两个计数原理与排列组合知识点与例题
排列组合知识点及排列组合经典例题讲解

排列组合知识点及排列组合经典例题讲解
排列组合一直是一个比较难的知识内容,今天极客数学帮就来给同学们讲讲排列组合的知识点,主要还是要从练习题上对这个知识点进行掌握,所以就和极客数学帮一起来看看关于排列组合的知识点和例题解析吧。
1.计数原理知识点
①乘法原理:N=n1·n2·n3·…nM (分步)
②加法原理:N=n1+n2+n3+…+nM (分类)
2.排列组合混合题的解题原则:先选后排,先分再排
排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.
以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
插空法(解决相间问题)
间接法和去杂法等等。
清单35 两个计数原理、排列与组合(原卷版)-2022年新高考数学一轮复习知识方法清单与跟踪训练

清单35 两个计数原理、排列组合一、知识与方法清单1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.【对点训练1】定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.【对点训练2】如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.93.分类加法计数原理和分步乘法计数原理的区别两个原理的区别在于一个与分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事,求完成这件事的方法种数,就用分类加法计数原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成n个步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步乘法计数原理.【对点训练3】(1)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48 B.18C.24 D.36(2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是() A.60 B.48C.36 D.244.分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.【对点训练4】从3名骨科,4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).5.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.【对点训练5】给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有多少种?6.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.【对点训练6】某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层数的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这7家住户有无快递的可能情况共有________种.7.排列与组合的概念作中的一种,现已确定这6人中的甲必须选上且专门从事翻译工作,则不同的选派方案有()(2)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m个元素的组合数,用C m n表示.【对点训练8】寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种.(用数字作答)9.排列数、组合数的公式及性质2n nA.1B.8C.9D.1010.应用排列、组合数公式解此类方程时,应注意验证所得结果能使各式有意义.应用组合数+C m n时,应注意其结构特征:右边下标相同,上标相差1;左边(相对于右性质C m n+1=C m-1n边)下标加1,上标取大.使用该公式,像拉手风琴,既可从左拉到右,越拉越长,又可以从右推到左,越推越短.【对点训练10】(1)解方程:3A3x=2A2x+1+6A2x;(2)计算:C22+C23+C24+…+C2100.11.排列应用问题的分类与解法排列、组合之间的主要区别在于是否要考虑选出元素的先后顺序,不需要考虑顺序的是组合问题,需要考虑顺序的是排列问题,排列是在组合的基础上对入选的元素进行全排列,因此,分析解决排列的基本思路是“先选,后排”.【对点训练11】有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次.A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名.请你分析一下,这五位学生的名次排列的种数为()A.6 B.18C.20 D.2412.限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.【对点训练12】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A .192种B .216种C .240种D .288种13.正难则反排异法:有些问题,正面考虑情况复杂,可以反面入手把不符合条件的所有情况从总体中去掉.【对点训练13】从3名骨科,4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).14.复杂问题分类分步法:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.在解题过程中,常常既要分类,也要分步,其原则是先分类,再分步.【对点训练14】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( )A .32B .56C .72D .8415.相离问题插空法:某些元素不能相邻或要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间.【对点训练15】(2022届广东省珠海市高三上学期10月月考)五名同学国庆假期相约去珠海野狸岛日月贝采风观景,结束后五名同学排成一排照相留念,若甲、乙二人不相邻,则不同的排法共有( )A .36种B .48种C .72种D .120种16.相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.【对点训练16】(2022届河北省唐县高三上学期9月月考)7个人站成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )A .400种B .720种C .960种D .1200种17.定序问题用除法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总的排列数除以这几个元素的全排列数,也可看作组合问题.【对点训练17】(2022届广东省深圳市高三上学期月考)某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( )A .120种B .80种C .20种D .48种18.相同元素隔板法:隔板模型是解决排列组合问题的一种基本方法,常常用于解决一类相同元素分给不同对象的分配问题,运用隔板法必须同时具备以下三个条件:①所有元素必须相同;②所有元素必须分完;③每组至少有一个元素.【对点训练18】(1)将10个完全相同的球放到3个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?(2) 将10个优秀的指标分配给3个班级,每班至少一个,则共有多少种分配方法?(3)求方程10=+++w z y x 的正整数解的个数.19.“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.【对点训练19】(2021届福建省福州高三上学期质量检测)某市近几年大力改善城市环境,全面实现创建生态园林城市计划,现省专家组评审该市是否达到“生态园林城市”的标准,从包含甲、乙两位专家在内的8人中选出4人组成评审委员会,若甲、乙两位专家至少一人被邀请,则组成该评审委员会的不同方式共有( )A .70种B .55种C .40种D .25种20.分组、分配问题的求解策略①对不同元素的分配问题a .对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n (n 为均分的组数),避免重复计数.b .对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c .对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.【对点训练20】(2022届贵州省贵阳第一中学高三上学期月考)2021年暑假,贵阳一中继续组织学生开展“百行体验”社会实践活动.现高三年级某班有6名学生需要去敬老院、社区医院、儿童福利院三个机构开展活动,要求每个机构去2名学生,且学生甲不去敬老院,则不同的安排共有( )A .60种B .360种C .15种D .100种二、跟踪检测一、单选题1.(2022届四川省巴中市高三上学期“零诊”)接种疫苗是预防控制新冠疫情最有效的方法.我国自2021年1月9日起实施全民免费接种新冠疫苗工作,截止到2021年5月底,国家已推出了三种新冠疫苗(腺病毒载体疫苗、新冠病毒灭活疫苗、重组新型冠病毒疫苗)供接种者选择,每位接种者仼选其中一种.若甲、乙、丙、丁4人去接种新冠疫苗,则恰有两人接种同一种疫苗的概率为( )A .49B .916C .23D .892.(2022届山东省济南市高三上学期开学考试)某校甲、乙、丙、丁四位同学报名参加A ,B ,C 三所高校的强基计划考试,每所高校报名人数不限,因为三所高校的考试时间相同,所以甲、乙、丙、丁只能随机各自报考其中一所高校,则恰有两人报考同一所高校的报名种数为()A.24B.36C.64D.723.(2022届浙江省五校高三上学期联考)有10台不同的电视机,其中甲型3台,乙型3台,丙型4台.现从中任意取出3台,若其中至少含有两种不同的型号,则不同的取法共有()A.96种B.108种C.114种D.118种4.(2022届广东省广州市高三上学期10月调研)把标号为1,2,3,4的四个小球分别放入标号为1,2,3,4的四个盒子,每个盒子只放一个小球,则1号球和2号球都不放入1号盒子的方法共有()A.18种B.12种C.9种D.6种5.(广东省花都区2022届高三上学期8月调研)现将8张连号的门票按需求分配给5个家庭,甲家庭需要3张连号的门票,乙家庭需要2张连号的门票,剩余的3张随机分给剩余的3个家庭,则这8张门票不同的分配方法的种数为()A.71B.96C.108D.1206.(2022届宁夏银川一中高三上学期月考)有12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.168 B.260 C.840 D.5607.(2022届江苏省南通市高三上学期9月质量监测)某亲子栏目中,节目组给6位小朋友布置一项搜寻空投食物的任务.已知:①食物投掷点有远、近两处;②由于小朋友甲年纪尚小,所以要么不参与该项任务,要么参与搜寻近处投掷点的食物,但不参与时另需1位小朋友在大本营陪同;③所有参与搜寻任务的小朋友被均匀分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种8.《数术记遗》是东汉时期徐岳编撰的一本数学专著,该书介绍了我国古代14种算法,其中积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算13种均需要计算器械.某研究性学习小组3人分工搜集整理这13种计算器械的相关资料,其中一人搜集5种,另两人每人搜集4种,则不同的分配方法种数为()A.54431384322C C C AAB.54421384233C C C AAC.544138422C C CAD.5441384C C C9.(2022届广东省广州市高三上学期综合测试)通常,我国民用汽车号牌的编号由两部分组成:第一部分为汉字表示的省、自治区、直辖市简称和用英文字母表示的发牌机关代号,笫二部分为由阿拉伯数字与英文字母组成的序号.其中序号的编码规则为:①由0,1,2,…,9这10个阿拉伯数字与除I,O之外的24个英文字母组成;②最多只能有2个位置是英文字母,如:粤A326S0,则采用5位序号编码的粤A 牌照最多能发放的汽车号牌数为( ) A .586万张 B .682万张 C .696万张 D .706万张 10.重庆11中本学期接收了5名西藏学生,学校准备把他们分配到A ,B ,C 三个班级,每个班级至少分配1人,则其中学生甲不分配到A 班的分配方案种数是( )A .720B .100C .150D .34511.(2022届湖南省岳阳市高三上学期入学考试)如图,在某城市中,M 、N 两地之间有整齐的方格形道路网,其中1A 、2A 、3A 、4A 是道路网中位于一条对角线上的4个交汇处.今在道路网M 、N 处的甲、乙两人分别要到N 、M 处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发,直到到达N 、M 处为止.则下列说法正确的是( )A .甲从M 到达N 处的方法有120种B .甲从M 必须经过2A 到达N 处的方法有64种C .甲、乙两人在2A 处相遇的概率为81400 D .甲、乙两人相遇的概率为1212.(2021届山东省高考考前热身押题卷)为迎接第24届冬季奥林匹克运动会,某校安排甲、乙、丙、丁、戊共五名学生担任冰球、冰壶和短道速滑三个项目的志愿者,每个比赛项目至少安排1人.则学生甲不会被安排到冰球比赛项目做志愿者的概率为( )A .34B .23C .56D .12 二、多选题13.(2021届辽宁省实验中学高三考前模拟)一个布袋内装除颜色外完全相同的4个红球和3个蓝球.现从袋中摸出4个球,则( )A .摸出4个红球的概率是135B .摸出3个红球和1个蓝球的概率是1235C .摸出2个红球和2个蓝球的概率是1835D .摸出1个红球和3个蓝球的概率是13514.把座位号为1、2、3、4、5的五张电影票全部分给甲、乙、丙三个人,每人至少一张,且分给同一人的多张票必须连号,那么不同的分法种数为N种,则N的值不可能为(). A.18 B.24 C.36 D.4815.(2021届广东省梅州市高三下学期3月质检)某校实行选课走班制度,张毅同学选择的是地理、生物、政治这三科,且生物在B层,该校周一上午选课走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则下列说法正确的是()C.自习不可能安排在第2节D.自习可安排在4节课中的任一节16.2020年3月,为促进疫情后复工复产期间安全生产,滨州市某医院派出甲、乙、丙、丁4名医生到A,B,C三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是()A.若C企业最多派1名医生,则所有不同分派方案共48种B.若每家企业至少分派1名医生,则所有不同分派方案共36种C.若每家企业至少分派1名医生,且医生甲必须到A企业,则所有不同分派方案共12种D.所有不同分派方案共34种三、填空题17.(2022届云南省师范大学附属中学高三月考)洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象如图,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数(图中白圈为阳数,黑点为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数有___________个18.(2022届江苏省常州市高三上学期10月学情检测)为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有_____________.19.(2022届四川省成都石室中学高三上学期10月月考)一条路上有10盏路灯,为节约资源,准备关闭其中的3盏.为安全起见,不能关闭两端的路灯,也不能关闭任意相邻的两盏路灯.则不同的关闭路灯的方法有________种.20.从6种不同的蔬菜种子a ,b ,c ,d ,e ,f 中选出4种,分别种在4块不同的土壤A ,B ,C ,D 中进行试验,已有资料表明A 土壤不宜种植a ,B 土壤不宜种植b ,但a 、b 品种产量高.现a 、b 品种必种的试验方案有________种.四、解答题21.一个盒子里有9个球,其中有6个白球,3个黑球现每次从盒子洞口随机摸出一个球且不放回,如果9个球都被摸出,以X 表示6个白球被3个黑球所隔成的段数.例如,摸出顺序为“白黑白白黑白白白黑",则此时X =3,摸出顺序为“黑黑黑白白白白白白”,则此时x =1. (1)求三个黑球相连在一起被摸出的概率;(2)求X 的分布列和数学期望.22.(2021届广东省揭阳市高三上学期第月考)某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶1A ,2A ,3A 中的一个,每个乙系列盲盒可以开出玩偶1B ,2B 中的一个.(1)记事件n E :一次性购买n 个甲系列盲盒后集齐玩偶1A ,2A ,3A 玩偶;事件n F :一次性购买n 个乙系列盲盒后集齐1B ,2B 玩偶;求概率()5P E 及()4P F ;(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为23,购买乙系列的概率为13;而前一次购买甲系列的消费者下一次购买甲系列的概率为14,购买乙系列的概率为34,前一次购买乙系列的消费者下一次购买甲系列的概率为12,购买乙系列的概率为12;如此往复,记某人第n 次购买甲系列的概率为n Q .①求{}n Q 的通项公式;②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.。
2020届中职数学对口升学复习第十部分《排列组合二项式定理》基础知识点归纳及山西历年真题汇编

n( ( ( 第十部分排列组合二项式定理【知识点 1】两个计数原理1.分类计数原理:完成一件事有 n 类办法,在第 1 类办法中有 m 1 种不同方法,在第 2 类办法中有 m 2 种不同方法...... ,在第 n 类办法中有 m n 种不同的方法,那么完成这件事共有 N=m 1+m 2+...+m n 种不同的方法 .(加法原理)2.分步计数原理:完成一件事需要分为 n 个步骤,做第 1 步有 m 1 种不同方法,做第 2 步有 m 2 种不同的方法 ... 做第 n 步有 m n 种没同的方法,那么完成这件事共有 N=m 1 ⨯ m 2 ⨯ ... ⨯ m n 种不同的方法 .(乘法原理)【知识点 2】排列与排列数1.排列的定义(1)元素:问题中所选取的对象.(2)排列:从 n 个不同元素中,任取 m (m ≤ n ) 个元素,按时一定的顺序排成一列,叫作从 n 个不同元素中取出 m 个元素的一个排列.(3)选排列:如果 m<n ,这样的排列叫作选排列. (4)全排列:如果 m=n ,这样的排列叫作全排列.2.排列数:从 n 个不同元素中取出 m (m ≤ n ) 个元素的所有排列的个数,叫作从n 个不同元素中取出 m 个元素的排列数,记作 A m .【注意】:排列是结果,排列数是排列的个数。
【知识点 3】排列数公式1.选排列计数公式:A m = n g n- 1)g n - 2)g ⋅⋅⋅ g n - m + 1),其中m , n ∈ N *,且m ≤ n (m 个元素相乘) n2.全排列计数公式:A n = n ⨯ (n - 1)⨯ (n - 2)g ⋅⋅⋅ g 3 ⨯ 2 ⨯1 = n !n自然数1~n的连乘积叫作n的阶乘,用n!表示,即A n=n!.n【注意】:①0!=1;②A0=1;A1=n;A n=n!;n n n【知识点4】组合及组合数的定义1.组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫作从n个不同元素中取出m个元素的一个组合.【注意】:排列与顺序有关,而组合与顺序无关;2.组合数的定义:从n个不同元素中,任取m(m≤n)个元素的所有组合的个数叫作从n个不同元素中取出m个元素的组合数,用符号C m表示.n【注意】:组合是把取出的元素合并成一组;组合数是所有不同组合的个数,它是一个数.【知识点5】组合数的计数公式与性质1.组合数公式:C m= n A mnA mm=n(n-1)(n-2)⋅⋅⋅(n-m+1)m!(n,m∈N*,且m≤n);C m=nn!m!(n-m)!【注意】:C0=C n=1;C1=n .n n n2.组合数性质:(1)C m=C n-m(2)C m=C m+C m-1.n n n+1n n【知识点6】二项式定理1.二项式定理:一般地,(a+b)n=C0a n b0+C1a n-1b1+⋅⋅⋅+C m a n-m b m+⋅⋅⋅+C n a0b n(n∈N*)n n n n这个公式所表示的规律叫作二项式定理.右边的多项式叫作(a+b)n的二项展开式,其中Cm(m=0,1,2,⋅⋅⋅,n)叫作二项式系n数;式中的Cm a n-m b m 叫作二项式的通项.n2.二项展开式的通项公式:Tm+1 3.二项展开式的性质:(1)展开式共有n+1项;=C m a n-m b m.(二项展开式的第m+1项) n(2)a的指数从n逐渐减到0,b的指数从0逐渐增到n,展开式中的每一项a和b的指数和都为n(3)二项式系数依次为C0,C1,⋅⋅⋅C n,第r项与倒数第r项的系数相等;n n n(4)若二项式的幂指数是偶数2n,那么二项式展开式有(2n+1)项(奇数项),且中间一项的二项式系数最大,如果二项式的幂指数是奇数2n-1,那么展开式有2n项(偶数项),且中间两项的二项式系数相等且最大。
新高考数学题型全归纳之排列组合 专题01 两个计数原理(解析版)

专题1 两个计数原理类型一、加法原理【例1】高二年级一班有女生18人,男生38人,从中选取一名学生作代表,参加学校组织的调查团,问选取代表的方法有几种. 【解析】18+38=56.【例2】若a 、b 是正整数,且6a b ≤+,则以()a b ,为坐标的点共有多少个? 【解析】66=36´.【例3】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .648【解析】由题意知本题要分类来解, 当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有884256创= 当尾数为0时,百位有9种选法,十位有8种结果, 共有98172创=根据分类计数原理知共有25672328+= 故选:B .【例4】用数字12345,,,,组成的无重复数字的四位偶数的个数为( )A .8B .24C .48D .120【解析】由题意知本题需要分步计数,2和4排在末位时,共有122A =种排法, 其余三位数从余下的四个数中任取三个有3443224A =创=种排法, 根据由分步计数原理得到符合题意的偶数共有22448?(个).故选:C .【例5】用012345,,,,,这6个数字,可以组成____个大于3000,小于5421的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有352120A =个; ②千位数字为5时,百位数字为0,1,2,3之一时,有124448A A =个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有11236A A =个;最后还有5420也满足题意. 所以,所求四位数共有120+48+6+1=175个. 故答案为 175. 类型二、乘法原理【例6】公园有4个门,从一个门进,一个门出,共有_____种不同的走法. 【解析】根据题意,要求从从任一门进,从任一门出, 则进门的方法有4种,出门的方法也有4种, 则不同的走法有4416?种【例7】将3个不同的小球放入4个盒子中,则不同放法种数有_______. 【解析】根据题意,依次对3个小球进行讨论:第一个小球可以放入任意一个盒子,即有4种不同的放法, 同理第二个小球也有4种不同的放法, 第三个小球也有4种不同的放法, 即每个小球都有4种可能的放法,根据分步计数原理知共有即44464创=不同的放法, 故答案为:64.【例8】如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有 种.【解析】分两步完成,第一步先安排甲学校参观,共六种安排方法;第二步安排另外两所学校,共有25A 安排方法,故不同的安排种法有256120A ?,故答案为120.【例9】高二年级一班有女生18人,男生38人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种.【解析】111838684C C = 【例10】六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果?【解析】每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得共有不同的报名方法63729=种.【例11】六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种? 【解析】由题意,每项比赛的冠军都有6种可能,因为有3项体育比赛,所以冠军获奖者共有36666创=种可能【例12】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【解析】解析:可分三步来做这件事: 第一步:先将3、5排列,共有22A 种排法;第二步:再将4、6插空排列,插空时要满足奇偶性不同的要求,共有222A 种排法;第三步:将1、2放到3、5、4、6形成的空中,共有15C 种排法.由分步乘法计数原理得共有221225240A A C =(种). 答案为:40【例13】从集合{12311},,,,中任选两个元素作为椭圆方程22221x y m n +=中的m 和n ,则能组成落在矩形区域{()|||11B x y x ,,=<且||9}y <内的椭圆个数为( ) A .43B .72C .86D .90【解析】椭圆落在矩形内,满足题意必须有,m n ¹,所以有两类, 一类是m ,n 从{1,2,3,6¼,7,8}任选两个不同数字,方法有2856A = 令一类是m 从9,10,两个数字中选一个,n 从{1,2,3,6¼,7,8}中选一个 方法是:2816?所以满足题意的椭圆个数是:561672+= 故选:B .【例14】若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为2y x =-,值域为{19},--的“同族函数”共有( )A .7个B .8个C .9个D .10个【解析】定义域是集合的子集,且子集中至少应该含有1-、1中的一个和3-、3中的一个,满足条件的定义有:{1-,3}-、{1-,3}、{1,3}-、{1,3}、{1-,1,3}-、{1-,1,3}、{1-,3-,3}、{1,3-,3}、{1-,1,3-,3},共9个.故选:C .【例15】某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位和个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0,并且千位、百位上都能取0.这样设计出来的密码共有( )A .90个B .99个C .100个D .112个【例16】从集合{4321012345},,,,,,,,,----中,选出5个数组成子集,使得这5个数中的任何两个数之和不等于1,则取出这样的子集的个数为( )A .10B .32C .110D .220【解析】从集合{1-,2-,3-,4-,0,1,2,3,4,5}中,随机选出5个数组成 子集,共有105C 种取法,即可组成105C 个子集,记“这5个数中的任何两个数之和不等于1”为事件A ,而两数之和为1的数组分别为(1,2)-,(2,3)-,(3-,4)(4-,5),(0,1),A 包含的结果有①只有有一组数的和为1,有5422213111160C C C C C =种结果②有两组数之和为1,有562160C C =种, 则A 包含的结果共有220种 故答案为:220.【例17】若x 、y 是整数,且6x ≤,6x ≤,则以()x y ,为坐标的不同的点共有多少个? 【解析】整数x ,y 满足6x ≤,6x ≤ 则{6,5,4,3x A?----,2-,1-,0,1,2,3,4,5,6},{6,5,4y B?---,3-,2-,1-,0,1,2,3,4,5,6},从A 种选一个共有13种方法,从B 选一个共有13种方法, 故有1313169?种.故答案为:169.【例18】用0,1,2,3,4,5这6个数字:⑴可以组成______________个数字不重复的三位数. ⑵可以组成______________个数字允许重复的三位数.【解析】(1)根据题意,分2步分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种方法, ②、在剩下的5个数字中任选2个,安排在十位、个位,有2520A =种选法, 则可以组成520100?个无重复数字的三位数(2)分3步进行分析:①、先选百位,百位可以在1、2、3、4、5中任选1个,则百位有5种选法,②、再选十位,十位可以在0、1、2、3、4、5中任选1个,则十位有6种选法, ③、最后分析个位,个位可以在0、1、2、3、4、5中任选1个,则个位有6种选法, 则可以组成566180创=个数字允许重复的三位数;【例19】六名同学报名参加三项体育比赛,共有多少种不同的报名结果? 【解析】63333333创创?【例20】将3名教师分配到2所中学任教,每所中学至少一名教师,则不同的分配方案共有( )种.A .5B .6C .7D .8【解析】将3名教师分配到2所中学任教,每所中学至少1名教师, 只有一种结果1,2,首先从3个人中选2个作为一个元素, 使它与其他两个元素在一起进行排列,共有22326C A =种结果, 故选:B .类型三、基本计数原理的综合应用【例21】用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是_________.(用数字作答) 【解析】按首位数字的奇偶性分两类: 一类是首位是奇数的,有:2323A A ;另一类是首位是偶数,有:322322()A A A -则这样的五位数的个数是:2332223322()20A A A A A +-=. 故答案为:20.【例22】若自然数n 使得作竖式加法(1)(2)n n n ++++均不产生进位现象.则称n 为“可连数”.例如:32是“可连数”,因323334++不产生进位现象;23不是“可连数”,因232425++产生进位现象.那么,小于1000的“可连数”的个数为( )A .27B .36C .39D .48【解析】如果n 是良数,则n 的个位数字只能是0,1,2,非个位数字只能是0,1,2,3(首位不为0), 而小于1000的数至多三位, 一位的良数有0,1,2,共3个二位的良数个位可取0,1,2,十位可取1,2,3,共有339?个三位的良数个位可取0,1,2,十位可取0,1,2,3,百位可取1,2,3,共有34336创=个. 综上,小于1000的“良数”的个数为393648++=个 故选:D .【例23】由正方体的8个顶点可确定多少个不同的平面?【解析】依题意,正方体的8个顶点所确定的平面有:6个表面,6个对角面,8个正三角形平面共20个. 故答案为:20【例24】分母是385的最简真分数一共有多少个?并求它们的和.【解析】因为3855711=⨯⨯,在1~385这385个自然数中,5的倍数有385[]775=(个), 7的倍数有385[]557=(个),11的倍数有385[]3511=(个),5735⨯=的倍数有385[]1135=(个),51155⨯=的倍数有385[]755=(个), 71177⨯=的倍数有385[]577=(个),385的倍数有1个. 由容斥原理知,在1~385中能被5、7或11整除的数有775535(1175)1145++−+++=(个), 而5、7、11互质的数有385145240−=(个).即分母为385的真分数有240(个). 如果有一个真分数为385a,则必还有另一个真分数385385a −,即以385为分母的最简真分数是成对出现的, 而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为1120120⨯=. 【例25】用0,1,2,3,4,5这6个数字,可以组成_______个大于3000,小于5421的数字不重复的四位数.【解析】分四类:①千位数字为3,4之一时,百十个位数只要不重复即可,有352120A =个; ②千位数字为5时,百位数字为0,1,2,3之一时,有124448A A =个;③千位数字为5时,百位数字是4,十位数字是0,1之一时,有11236A A =个;最后还有5420也满足题意. 所以,所求四位数共有120+48+6+1=175个. 故答案为 175.【例26】某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000创创创?”到“9999创创创?”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( )A .2000B .4096C .5904D .8320【解析】10000个号码中不含4、7的有484096=, \ “优惠卡”的个数为1000040965904-=,故选:C .【例27】同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有( )A .6B .9种C .11种D .23种【解析】设四人分别为a 、b 、c 、d ,写的卡片分别为A 、B 、C 、D , 由于每个人都要拿别人写的,即不能拿自己写的,故a 有三种拿法,不妨设a 拿了B ,则b 可以拿剩下三张中的任一张,也有三种拿法,c 和d 只能有一种拿法, 所以共有33119创?种分配方式,故选:B.【例28】某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为()A.504B.210C.336D.120【解析】由题意知将这3个节目插入节目单中,原来的节目顺序不变,\三个新节目一个一个插入节目单中,原来的6个节目形成7个空,在这7个位置上插入第一个节目,共有7种结果,原来的6个和刚插入的一个,形成8个空,有8种结果,同理最后一个节目有9种结果根据分步计数原理得到共有插法种数为789504创=,故选:A.【例29】某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共()A.15种B.12种C.9种D.6种【解析】同种树苗不相邻且第一个树坑和第5个树坑只能种甲种树苗,\只有中间三个坑需要选择树苗,当中间一个种甲时,第二和第四个坑都有2种选法,共有4种结果,当中间一个不种甲时,则中间一个种乙或丙,当中间这个种乙时,第二和第四个位置树苗确定,当中间一个种丙时,第二和第四个位置树苗确定,共有2种结果,\总上可知共有426+-种结果,故选:D.【例30】用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【解析】由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有884256创=当尾数为0时,百位有9种选法,十位有8种结果,共有98172创=根据分类计数原理知共有25672328+=故选:B.【例31】足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有( )A.3种B.4种C.5种D.6种【解析】得3分最多6场,则1分的1场,剩余的场次均得0分;若3分的共5场,则1分的共4场;若3分的共4场,则1分的共7场;若得3分的共3场,则1分的共9场;若得3分的2场,则1分的13场,不合题意,故选B.。
计数原理、排列组合

计数原理一、两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.二、例题例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
现要配成一荤一素一汤的套餐。
问可以配制出多少种不同的品种?分析:1、完成的这件事是什么?2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步配一个荤菜有3种选择第二步配一个素菜有5种选择第三步配一个汤有2种选择共有N=3×5×2=30(种)例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。
(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算。
解:属于分类:第一类从上层取一本书有5种选择第二类从下层取一本书有4种选择共有N=5+4=9(种)(2)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步从上层取一本书有5种选择第二步从下层取一本书有4种选择共有N=5×4=20(种)例3、有1、2、3、4、5五个数字.(1)可以组成多少个不同的三位数?(2)可以组成多少个无重复数字的三位数?(3)可以组成多少个无重复数字的偶数的三位数?(1)分析: 1、完成的这件事是什么?2、如何完成这件事?(配百位数、配十位数、配个位数)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.略解:N=5×5×5=125(个)(2)(3)(4)自己完成。
排列组合知识点总结典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n nn n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12m m1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合知识总结+经典题型

(1)知识梳理1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类中有m1种有不同的方法,在第2类中有m2种不同的方法……在第n类型有m3种不同的方法,那么完成这件事共有种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有mn种不同的方法;那么完成这件事共有种不同的方法。
特别提醒:分类计数原理与“分类”有关,要注意“类"与“类"之间所具有的独立性和并列性;分步计数原理与“分步"有关,要注意“步"与“步"之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏.3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. 4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素的一个排列数,用符号表示.5.排列数公式:特别提醒:(1)规定0!= 1(2)含有可重元素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a1,a2,….。
.an其中限重复数为n1、n2……nk,且n =n1+n2+……nk , 则S的排列个数等于。
例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数.6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
7.组合数公式:8.两个公式:①②特别提醒:排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素。
区别:前者是“排成一排”,后者是“并成一组",前者有顺序关系,后者无顺序关系。
(2)典型例题考点一:排列问题例1.六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端。
两个计数原理与排列、组合的基本问题

从n个不同的元素中取出m个元素 (m≤n),不考虑顺序的不同,叫 做从n个元素中取出m个元素的一 个组合。
常见问题类型及解决方法
相邻问题
不相邻问题
定序问题
分组问题
对于某几个元素要求相邻的问 题,可以先将这几个元素看作 一个整体,然后再进行排列。
对于某几个元素要求不相邻的 问题,可以先将其他元素排好 ,然后再将这几个元素插入到 空位中。
01
02
03
编码方式数量
在编码理论中,计数原理 用于计算给定信息量的编 码方式总数。
错误检测和纠正
在错误检测和纠正中,利 用计数原理可以确定给定 编码方式下可检测或纠正 的错误数量。
码字重量分布
码字重量分布问题涉及计 算给定编码方式下,具有 特定重量的码字数量,这 也需要用到计数原理。
其他领域应用举例
A(4,4)=24种排法。因此,总的排列数为2×24=48种。 • 例题2:7个人站成一排,其中甲、乙两人不能站在一起的排列数有多少种? • 解答:先考虑7个人全排列的情况,有A(7,7)=5040种排法。再考虑甲、乙两人站在一起的情况,将甲、乙两
人看作一个整体进行排列,有A(2,2)=2种排法。再将这个整体与其余5人进行排列,有A(6,6)=720种排法。因 此,甲、乙两人站在一起的总排列数为2×720=1440种。所以,甲、乙两人不能站在一起的排列数为50401440=3600种。
02
根据选取元素的方式和限制条件 的不同,计数原理可以分为加法 原理和乘法原理两大类。
加法原理与乘法原理
加法原理
如果完成一件事情有n类方法,第一类方法有m1种不同的方式, 第二类方法有m2种不同的方式,……,第n类方法有mn种不同 的方式,那么完成这件事情共有m1+m2+…+mn种不同的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个计数原理与排列组合知识点及例题两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.例题分析例1某学校食堂备有5种素菜、3种荤菜、2种汤。
现要配成一荤一素一汤的套餐。
问可以配制出多少种不同的品种?分析:1、完成的这件事是什么?2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步配一个荤菜有3种选择第二步配一个素菜有5种选择第三步配一个汤有2种选择共有N=3×5×2=30(种)例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。
(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算。
解:属于分类:第一类从上层取一本书有5种选择第二类从下层取一本书有4种选择共有N=5+4=9(种)(2)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步从上层取一本书有5种选择第二步从下层取一本书有4种选择共有N=5×4=20(种)例3、有1、2、3、4、5五个数字.(1)可以组成多少个不同的三位数?(2)可以组成多少个无重复数字的三位数?(3)可以组成多少个无重复数字的偶数的三位数?(1)分析: 1、完成的这件事是什么?2、如何完成这件事?(配百位数、配十位数、配个位数)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.略解:N=5×5×5=125(个)【例题解析】1、某人有4条不同颜色的领带和6件不同款式的衬衣,问可以有多少种不同的搭配方法?2、有一个班级共有46名学生,其中男生有21名.(1)现要选派一名学生代表班级参加学校的学代会,有多少种不同的选派方法? (2)若要选派男、女各一名学生代表班级参加学校的学代会,有多少种不同的选派方法?3、有0、1、2、3、4、5六个数字. (1)可以组成多少个不同的三位数? (2)可以组成多少个无重复数字的三位数? (3)可以组成多少个无重复数字的偶数的三位数?排列与组合1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mnA 表示3.排列数公式:(1)(2)(1)m nA n n n n m =---+L (,,m n N m n *∈≤) 4.阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.5.排列数的另一个计算公式:m n A ()!n m -6.组合概念:从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合7.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m n C 表示. 8.组合数公式:(1)(2)(1)!m mn nm m A n n n n m C A m ---+==L 或)!(!!m n m n C m n-=,,(n m N m n ≤∈*且 9.组合数的性质1:m n n m n C C -=.规定:10=nC ; 10.组合数的性质2:m n C 1+=m n C +-m n C C n 0+C n 1+…+C n n =2n题型讲解例1 分别求出符合下列要求的不同排法的种数(1)6名学生排3排,前排1人,中排2人,后排3人; (2)6名学生排成一排,甲不在排头也不在排尾;(3)从6名运动员中选出4人参加4×100米接力赛,甲不跑第一棒,乙不跑第四棒; (4)6人排成一排,甲、乙必须相邻; (5)6人排成一排,甲、乙不相邻;(6)6人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)解:(1)分排坐法与直排坐法一一对应,故排法种数为72066=A(2)甲不能排头尾,让受特殊限制的甲先选位置,有14A 种选法,然后其他5人选,有55A 种选法,故排法种数为4805514=A A(3)有两棒受限制,以第一棒的人选来分类:①乙跑第一棒,其余棒次则不受限制,排法数为35A ;②乙不跑第一棒,则跑第一棒的人有14A 种选法,第四棒除了乙和第一棒选定的人外,也有14A 种选法,其余两棒次不受限制,故有221414A A A 种排法,由分类计数原理,共有25224141435=+A A A A 种排法(4)将甲乙“捆绑”成“一个元”与其他4人一起作全排列共有2405522=A A 种排法(5)甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右及之间的空挡插位,共有2544A A (或用6人的排列数减去问题(2)后排列数为48024066=-A )(6)三人的顺序定,实质是从6个位置中选出三个位置,然后排按规定的顺序放置这三人,其余3人在3个位置上全排列,故有排法1203336=A C 种点评:排队问题是一类典型的排列问题,常见的附加条件是定位与限位、相邻与不相邻例2 假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各多少种?(1)没有次品;(2)恰有两件是次品;(3)至少有两件是次品解:(1)没有次品的抽法就是从97件正品中抽取5件的抽法,共有64446024597=C 种(2)恰有2件是次品的抽法就是从97件正品中抽取3件,并从3件次品中抽2件的抽法,共有44232023397=C C 种(3)至少有2件次品的抽法,按次品件数来分有二类:第一类,从97件正品中抽取3件,并从3件次品中抽取2件,有32973C C 种第二类从97件正品中抽取2件,并将3件次品全部抽取,有23973C C 种按分类计数原理有4469763329723397=+C C C C 种点评:此题是只选“元”而不排“序”的典型的组合问题,附加的条件是从不同种类的元素中抽取,应当注意:如果第(3)题采用先从3件次品抽取2件(以保证至少有2件是次品),再从余下的98件产品中任意抽取3件的抽法,那么所得结果是46628839823=C C 种,其结论是错误的,错在“重复”:假设3件次品是A 、B 、C ,第一步先抽A 、B 第二步再抽C 和其余2件正品,与第一步先抽A 、C (或B 、C ),第二步再抽B (或A )和其余2件正品是同一种抽法,但在算式39823C C 中算作3种不同抽法例3求证:①m n m n m n A mA A =+---111 ;②12112++-+=++m n m n m n m n C C C C证明:①利用排列数公式左()()()()1!1!1!!n m n n m n m -⋅-=+---()()()()1!1!!n m n m n n m --+⋅-==-()==-mn A m n n !!右 另一种证法:(利用排列的定义理解)从n 个元素中取m 个元素排列可以分成两类:①第一类不含某特殊元素a 的排列有mn A 1-第二类含元素a 的排列则先从()1-n 个元素中取出()1-m 个元素排列有11--m n A 种,然后将a 插入,共有m 个空档,故有11--⋅m n A m 种,因此mn m n m n A A m A =⋅+---111②利用组合数公式 左()()()()()!!2!11!1!1!m n m n m n m n m n m n -++--+--+=()()()()()()()[]11211!1!1!+-+++++--⋅+-+m n m m m m n m n m n m n =()()()()()()()==+-++=+++-+=++12!1!1!212!1!1!m n C m n m n n n m n m n 右另法:利用公式111---+=m n m n m n C C C 推得 左()()==+=+++=+++++-+1211111m n n n m n m n m n m n m n C C C C C C C 右点评:证明排列、组合恒等式通常利用排列数、组合数公式及组合数基本性质例4 已知f 是集合{}d c b a A ,,,=到集合{}2,1,0=B 的映射 (1)不同的映射f 有多少个?(2)若要求()()()()4=+++d f c f b f a f 则不同的映射f 有多少个? 分析:(1)确定一个映射f ,需要确定d c b a ,,,的像(2)d c b a ,,,的象元之和为4,则加数可能出现多种情况,即4有多种分析方案,各方案独立且并列需要分类计算解:(1)A 中每个元都可选0,1,2三者之一为像,由分步计数原理,共有433333=⋅⋅⋅个不同映射(2)根据d c b a ,,,对应的像为2的个数来分类,可分为三类:第一类:没有元素的像为2,其和又为4,必然其像均为1,这样的映射只有一个; 第二类:一个元素的像是2,其余三个元素的像必为0,1,1,这样的映射有121314=P C 个; 第三类:二个元素的像是2,另两个元素的像必为0,这样的映射有624=C 个由分类计数原理共有1+12+6=19(个)点评:问题(1)可套用投信模型:n 封不同的信投入m 个不同的信箱,有nm 种方法;问题(2)的关键结合映射概念恰当确定分类标准,做到不重、不漏例5四面体的顶点和各棱的中点共10个点(1)设一个顶点为A ,从其他9点中取3个点,使它们和点A 在同一平面上,不同的取法有多少种?(2)在这10点中取4个不共面的点,不同的取法有多少种?解:(1)如图,含顶点A 的四面体的三个面上,除点A 外都有5个点,从中取出3点必与点A 共面,共有353C 种取法含顶点A 的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法根据分类计数原理和点A 共面三点取法共有333335=+C 种(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点(410C 种取法)减去4点共面的取法取出的4点共面有三类:第一类:从四面体的同一个面上的6点取出4点共面,有464C 种取法 第二类:每条棱上的3个点与所对棱的中点共面,有6种取法 第三类:从6条棱的中点取4个点共面,有3种取法根据分类计数原理4点共面取法共有6936446=++C故取4个点不共面的不同取法有()14136446410=++-C C (种)点评:由点构成直线、平面、几何体等图形是一类典型的组合问题,附加的条件是点共线与不共线,点共面与不共面,线共面与不共面等 小结 :⑴m个不同的元素必须相邻,有mm P⑵m个不同元素互不相邻,分别“插入”到n个“间隙”中的m个位置有 mn P 种不同的“插入”方法⑶m个相同的元素互不相邻,分别“插入”到n个“间隙”中的m个位置,有mn C 种不同的“插入”方法⑷若干个不同的元素“等分”为 m个组,要将选取出每一个组的组合数的乘积除以m P【例题解析】例1 完成下列选择题与填空题(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。