26种方法,其余位置有 A55种排法,故共有 A26A55=3600 种方法.
(4)全体排一排,女生必须站在一起; 解 (4)将女生看成一个整体,用捆绑法,共有 A44A44=576 种方法.
1.组合问题常见的两类题型 (1)“含有”或“不含有”某些元素的组合题型;“含”,则先将这些元 素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的 元素中去选取.

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

§11.8 条件概率、n 次独立重复试验与二项分布考纲展示►1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.考点1 条件概率条件概率 (1)定义设A ,B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率.(2)性质①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).条件概率的性质.(1)有界性:0≤P (B |A )≤1.( )(2)可加性:如果B 和C 为互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).( )[典题1] (1)从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12(2)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127B.1124C.827D.924[点石成金] 条件概率的两种求解方法 (1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.考点2 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=________,则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 也都相互独立,P (B |A )=________,P (A |B )=________.[典题2] 为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.[点石成金] 1.利用相互独立事件的概率乘法公式直接求解;2.正面计算较繁或难以入手时,可从其对立事件入手计算.在一块耕地上种植一种作物,每季种植成本为 1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.考点3 独立重复试验与二项分布独立重复试验与二项分布(1)[教材习题改编]某人抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n=⎩⎪⎨⎪⎧第n 次出现正面,-第n 次出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为________.(2)[教材习题改编]小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.二项分布:P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ).设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是________.[典题3] [2019·湖南长沙模拟]博彩公司对2019年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛.前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率; (2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.[点石成金] 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k(1-p )n -k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.[方法技巧] 1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P ABP A=n AB n A ,其中,在实际应用中P (B |A )=n ABn A是一种重要的求条件概率的方法.2.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.3.n次独立重复试验中,事件A恰好发生k次可看作是C k n个互斥事件的和,其中每一个事件都可看作是k个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.[易错防范] 1.相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.真题演练集训1.[2018·重庆模拟]投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.3122.[2018·天津模拟]某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45课外拓展阅读误用“二项分布与超几何分布”二项分布和超几何分布是两类重要的概率分布模型,这两种分布存在着很多的相似之处,在应用时应注意各自的适用条件和情境,以免混用出错.[典例1] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.现在在总共8小块地中,随机选4小块地种植品种甲,另外4小块地种植品种乙.种植完成后若随机选出4块地,其中种植品种甲的小块地的数目记为X,求X的分布列和数学期望.[思路分析]判断分布的类型→确定X的取值及其概率→列出分布列并求数学期望易错提示本题容易错误地得到X 服从二项分布,每块地种植甲的概率为12,故X ~B (4,0.5).错误的根源在于每块地种植甲或乙不是相互独立的,它们之间是相互制约的,无论怎么种植都要保证8块地中有4块种植甲,4块种植乙,事实上X 应服从超几何分布.如果将题目改为:在8块地中,每块地要么种植甲,要么种植乙,那么在选出的4块地中种植甲的数目为X ,则这时X ~B (4,0.5)(这时这8块地种植的方法总数为28,会出现所有地都种植一种作物的情况,而题目要求4块地种植甲,4块地种植乙,其方法总数为C 48).[典例2] 某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.易错提示本题容易错误地得到甲、乙两考生正确完成的题数均服从二项分布,实际上题目中已知甲、乙两考生按照题目要求独立完成全部实验操作,甲考生正确完成的题数服从超几何分布,乙考生正确完成的题数服从二项分布.。

60 高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第二节 排列与组合)

60 高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第二节 排列与组合)

第二节排列与组合1.排列、组合的定义A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!C m n=A m nA m m=n n-1n-2…n-m+1m!(1)C m n=C n-mn:从n个不同元素中取出m个元素的方法数等于取出剩余n-m个元素的方法数.(2)C m n+C m-1n=C m n+1:从n+1个不同元素中取出m个元素可分以下两种情况:①不含特殊元素A有C m n种方法;②含特殊元素A有C m-1n种方法.考点一排列问题[典例精析]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.[解](1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).[解题技法]求解排列应用问题的6种主要方法[题组训练]1.(2019·太原联考)高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则不同排法的种数是()A.1 800B.3 600C.4 320D.5 040解析:选B先排除舞蹈节目以外的5个节目,共A55种,再把2个舞蹈节目插在6个空位中,有A26种,所以共有A55A26=3 600(种).2.(2019·石家庄模拟)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得满足条件的四位数共有24+24=48(个),故选C.3.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有()A.1 108种B.1 008种C.960种D.504种解析:选B将丙、丁两人进行捆绑,看成一人.将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法.则甲不能在排头,乙不能在排尾,丙、丁两人必须相邻的不同排法共有A22A66-A22A55-A22A55+A22A44=1 008(种).考点二组合问题[典例精析]某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同取法有多少种?(2)其中某一种假货不能在内,不同取法有多少种?(3)恰有2种假货在内,不同取法有多少种?(4)至少有2种假货在内,不同取法有多少种?(5)至多有2种假货在内,不同取法有多少种?[解](1)从余下的34种商品中,选取2种有C234=561(种)取法,所以某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种)取法.所以某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100(种)取法.所以恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).所以至少有2种假货在内的不同的取法有2 555种.(5)法一:(间接法)选取3种商品的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.法二:(直接法)共有选取方式C320+C220C115+C120C215=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.[解题技法]组合问题的2类题型及求解方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[题组训练]1.(2018·南宁二中、柳州高中第二次联考)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是()A.72B.70C.66D.64解析:选D从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C12·C17+C17·C16=56种选法,三个数相邻共有C18=8种选法,故至少有两个数相邻共有56+8=64种选法.2.(2019·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种解析:选B若Grace不参与任务,则需要从剩下的5位小孩中任意挑出1位陪同,有C15种挑法,再从剩下的4位小孩中挑出2位搜寻远处,有C24种挑法,最后剩下的2位小孩搜寻近处,因此一共有C15C24=30种搜寻方案;若Grace参与任务,则其只能去近处,需要从剩下的5位小孩中挑出2位搜寻近处,有C25种挑法,剩下3位小孩去搜寻远处,因此共有C25=10种搜寻方案.综上,一共有30+10=40种搜寻方案.3.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故共有C 36-C 34=20-4=16(种).答案:16考点三 分组、分配问题考法(一) 整体均分问题[例1] 国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.[解析] 先把6个毕业生平均分成3组,有C 26C 24C 22A 33=15(种)方法.再将3组毕业生分到3所学校,有A 33=6(种)方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90(种)分派方法. [答案] 90考法(二) 部分均分问题[例2] 有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.[解析] 先把4名学生分为2,1,1共3组,有C 24C 12C 11A 22=6(种)分法,再将3组对应3个学校,有A 33=6(种)情况,则共有6×6=36(种)不同的保送方案.[答案] 36考法(三) 不等分问题[例3] 若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] 将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案] 360[题组训练]1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种解析:选D 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).2.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有______种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150 考点四 排列、组合的综合问题[典例精析](1)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.300B.216C.180D.162(2)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个.(用数字作答)[解析] (1)分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 23·C 22·A 44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 12·C 23·(A 44-A 33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个).(2)当个位、十位和百位上的数字为三个偶数时,若选出的三个偶数含有0,则千位上把剩余数字中任意一个放上即可,方法数是C 23A 33C 14=72;若选出的三个偶数不含0,则千位上只能从剩余的非0数字中选一个放上,方法数是A 33C 13=18,故这种情况下符合要求的四位数共有72+18=90(个).当个位、十位和百位上的数字为一个偶数、两个奇数时,若选出的偶数是0,则再选出两个奇数,千位上只要在剩余数字中选一个放上即可,方法数为C23A33C14=72;若选出的偶数不是0,则再选出两个奇数后,千位上只能从剩余的非0数字中选一个放上,方法数是C13 C23A33C13=162,故这种情况下符合要求的四位数共有72+162=234(个).根据分类加法计数原理,可得符合要求的四位数共有90+234=324(个).[答案](1)C(2)324[解题技法]解决排列、组合综合问题的方法(1)仔细审题,判断是组合问题还是排列问题,要按元素的性质分类,按事件发生的过程进行分步.(2)以元素为主时,先满足特殊元素的要求,再考虑其他元素;以位置为主时,先满足特殊位置的要求,再考虑其他位置.(3)对于有附加条件的比较复杂的排列、组合问题,要周密分析,设计出合理的方案,一般先把复杂问题分解成若干个简单的基本问题,然后应用分类加法计数原理或分步乘法计数原理来解决,一般遵循先选后排的原则.[题组训练]1.(2019·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法.2.(2019·成都诊断)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答)解析:根据题意,分2种情况讨论,若甲、乙之中只有一人参加,有C12·C46·A55=3 600(种);若甲、乙两人都参加,有C22·A36·A=241 440(种).则不同的安排种数为3 600+1 440=5 040.答案:5 040[课时跟踪检测]A级1.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16B.18C.24D.32解析:选C将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)方法,再将捆绑在一起的4个车位插入4个空当中,有4种方法,故共有4×6=24(种)方法.2.(2019·惠州调研)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为()A.24B.18C.16D.10解析:选D分两种情况,第一种:最后体验甲景区,则有A33种可选的路线;第二种:不在最后体验甲景区,则有C12·A22种可选的路线.所以小李可选的旅游路线数为A33+C12·A22=10.3.(2019·开封模拟)某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为()A.6B.12C.18D.19解析:选D从六科中选考三科的选法有C36种,其中不选物理、政治、历史中任意一科的选法有1种,因此学生甲的选考方法共有C36-1=19种.4.(2019·沈阳教学质量监测)若4个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有()A.4种B.8种C.12种D.24种解析:选B将4个人重排,恰有1个人站在自己原来的位置,有C14种站法,剩下3人不站原来位置有2种站法,所以共有C14×2=8种站法.5.(2018·甘肃二诊)某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有()A.18种B.24种C.36种D.48种解析:选C若甲、乙抢的是一个6元和一个8元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个6元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个8和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22C23=6种;若甲、乙抢的是两个6元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A23=6种,根据分类加法计数原理可得,共有12+12+6+6=36种情况.6.(2019·南昌调研)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校毕业典礼节目演出顺序的编排方案共有()A.120种B.156种C.188种D.240种解析:选A记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48种;②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种;③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种.所以编排方案共有48+36+36=120种.7.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为()A.48B.72C.90D.96解析:选D由于甲不参加生物竞赛,则安排甲参加另外3场竞赛或甲不参加任何竞赛.①当甲参加另外3场竞赛时,共有C13A34=72种选择方案;②当甲学生不参加任何竞赛时,共有A44=24种选择方案.综上所述,所有参赛方案有72+24=96(种).8.某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是()A.16B.24C.8D.12解析:选A根据题意,分三步进行分析,①要求语文与化学相邻,将语文和化学看成一个整体,考虑其顺序,有A22=2种情况;②将这个整体与英语全排列,有A22=2种情况,排好后,有3个空位;③数学课不排第一节,有2个空位可选,在剩下的2个空位中任选1个,安排物理,有2种情况,则数学、物理的安排方法有2×2=4种,则不同排课方案的种数是2×2×4=16.9.(2019·洛阳第一次统考)某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法有________种.(用数字作答)解析:第一步,选2名同学报名某个社团,有C 23C 14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同学,有C 13C 11=3种报法.由分步乘法计数原理得共有12×3=36种报法.答案:3610.(2018·莆田期中)某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法有________种.(用数字作答)解析:由题设可分两类:一是甲地只选派1名女生,先考虑甲地有C 12C 13种情形,后考虑乙、丙两地,有A 23种情形,共有C 12C 13A 23=36种情形;二是甲地选派2名女生,则甲地有C 22种情形,乙、丙两地有A 23种情形,共有C 22A 23=6种情形.由分类加法计数原理可知共有36+6=42种情形.答案:4211.(2018·南阳二模)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有______种.(用数字作答)解析:根据题意,对于A ,B 两个方格,可在1,2,3,4中任选2个,大的放进A 方格,小的放进B 方格,有C 24=6种情况,对于C ,D 两个方格,每个方格有4种情况,则共有4×4=16种情况,则不同的填法共有16×6=96种.答案:96B 级1.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种 解析:选A 将4名学生均分为2个小组共有C 24C 22A 22=3(种)分法;将2个小组的同学分给2名教师共有A 22=2(种)分法;最后将2个小组的人员分配到甲、乙两地有A 22=2(种)分法.故不同的安排方案共有3×2×2=12(种).2.(2019·马鞍山模拟)某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每位教师可任意选择其中一个项目进行培训,则恰有两个培训项目没有被这5位教师中的任何一位教师选择的情况数为( )A.5 400B.3 000C.150D.1 500解析:选D 分两步: 第一步:从5个培训项目中选取3个,共C 35种情况;第二步:5位教师分成两类:①选择选出的3个培训项目的教师人数分别为1人,1人,3人,共C 35C 12C 11A 22种情况;②选择选出的3个培训项目的教师人数分别为1人,2人,2人,共C 25C 23C 11A 22种情况.故选择情况数为C 35⎝⎛⎭⎫C 35C 12C 11A 22+C 25C 23C 11A 22A 33=1 500(种). 3.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子中,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是( )A.40B.60C.80D.100解析:选A 根据题意,有且只有三个盒子的编号与放入的小球编号相同,在六个盒子中任选3个,放入与其编号相同的小球,有C 36=20种选法,剩下的三个盒子的编号与放入的小球编号不相同,假设这三个盒子的编号为4,5,6,则4号小球可以放入5,6号盒子,有2种选法,剩下的2个小球放入剩下的两个盒子,有1种情况,则不同的放法总数是20×2×1=40.4.(2019·赣州联考)将标号分别为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球放入同一盒子中,则不同的放法共有( )A.12种B.16种C.18种D.36种解析:选C 先将标号为1,2的小球放入盒子,有3种情况;再将剩下的4个球平均放入剩下的2个盒子中,共有C 24·C 222!·A 22=6(种)情况,所以不同的放法共有3×6=18(种). 5.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有__________种.解析:五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40(种). 答案:406.如图,∠MON 的边OM 上有四点A 1,A 2,A 3,A 4,ON 上有三点B 1,B 2,B 3,则以O ,A 1,A 2,A 3,A 4,B 1,B 2,B 3为顶点的三角形个数为________.解析:用间接法.先从这8个点中任取3个点,最多构成三角形C 38个,再减去三点共线的情形即可.共有C 38-C 35-C 34=42(个).答案:427.将7个相同的小球放入4个不同的盒子中.(1)不出现空盒时的放入方式共有多少种?(2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C36=20种不同的放入方式.(2)每种放入方式相当于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C310=120种不同的放入方式.。

数学课标通用(理科)一轮复习配套教师用书:第十一章 计数原理、概率、随机变量及其分布 二项式定理

数学课标通用(理科)一轮复习配套教师用书:第十一章 计数原理、概率、随机变量及其分布  二项式定理

§11.3 二项式定理考纲展示►1.能利用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.考点1 二项展开式中特定项或系数问题二项式定理二项式定理(a+b)n=________________二项式系数二项展开式中各项系数C k n (k=0,1,…,n)二项式通项T k+1=________,它表示第________项答案:C错误!a n+C错误!a n-1b+…+C错误!a n-k b k+…+C错误!b n(n∈N*)C k,n a n-k b k k+1(1)[教材习题改编](1-2x)7的展开式的第4项的系数是________.答案:-280解析:展开式中,T r+1=C错误!·(-2x)r=C错误!·(-2)r x r,当r =3时,T4=C错误!·(-2)3·x3=-280x3,所以第4项的系数为-280.(2)[教材习题改编]错误!12的展开式的常数项是________.答案:495解析:展开式中,T r+1=C错误!x12-r·错误!r=(-1)r C错误!x12-3r,当r=4时,T5=C412=495为常数项。

[典题1] (1)在二项式错误!5的展开式中,含x4的项的系数是()A.10 B.-10 C.-5 D.20[答案]A[解析] 由二项式定理可知,展开式的通项为C错误!(-1)r x10-3r,令10-3r=4,得r=2,所以含x4项的系数为C错误!(-1)2=10,故选A.(2)[2017·吉林长春模拟]错误!5的展开式中的常数项为()A.80 B.-80 C.40 D.-40[答案]C[解析]∵T r+1=C错误!(x2)5-r错误!r=(-2)r C错误!x10-5r,由10-5r=0,得r=2,∴T3=(-2)2C错误!=40.(3)[2015·湖南卷]已知错误!5的展开式中含x错误!的项的系数为30,则a=( )A.错误!B.-错误!C.6 D.-6[答案]D[解析] T r+1=C错误!(错误!)5-r·错误!r=C错误!(-a)r x,由错误!=错误!,解得r=1.由C错误!(-a)=30,得a=-6。

高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布 第2节 排列与组合课件 理 新人教B版

高考数学大一轮复习 第十一章 计数原理、概率、随机变量及其分布 第2节 排列与组合课件 理 新人教B版

基础诊 断
考点突 破
@《创新设 计》
(4)(捆绑法)将女生看作一个整体与 3 名男生一起全排列,有 A44种方法,再将女生全 排列,有 A44种方法,共有 A44·A44=576(种). (5)(插空法)先排女生,有 A44种方法,再在女生之间及首尾 5 个空位中任选 3 个空位 安排男生,有 A35种方法,共有 A44·A35=1 440(种).
@《创新设 计》
第2节 排列与组合
基础诊 断
考点突 破
@《创新设 计》
最新考纲 1.理解排列、组合的概念;2.能利用计数原理推导 排列数公式、组合数公式;3.能解决简单的实际问题.
基础诊 断
考点突 破
@《创新设 计》
1.排列与组合的概念
知识梳 理
名称 排列 组合
定义
从n个不同元素 按照一__定__的__顺__序____排 成一列
基础诊 断
考点突 破
3.排列数、组合数的公式及性质 (1)Amn =_____n_(_n_-___1_)_(_n__-__2__)…___(_n_-___m__+=(1)n-n!m)!.
公式 (2)Cmn =AAmmnm=n(n-1)(n-m2!)…(n-m+1)
n! =___m_!__(__n_-__m__)__!___ (n,m∈N+,且 m≤n).特别地 C0n=1
名参加某项活动,则男女生都有的选法种数是( )
A.18
B.24
C.30
D.36
基础诊 断
考点突 破
@《创新设 计》
解析 法一 选出的 3 人中有 2 名男同学 1 名女同学的方法有 C24C13=18 种,选出 的 3 人中有 1 名男同学 2 名女同学的方法有 C14C23=12 种,故 3 名学生中男女生都 有的选法有 C24C13+C14C23=30 种. 法二 从 7 名同学中任选 3 名的方法数,再除去所选 3 名同学全是男生或全是女生 的方法数,即 C37-C34-C33=30. 答案 C

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合
比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
解 (1)分两步完成:第 1 步,选 3 名男运动员,有C63 种选派方法;第 2 步,选 2 名女
运动员,有C42 种选派方法.由分步乘法计数原理可得,共有C63 × C42 =120 种选派
A.1 800
B.3 600
C.4 320
)
D.5 040
(3)(2024九省联考)甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间
恰有2人,则不同排法共有(
A.20种
B.16种
)
C.12种
D.8种
答案 (1)B (2)B
(3)B
解析 (1)因为 A 在 B 的前面出场,且 A,B 都不在 3 号位置,则情况如下:
n!.
-1

4.kC =nC-1 .
5.C
=


-1
C-1
=


6.A
=
C
·A


.

-

C-1
=
- +1

-1
·C .
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有元素完全相同的两个排列为相同排列.( × )
(2)两个组合相同的充要条件是其中的元素完全相同.( √
有 2C84 + C83 =196 种选派方法.
5
(方法 2 间接法)从 10 人中任选 5 人有C10
种选派方法,其中不选队长的选派

精选高考数学一轮复习第十一章计数原理11.1排列、组合ppt课件全省公开课一等奖

精选高考数学一轮复习第十一章计数原理11.1排列、组合ppt课件全省公开课一等奖

10.(2014大纲全国,5,5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个 医疗小组.则不同的选法共有 ( ) A.60种 B.70种 C.75种 D.150种
答案
C
从6名男医生中选出2名有 C
2 6
种选法,从5名女医生中选出1名有
C
15种选法,由分步乘法
计数原理得不同的选法共有 C
第一步:将4项工作分成3组,共有 C
2 4
种分法.
第二步:将3组工作分配给3名志愿者,共有 A
3 3
种分配方法,故共有
C
·24 A
=33 36种安排方式,故选D.
方法总结 分组、分配问题 分组、分配问题是排列组合的综合问题,解题思想是先分组后分配. (1)分组问题属于“组合”问题,常见的分组方法有三种: ①完全均匀分组,每组元素的个数都相等; ②部分均匀分组,应注意不要重复; ③完全非均匀分组,这种分组不考虑重复现象. (2)分配问题属于“排列”问题,常见的分配方法有三种: ①相同元素的分配问题,常用“挡板法”; ②不同元素的分配问题,利用分步乘法计数原理,先分组,后分配; ③有限制条件的分配问题,采用分类法求解.
2 6
·C
1 5
=75种.故选C.
11.(2017浙江,16,4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务
队,要求服务队中至少有1名女生,共有
种不同的选法.(用数字作答)
答案 660
解析 本题考查计数原理、排列、组合,排列数、组合数计算,利用间接法解决“至少”类的组
=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14个,故选C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章计数原理、随机变量及其分布第2讲排列与组合练习理
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2016·南京质检)某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有________种.
解析法一(直接法) 若3个不同的项目投资到4个城市中的3个,每个城市一项,共A34种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项共C23 A24种方法.由分类加法计数原理知共A34+C23A24=60(种)方法.
法二(间接法) 先任意安排3个项目,每个项目各有4种安排方法,共43=64种排法,其中3个项目落入同一城市的排法不符合要求共4种,所以总投资方案共43-4=64-4=60(种).
答案60
2.(2016·石家庄质检)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有________种.
解析程序A有A12=2(种)结果,将程序B和C看作元素集团与除A外的元素排列有A22A44=48(种),∴由分步乘法计数原理,实验编排共有2×48=96(种)方法.
答案96
3.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有________个.
解析根据“六合数”的定义可知,当首位为2时,其余三位是数组(0,0,4),(0,1,3),(0,2,2),(1,1,2)的所有排列,即共有3+A33+3+3=15(个).
答案15
4.(2016·青岛模拟)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有________种.
解析一个路口有3人的分配方法有C13C22A33(种);两个路口各有2人的分配方法有C23C22A33 (种).
∴由分类加法计数原理,甲、乙在同一路口的分配方案为C13C22A33+C23C22A33=36(种).
答案36
5.(2016·南京师大附中检测)某班班会准备从甲、乙等7名学生中选派4名进行发言,要求甲、乙两人至少有一人参加.当甲、乙同时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为________.
解析当甲或乙只有一人参加时,不同的发言顺序的种数为2C35A44=480,当甲、乙同时参加时,不同的发言顺序的种数为A25A23=120,则不同的发言顺序的种数为480+120=600. 答案600
6.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法.
解析先排最中间位置有一种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共一种排法,所以排法种数为C36=20(种).
答案20
7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种.
解析把g、o、o、d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共一种排法,所以总的排法种数为A24=12(种).其中正确的有一种,所以错误的共A24-1=12-1=11(种).
答案11
8.(2016·苏北四市质检)四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案有________种.
解析分两步:先将四名优等生分成2,1,1三组,共有C24种;而后,对三组学生全排三所学校,即进行全排列,有A33种.依分步乘法计数原理,共有N=C24A33=36(种).
答案36
二、解答题
9.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法有多少种?
解分两类:第一类,含有1张红色卡片,共有不同的取法C14C212=264(种);
第二类,不含有红色卡片,共有不同的取法C312-3C34=220-12=208(种).
由分类加法计数原理知不同的取法有264+208=472(种).
10.由1,2,3,4,5五个数字组成的没有重复数字的五位数排成一递增数列,则首项为12 345,第2项是12 354,…直到末项(第120项)是54 321.问:43 251是第几项?
解比43 251大的数有下列几类:
①万位数是5的有A44=24个;
②万位数是4、千位数是5的有A33=6个;
③万位数是4、千位数是3、百位数是5的有A22=2个;所以比43 251大的数共有A44+A33+A22=32个,
所以43 251是第120-32=88项.
(建议用时:25分钟)
11.(2016·潍坊二模)某公司新招聘5名员工,分给下属的甲、乙两个部门,其中两名英语
翻译人员不能分给同一个部门;另三名电脑编程人员不能都分给同一个部门,则不同的分配方案种数是________.
解析甲部门分一名电脑编程人员有C13C12·C33种分配方案,甲部门分两名电脑编程人员有C23C12·C22种分配方案.
∴由分类加法计数原理,共有C13C12·C33+C23C12·C22=12(种)不同方案.
答案12
12.(2016·长沙模拟)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).
解析分两类:第一类:3张中奖奖券分给3个人,共A34种分法;
第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,
共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).
答案60
13.(2016·镇江调研)将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有________种(用数字作答).
解析分两步:①任意选3个空排A、B、C,共有C36·C12·A22种排法.②排其余的3个字母,有A33种排法.所以由分步乘法计数原理,共有C36·C12·A22·A33=480(种)排法.
答案480
14.(1)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?
(2)已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,那么最多可确定多少个不同的点?
解(1)法一每个学校至少一个名额,则分去7个,剩余3个名额分到7所学校的方法种数就是要求的分配方法种数.
分类:若3个名额分到一所学校有7种方法;
若分配到2所学校有C27×2=42(种);
若分配到3所学校有C37=35(种).
∴共有7+42+35=84(种)方法.
法二10个元素之间有9个间隔,要求分成7份,相当于用6块档板插在9个间隔中,共有C69=84种不同方法.
所以名额分配的方法共有84种.
(2)①从集合B中取元素2时,确定C13A33个点.
②当从集合B中取元素1,且从C中取元素1,则确定的不同点有C13×1=C13.
③当从B中取元素1,且从C中取出元素3或4,则确定的不同点有C12A33个.
∴由分类加法计数原理,共确定C13A33+C13+C12A33=33(个)不同点.。

相关文档
最新文档