中考数学第一轮复习专题训练十六图形与坐标【含答案】

合集下载

2021年中考数学复习专题:《图形与坐标》综合测试卷练习卷(答案及解析)

2021年中考数学复习专题:《图形与坐标》综合测试卷练习卷(答案及解析)

2021中考复习专题:《图形与坐标》综合测试卷练习卷(答案及解析)一、选择题(本大题共10小题,共30.0分)1.已知点P(a,3+a)在第二象限,则a的取值范围是()A. a<0B. a>−3C. −3<a<0D. a<−32.如图,五架轰炸机组成了一个三角形飞行编队,且每架飞机都在边长等于1正方形网格格点上,其中A、B两架轰炸机对应点的坐标分别为A(−2,1)和B(−2,−3),那么轰炸机C对应点的坐标是()A. (2,−1)B. (4,−2)C. (4,2)D. (2,0)3.根据下列表述,能确定具体位置的是()A. 官渡古镇南B. 东经116°北纬42°C. 北偏西30°D. 电影院4.如图,在平面直角坐标系中,Rt△OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30°.C为OA的中点,BC=1,则点A的坐标为()A. (√3,√3)B. (√3,1)C. (2,1)D. (2,√3)5.如图是某游乐城的平面示意图,若用(8,2)表示入口处的位置,用(6,−1)表示球幕电影的位置,那么坐标原点表示的位置是()A. 太空秋千B. 梦幻艺馆C. 海底世界D. 激光战车6.如图,在平面直角坐标系中,已知点A(2,1),点B(3,−1),则线段AB的长度为()A. √2B. √3C. √5D. 37.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原,得到△COD,则CD的长度是()图形的12A. 1B. 2C. 2√5D. √58.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(−3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A. 1B. 3C. 5D. 1或59.如图,将线段AB平移到线段CD的位置,则a+b的值为()A. 4B. 0C. 3D. −510.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2020次,点B的落点依次为B1,B2,B3,…,则B2020的坐标为()A. (1345,0)B. (1345.5,√32) C. (1346,0) D. (1346.5,√32)二、填空题(本大题共4小题,共12.0分)11.若A、B两点关于y轴对称,点A在双曲线y=2x上,点B在直线y=−x上,则点B 的坐标是.12.已知点A(4,y),B(x,−3),若AB//x轴,且线段AB的长为5,则x=________,y=________.13.若|a−2|+(b−5)2=0,则点P(a,b)关于x轴对称的点的坐标为______.14.如图,在平面直角坐标系中,从点P1(−1,0),P2(−1,−1),P3(1,−1),P4(1,1),P5(−2,1),P6(−2,−2),…依次扩展下去,则P2020的坐标为______.三、解答题(本大题共7小题,共58.0分)15.(1)已知点P(2,4),Q(−3,−8),试求P,Q两点间的距离.(2)已知点M(m,5),N(0,2)且MN=5,求m的值.16.在如图所示的平面直角坐标系中,四边形OABC各顶点的坐标分别是O(0,0),A(−4,10),B(−12,8),C(−14,0).求四边形OABC的面积.17.在平面直角坐标系中,已知点M(m−1,2m+3).(1)若点M在y轴上,求m的值.(2)若横坐标与纵坐标的和为11,求点M的坐标.18.在平面直角坐标系中,已知点A(a,0),B(b,0),a、b满足方程组{a+b=−2,C为a−b=−4 y轴正半轴上一点,且S▵ABC=6.(1)求A、B、C三点的坐标;SΔABC?若存在,请求出D点坐标;若不存在,(2)是否存在点D(t,−t)使SΔABD=13请说明理由.(3)已知E(−2,−4),若坐标轴上存在一点P,使S△POE=S△ABC,请求出P的坐标.19.如下图,在平面直角坐标系中,A(−1,0),B(3,0),C(0,2).(1)求三角形ABC的面积;(2)若点P从点B出发沿射线BA的方向匀速移动,速度为1个单位长度/秒,设移动时间为t秒,当t为何值时,三角形PAC的面积等于三角形BOC的面积.20.已知点P(3m−6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P的横坐标比纵坐标大1;(2)点P在过点A(3,−2),且与x轴平行的直线上;(3)点P到y轴的距离是到x轴距离的2倍.21.如图1,在平面直角坐标系xOy中,点A(2,0),点B(−4,3).(1)求直线AB的函数表达式;(2)点P是线段AB上的一点,当S△AOP:S△AOB=2:3时,求点P的坐标;(3)如图2,在(2)的条件下,将线段AB绕点A顺时针旋转120°,点B落在点C处,连结CP,求△APC的面积,并直接写出点C的坐标.答案和解析1.【答案】C【解析】解:∵点P(a,3+a)在第二象限,∴{a<03+a>0,解得−3<a<0.故选:C.根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).2.【答案】A【解析】解:因为A(−2,1)和B(−2,−3),所以建立如图所示的坐标系,可得点C的坐标为(2,−1),故选:A.根据A(−2,1)和B(−2,−3)的坐标以及与C的关系进行解答即可.此题考查坐标问题,关键是根据A(−2,1)和B(−2,−3)的坐标确定坐标轴的位置.3.【答案】B【解析】解:A、官渡古镇南不能确定具体位置,所以A选项错误;B、东经116°北纬42°可确定具体位置,所以B选项正确;C、北偏西30°,没距离,则不能确定具体位置,所以C选项错误;D、电影院不能确定具体位置,所以D选项错误;故选:B.根据平面内的点与有序实数对一一对应分别对各选项进行判断.本题考查了坐标确定位置:平面内的点与有序实数对一一对应;记住直角坐标系中特殊位置点的坐标特征.4.【答案】B【解析】解:如图,∵Rt△OAB的斜边OA在第一象限,并与x轴的正半轴夹角为30°.∴∠AOD=30°,∴AD=1OA,2∵C为OA的中点,∴AD=AC=OC=BC=1,∴OA=2,∴OD=√3,则点A的坐标为:(√3,1).故选:B.根据题画出图形,再根据直角三角形斜边上的中线等于斜边的一半可得AB的值,再根据勾股定理可得OB的值,进而可得点A的坐标.本题考查了解直角三角形、坐标与图形性质、直角三角形斜边上的中线,解决本题的关键是综合运用以上知识.5.【答案】D【解析】【分析】根据“用(8,2)表示入口处的位置,用(6,−1)表示球幕电影的位置”得到原点位置即可.此题主要考查了坐标确定位置,正确利用已知点得出原点位置是解题关键.【解答】解:如图所示:坐标原点表示的位置是激光战车.故选D.6.【答案】C【解析】【分析】本题考查了坐标与图形性质和勾股定理.根据图形得到AC=2,BC=1,∠ACB=90°,然后利用勾股定理即可得到答案.【解答】解:如图,AC=2,BC=1,∠ACB=90°,∴AB=√AC2+BC2=√22+12=√4+1=√5.故选C.7.【答案】B【解析】【分析】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.直接利用位似图形的性质以及结合A点坐标直接得出点C的坐标,即可得出答案.【解答】解:∵点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心,得到△COD,缩小为原图形的12∴C(1,2),则CD的长度是:2.故选B.8.【答案】D【解析】解:当圆P在y轴的左侧与y轴相切时,平移的距离为3−2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选:D.分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.本题考查的是切线的判定、坐标与图形的变化−平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.9.【答案】A【解析】解:由题意,线段AB向左平移3个单位,再向上平移4个单位得到线段CD,∴a=5−3=2,b=−2+4=2,∴a+b=4,故选:A.利用坐标平移的变化规律解决问题即可.本题考查平移的性质,解题的关键是熟练掌握坐标平移的变化规律,属于中考常考题型.10.【答案】C【解析】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2020=336×6+4,∴点B4向右平移1344(即336×4)到点B2020.∵B4的坐标为(2,0),∴B2020的坐标为(2+1344,0),∴B2020的坐标为(1346,0).故选:C.连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2020=336×6+4,因此点B4向右平移1344(即336×4)即可到达点B2020,根据点B4的坐标就可求出点B2020的坐标.本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.11.【答案】(−√2,√2)或(√2,−√2)【解析】【分析】本题考查了关于y轴对称的点的坐标特征,反比例函数图象上点的特征,以及正比例函数图象上点的特征,关键是要掌握各函数图象上的点的特征.设A点坐标为(a,b),则点B的坐标为(−a,b),分别把A,B的坐标代入其相应的解析式,即可得到两个关于a,b 的方程,联立两方程,求出a,b的值即可.【解答】解:设A(a,b),∵点A、B两点关于y轴对称,∴点B(−a,b),∵点A在双曲线y=2上,点B在直线y=−x上,x∴{ab=2b=a,解得:a=b=±√2,∴B(−√2,√2)或(√2,−√2),故答案为(−√2,√2)或(√2,−√2)。

备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案

备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案

备考2023年中考数学一轮复习-函数_平面直角坐标系_坐标与图形性质-单选题专训及答案坐标与图形性质单选题专训1、(2016南通.中考真卷) 平面直角坐标系xOy中,已知A(﹣1,0)、B(3,0)、C(0,﹣1)三点,D(1,m)是一个动点,当△ACD的周长最小时,△ABD的面积为()A .B .C .D .2、(2016苏州.中考真卷) 矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E 的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,2)3、(2017福州.中考模拟) 如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a 与b的数量关系为()A . a=bB . 2a﹣b=1C . 2a+b=﹣1D . 2a+b=14、(2017玉田.中考模拟) 如图,在平面直角坐标系中,直线l平行于y轴,点A在直线l上,若点P是直线l上的一个动点,且使△PAO是以OA为腰的等腰三角形,则符合条件的点P有()A . 1个B . 2个C . 3个D . 4个5、(2017保定.中考模拟) 如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A . (2,1)B . (2,0)C . (3,3)D . (3,1)6、(2016石家庄.中考模拟) 如图所示,等腰直角三角形ABC与等腰直角三角形A′B′C′是位似图形,位似中心为点O,位似比1:2,点A的坐标为(1,0),点C的坐标为(0,1),则点B′的坐标为()A . (2,2)B . (﹣2,2)C . (﹣2,﹣2)D . (2,2)或(﹣2,﹣2)7、(2019通州.中考模拟) 已知直线y=﹣x+2与直线y=2x+6相交于点A,与x轴分别交于B,C两点,若点D(a,a+1)落在△ABC内部(不含边界),则a 的取值范围是()A . ﹣3<a<2B .C .D . ﹣2<a<28、(2019.中考模拟) 抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A . ≤a≤1B . ≤a≤2C . ≤a≤1D . ≤a≤29、(2019温州.中考模拟) 如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=﹣和y=的图象交于A,B两点.若点C是y轴上任意一点,连接AC、BC,则△ABC的面积为()A . 3B . 4C . 5D . 1010、(2018湖州.中考模拟) 将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A . 向右平移了3个单位B . 向左平移了3个单位C . 向上平移了3个单位D . 向下平移了3个单位11、(2019山东.中考模拟) 直线y=- x+ 与x轴,y轴交于A、B两点,若把△AB0沿直线AB翻折,点O落在第一象限的C处,则C点的坐标为()A .B .C .D .12、(2017新泰.中考模拟) 已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A .B .C .D .13、(2017历下.中考模拟) 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A . ()2016B . ()2017C . ()2016D . ()201714、(2017曹.中考模拟) 如图,将正方形OABC放在平面直角坐标系中,O是原点,A 的坐标为(1,),则点C的坐标为()A . (﹣,1)B . (﹣1,)C . (,1)D . (﹣,﹣1)15、(2017三门峡.中考模拟) 如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值等于()A . 2π﹣4B . 4π﹣8C .D .16、(2019黄石.中考真卷) 如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时()A .B .C .D .17、(2017福田.中考模拟) 如图,已知E′(2,﹣1),F′(,),以原点O 为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A . (﹣4,2)B . (4,﹣2)C . (﹣1,﹣1)D . (﹣1,4)18、(2011河池.中考真卷) 如图,A(1,0)、B(7,0),⊙A、⊙B的半径分别为1和2,将⊙A沿x轴向右平移3个单位,则此时该圆与⊙B的位置关系是()A . 外切B . 相交C . 内含D . 外离19、(2019重庆.中考真卷) 如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A . 16B . 20C . 32D . 4020、(2016平武.中考模拟) 如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点A′的对应点A的纵坐标是1.5,则点A'的纵坐标是()A . 3B . ﹣3C . ﹣4D . 421、(2017南充.中考真卷) 如图,等边△OAB的边长为2,则点B的坐标为()A . (1,1)B . (,1)C . (,)D . (1,)22、(2017五华.中考模拟) 阅读理解:如图①所示,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由OM的长度m与∠MON的度数θ确定,有序数对(m,θ)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为()A . (4,60°)B . (4,45°)C . (2 ,60°)D . (2 ,50°)23、(2019西藏自治区.中考真卷) 已知点是直线与双曲线(为常数)一支的交点,过点作轴的垂线,垂足为,且,则的值为()A .B .C .D .24、(2020丰南.中考模拟) 如图,在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C 的个数是()A . 2B . 3C . 4D . 525、(2020宜昌.中考模拟) 将矩形OABC如图放置,O为原点,若点A的坐标是(﹣1,2),点B的坐标是(2,),则点C的坐标是()A . (4,2)B . (2,4)C . (,3)D . (3,)26、(2020琼海.中考模拟) 如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A . (,2)B . (,1)C . (,2)D . (,1)27、(2020河南.中考真卷) 如图,在中,.边在x轴上,顶点的坐标分别为和.将正方形沿x轴向右平移当点E落在边上时,点D的坐标为()A .B .C .D .28、(2020荆州.中考真卷) 如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A .B .C .D .29、(2021荆州.中考模拟) 如图,直径为10的⊙A经过点和点,点是轴右侧⊙A优弧上一点,,则点的坐标为()A .B .C .D .30、如图,矩形的边,分别在x轴、y轴的正半轴上,点D在的延长线上.若,,以O为圆心、长为半径的弧经过点B,交y轴正半轴于点E,连接,。

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案

备考2023年中考数学一轮复习-图形的变换_平移、旋转变换_坐标与图形变化﹣平移-填空题专训及答案坐标与图形变化﹣平移填空题专训1、(2016黑龙江.中考真卷) 如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为________.2、(2011宿迁.中考真卷) 在平面直角坐标系中,已知点A(﹣4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是________.3、(2019海门.中考模拟) 在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.4、(2018江苏.中考模拟) 若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为________.5、(2018金华.中考模拟) 如图,已知直线与反比例函数()图像交于点A,将直线向右平移4个单位,交反比例函数()图像于点B,交y轴于点C,连结AB、AC,则△ABC的面积为________6、(2022北.中考模拟) 如图,正比例函数y=kx 与反比例函数y= 的图象有一个交点A(2,m),AB⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是________ .7、(2019泰安.中考模拟) 如图,单位网格中,将线段AB 先向右平移2个单位,再向上平移2个单位,然后再绕P 点按顺时针方向旋转90°得到A'B',则A 的坐标是________8、(2017东营.中考模拟) 将抛物线y=﹣x 2向左平移2个单位,再向下平移3个单位,所得抛物线的表达式为________.9、(2017常德.中考真卷) 如图,有一条折线A 1B 1A 2B 2A 3B 3A 4B 4…,它是由过A 1(0,0),B 1(2,2),A 2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n (n≥1,且为整数)个交点,则k 的值为________.10、(2020湖州.中考模拟) 如图,在平面直角坐标系中,反比例y=(k>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为________.11、(2014钦州.中考真卷) 如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为________.12、(2017广元.中考真卷) 在平面直角坐标系中,将P(﹣3,2)向右平移2个单位,再向下平移2个单位得点P′,则P′的坐标为________.13、(2013绵阳.中考真卷) 如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是________.14、(2011遵义.中考真卷) 将点P(﹣2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P′,则点P′的坐标为________.15、(2019青海.中考模拟) 如图,等边三角形的顶点A(1,1),B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,则一次变换后顶点C的坐标为________,如果这样连续经过2017次变换后,等边△ABC的顶点C 的坐标为________.16、(2019朝阳.中考模拟) 如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为________.17、(2020中宁.中考模拟) 若线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(3,6),则点B(﹣5,﹣2)的对应点D的坐标是________18、(2020通榆.中考模拟) 如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为________ 。

初三中考数学复习 用坐标确定位置 专题复习练习题 含答案

初三中考数学复习 用坐标确定位置 专题复习练习题 含答案

2019 初三中考数学复习用坐标确定位置专题复习练习题1.如图所示, 若在象棋盘上建立平面直角坐标系, 使“将”位于点(1, -2), “象”位于点(3, -2), 则“炮”位于点( )A. (1,3)B. (-2,0)C. (-1,2)D. (-2,2)2.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )A. 景仁宫(4,2)B. 养心殿(-2,3)C. 保和殿(1,0)D. 武英殿(-3.5, -4)3.能够准确表示我国首都北京这个地点位置的是( )A. 北纬39.92度B. 东经116.46度C. 河北衡水的正北方向D. 东经116.46度, 北纬39.93度4.如图,以小岛作为参照点,渔船A的位置应该表示为( )A. 北偏东40°方向上, 距离小岛25km的位置B. 北偏东50°方向上, 距离小岛25km的位置C. 东偏北40°方向上, 距离小岛25km的位置D. 南偏东40°方向上, 距离小岛25km的位置5.如图,小明在操场上的点B处看位于点A处的小亮的位置时,下列说法正确的是( )A. 点A在点B的北偏东40°方向25m处B. 点A在点B的南偏东50°方向25m处C. 点A在点B的南偏西40°方向25m处D. 点A在点B的南偏西50°方向25m处6.如图,在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A. A点B. B点C. C点D. D点7.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果用(-40,-30)表示点M的位置,那么(10,20)表示的位置是( )A. 点AB. 点BC. 点CD. 点D8.已知外婆家在小明家的正东方,学校在外婆家的北偏西40°方向上,外婆家到学校与小明家到学校距离相等,则学校在小明家的( )A. 南偏东50°方向上B. 南偏东40°方向上C. 北偏东50°方向上D. 北偏东40°方向上9. 如图, 在菱形ABCD中, 点A在x轴上, 点B的坐标为(8,2), 点D的坐标为(0,2), 则点C的坐标为.10.如图, A点的位置应表示为.11.若(2,4)表示教室里第2列第4排的位置,则(4,2)表示教室里第列第排的位置.12.在方格纸上有A.B两点,若以点B为原点建立平面直角坐标系,则点A的坐标为(3,4). 若以点A为原点建立平面直角坐标系,则点B的坐标为.13. 如图, 在平面直角坐标系中, △A1A2A3, △A3A4A5, △A5A6A7, △A7A8A9, …, 都是等边三角形, 且点A1, A3, A5, A7, A9的坐标分别为A1(3,0), A3(1,0), A5(4,0), A7(0,0), A9(5,0), 依据图形所反映的规律, 则A100的坐标为 .14.如图, 长方形ABCD的长为6, 宽为4, 建立平面直角坐标系, 使其中B点的坐标为(-3, -2), 并写出其他三个顶点的坐标.15.如图所示是某学校周边环境示意图,对于学校来说:(1)正北方向有哪些设施?正西方向呢?要明确这些设施相对于学校的位置, 还需要哪些数据?(2)离学校最近的设施是什么?在学校的哪个方向上?这一方向还有其他的设施吗?怎么区分?16.. 如图是某学校的平面示意图,试回答下列问题:(1)若(4,3)表示A教学楼的位置, 则校门、B教学楼、实验楼及宿舍楼的位置如何表示?(8,7)表示哪座建筑的位置?(2)若每格为50m, 则小王进校门后先到B教学楼拿书, 然后到实验楼做实验, 他该怎么走?他走的路程总和是多少?(顺着方格线走)参考答案:1—8 BBDAD BBD9. (4,4)10. 北偏60°约3km11. 4 212. (-3, -4)13. ( , - )14. 解:∵B(-3, -2), 且BC=6, BC∥x轴, ∴C(3, -2), 同理D(3,2), A(-3,2).15. 解: (1)正北方有工厂,正西方有酒店,要明确这些设施对于学校的位置,还需要学校到它们的距离;(2)距学校最近的是公园, 在学校的正东方向, 离学校一个单位长, 这一方向还有运动场, 离学校两个单位长.16. 解:(1)校门(7,1),B教学楼(10,4),实验楼(3,6),宿舍楼(6,11),(8,7)表示图书馆;(2)(7,1)→(10,1)→(10,4)→(10,6)→(3,6)或从校门向北走150米, 再向东走150米到达B教学楼, 从B教学楼向北走100米, 再向西走350米到实验楼, 共走750米.。

2021年湘教版中考数学一轮单元复习:《图形与坐标》(含答案)

2021年湘教版中考数学一轮单元复习:《图形与坐标》(含答案)
其坐标为

(2)若 M 点位于 x 轴的上方,则其坐标为

(3)若 M 点位于 y 轴的右侧,则其坐标为

15.如图,在平面直角坐标系中,点 A 的坐标是 .
16.如图所示,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向 不断移动,每移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2, 0),…,那么点A2015 的坐标为_______.
C.(1.6,1)
D.(2.4,1)
二、填空题
11.点 P(-2,-3)向左平移 1 个单位,再向上平移 4 个单位,则所得到的点的坐标为
12.已知点 A(-1,2),B(-4,6),则|AB|等于________.
13.把命题“同角的余角相等”改写成“如果…那么…”的形式 .
14.已知点 M 到 x 轴的距离为 3,到 y 轴的距离为 4.
20.如图所示,A(1,0),点 B 在 y 轴上,将三角形 OAB 沿 x 轴负方向平移,平移后的图形为三
角形 DEC,且点 C 的坐标为(-3,2).
(1)直接写出点 E 的坐标 ;
(2)在四边形 ABCD 中,点 P 从点 B 出发,沿“BC→CD”移动.若点 P 的速度为每秒 1 个
单位长度,运动时间为 t 秒,回答下列问题:
D.(3,-4)
8.在平面直角坐标系中,点 P(2,x2)在(
)
A.第一象限
B.第四象限
C.第一或者第四象限
D.以上说法都不对
9.如图,四边形 ABCD 的顶点坐标 A(﹣3,6)、B(﹣1,4)、C(﹣1,3)、D(﹣5, 3).若四边形 ABCD 绕点 C 按顺时针方向旋转 90°,再向左平移 2 个单位,得到四边形 A ′B′C′D′,则点 A 的对应点 A′的坐标是( )

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案

中考数学总复习《一次函数图像与坐标轴的问题》专题测试卷带答案班级:___________姓名:___________考号:___________一、单选题(共12题;共24分)1.一次函数y=x﹣3的图象与y轴的交点坐标是()A.(0,﹣3)B.(0,3)C.(3,0)D.(﹣3,0)2.如图,直线y=−x+4与坐标轴交于A、B两点,点C为坐标平面内一点BC=1,点M为线段AC的中点,连接OM,则线段OM的最小值是()A.2√2+12B.2√2−12C.1D.2√23.如图在平面直角坐标系中,直线l1对应的函数表达式为y=2x,直线l2与x,y轴分别交于A、B,且l1∥ l2,OA=2,则线段OB的长为()A.3B.4C.2√2D.2√34.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x−4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.14B.12C.34D.15.已知一次函数的图象与y=2x+3平行,且过点(4,2),则该一次函数与坐标轴围成图形的面积为()A.6B.9C.12D.186.如图,已知直线y=−13x+√10与与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.对于一次函数y=−x−2,下列说法错误的是()A.图象不经过第一象限B.图象与y轴的交点坐标为(0,−2)C.图象可由直线y=−x向下平移2个单位长度得到D.若点(−1,y1),(4,y2)在一次函数y=−x−2的图象上,则y1<y28.若一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为()A.x=3B.x=0C.x=﹣2D.x=﹣39.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 √3与x轴、y轴分别交于A,B,∥OAB=30°,点P在x轴上,∥P与l相切,当P在线段OA上运动时,使得∥P成为整圆的点P个数是()A.6B.8C.10D.1210.一次函数y=ax+b交x轴于点(-5,0),则关于x的方程ax+b=0的解是() A.x=5B.x=-5C.x=0D.无法求解11.下列四个选项中,不符合直线y=x﹣2的性质特征的选项是()A.经过第一、三、四象限B.y随x的增大而增大C.与x轴交于(﹣2,0)D.与y轴交于(0,-2)12.下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个二、填空题(共6题;共7分)13.在直角坐标系xOy中,若直线y=x+4a-12与y轴的交点在x轴上方,则a的取值范围.14.函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.15.如图,一次函数y=x+2的图像与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB 上的点,且∥OPC=45°,PC=PO,则点P的坐标为.16.如果一次函数y=kx+4与两坐标轴围成的三角形面积为4,则k=.17.如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴交于点A,与y轴交于点B,将∥AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为,点D的坐标为.18.如图示直线y=√3x+√3与x轴、y轴分别交于点A、B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动到点B1,线段BB1长度为.三、综合题(共6题;共54分)19.如图,直线y=2x+1与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求直线BP的函数关系式.20.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B′折痕为CE.直线CE的关系式是y=−12x+8,与x轴相交于点F,且AE=3.(1)OC=,OF=;(2)求点B′的坐标;(3)求矩形ABCO的面积.21.已知一次函数y=kx+b的图象经过点(0,1)和(1,-2)。

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析1.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1B.1C.2D.3【答案】B.【解析】关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,因此,∵A(a,2013)与点B(2014,b)关于x轴对称,∴a=2014,b=﹣2013.∴a+b=1,故选B.【考点】关于x轴对称的点的坐标特征.2.与在平面直角坐标系中的位置如图所示,它们关于点成中心对称,其中点,则点的坐标是()A.B.C.D.【答案】B.【解析】由于点A1与点A关于原点O成中心对称,点A(4,2),所以点A1的坐标为(-4,-2),故选B.【考点】中心对称.3.如果将点(-b,-a)称为点(a,b)的“反称点”,那么点(a,b)也是点(-b,-a)的“反称点”,此时,称点(a,b)和点(-b,-a)是互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点:【答案】(3,-3).【解析】首先正确理解题意,然后再找出符合条件的点的坐标即可.试题解析:根据题意可得这样的点是(3,-3).【考点】关于原点对称的点的坐标.4.如图,在平面直角坐标系中,已知点P坐标为(1,0),将线段OP0绕点O顺时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;将线段OP1绕点O顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2,…,这样依次得到线段OP3,OP4,…,OPn .则点P2的坐标为;当n=4m+1(m为自然数)时,点Pn的坐标为.【答案】(0,-4);或.【解析】根据点P0坐标求出OP,然后分别求出OP1,OP2,OP3,OP4,…,OPn,再根据点P2在y轴负半轴写出坐标即可;分m是奇数和偶数两种情况确定出点Pn所在的象限,然后根据等腰直角三角形的性质写出坐标即可:∵P0的坐标为(1,0),∴OP=1.∴OP1=2,OP2=2×2=22, OP3=22×2=23, OP4=23×2=24,…, OPn=2n-1×2=2n.∵每次旋转45°,点P0在x轴正半轴,∴点P2在y轴负半轴. ∴点P2的坐标为(0,-4).∵OPn为所在象限的平分线上,∴.①m为奇数时,点Pn在第二象限,点;②m为偶数时,点Pn在第四象限,综上所述,点Pn的坐标为或.【考点】1.探索规律题(图形的变化类):2.点的坐标;3.等腰直角三角形的性质;4.分类思想的应用.5.将点A(4,0)绕着原点O顺时针方向旋转300角到对应点A/,则点A/的坐标是()A.B.(4,-2)C.D.【答案】C.【解析】根据旋转中心为原点,旋转方向顺时针,旋转角度30°,作出点A的对称图形A′,作A′B⊥x轴于点B,利用30°的函数值求得OB,A′B的长,进而根据A′所在象限可得所求点的坐标.作A′B⊥x轴于点B,∵OA′=OA=4,∠AOA′=30°,∴A′B=OA′=2,OB=OA×cos30°=.所以点A′的坐标为(,-2)故选C.考点: 坐标与图形变化-旋转.6.如图,在平面直角坐标系中,一个质点从原点O出发,每次都沿着与轴成60°角的方向运动一个长度单位,依次向右上、右下、右上、右下…方向移动到A1、A2、A3、A4…,即△OA1A2、△A2A3A4、△A4A5A6…均为正三角形,则(1)点A2的坐标是;(2)点A2013的坐标是.【答案】(1)A2(1,0)(2).【解析】(1)第1次从原点O向右上方运动到点A1(,),第2次从点A1向右下方运动到点A2(1,0);(2)第3次从点A2向右上方运动到点A3(,),第4次从点A3向右下方运动到点A4(2,0),第5次从点A4向右上方运动到点A5( ,),…,以此规律进行下去.所以:.故答案是.【考点】点的坐标.7.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.【答案】.【解析】如图,根据旋转的性质和旋转角度为90°,得CD=OB=2,OD=OB-OD=2-1=1.根据平面直角坐标系中第二象限点的特征,点C的坐标是.【考点】1.旋转的性质;2.平面直角坐标系中点的特征.8.在平面直角坐标系中,已知线段MN的两个端点的坐标分别是M(-4,-1)、N(0,1),将线段MN平移后得到线段M′N′(点M、N分别平移到点M′、N′的位置),若点M′的坐标为(-2,2),则点N′的坐标为.【答案】(2,4) .【解析】从M(-4,-1)到,(-2,2),先向右移动2个单位,再向上移动3个单位,所以点N(0,1)进行同样的移动到达点(2,4).【考点】平面直角坐标系.9.已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为▱ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为()A.6、7B.7、8C.6、7、8D.6、8、9【答案】C.【解析】当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B (0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A(0,0),B(0,4),C(3,5.5),D(3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A错误,选项B错误;选项D错误,选项C正确;故选C.【考点】平面直角坐标系.10.如图1,已知四边形ABCD,点P为平面内一动点.如果∠PAD=∠PBC,那么我们称点P为四边形ABCD关于A、B的等角点. 如图2,以点B为坐标原点,BC所在直线为x轴建立平面直角坐标系,点C的横坐标为6.(1)若A、D两点的坐标分别为A(0,4)、D(6,4),当四边形ABCD关于A、B的等角点P在DC边上时,则点P的坐标为;(2)若A、D两点的坐标分别为A(2,4)、D(6,4),当四边形ABCD关于A、B的角点P 在DC边上时,求点P的坐标;(3)若A、D两点的坐标分别为A(2,4)、D(10,4),点P(x,y)为四边形ABCD关于A、B的等角点,其中x>2,y>0,求y与x之间的关系式.【答案】(1)(6,2);(2)(6,);(3)y=2x或.【解析】(1)画出点A、D坐标,根据四边形ABCD是矩形可得点P在CD的中点处,写出相应坐标即可;(2)易得点P的横坐标为6,利用△PAD∽△PBC可得点P的纵坐标;(3)可分点P在直线AD的上方,或下方两种情况进行探讨:当点P在直线AD的上方时,点P在线段BA的延长线上,利用点A的坐标可得相关代数式;当点P在直线AD的下方时,利用(2)中的相似可得相关代数式.试题解析:(1)(6,2).(2)依题意可得∠D=∠BCD=90°,∠PAD=∠PBC,AD=4,CD=4,BC=6.∴△PAD∽△PBC. ∴.∵PD+PC=CD=4,∴PC=.∴点P的坐标为(6,).(3)根据题意可知,不存在点P在直线AD上的情况;当点P不在直线AD上时,分两种情况讨论:①当点P在直线AD的上方时,点P在线段BA的延长线上,此时有y=2x.②当点P在直线AD的下方时,过点P作MN⊥x轴,分别交直线AD、BC于M、N两点,与(2)同理可得△PAM∽△PBN,PM+PN=4,由点P的坐标为P(x,y),可知M、N两点的坐标分别为M(x,4)、N(x,0).∴.可得,即,即.∴.综上所述,当x>2,y>0时,y与x之间的关系式为y=2x或.【考点】1.动点问题;2.新定义;3. 坐标与图形的对称变化;4.相似三角形的应用;5.数形结合和分类思想的应用.11.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y 轴的正半轴上.点Q在对角线OB上,且OQ=OC,连接CQ并延长CQ交边AB于点P,则点P的坐标为(, ).【答案】。

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析

初三数学图形与坐标试题答案及解析1.点P(2,3)关于x轴的对称点的坐标为.【答案】(2,-3).【解析】关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,从而点P(2,3)关于x轴对称的点的坐标是(2,-3).【考点】关于x轴对称的点的坐标特征.2.与在平面直角坐标系中的位置如图所示,它们关于点成中心对称,其中点,则点的坐标是()A.B.C.D.【答案】B.【解析】由于点A1与点A关于原点O成中心对称,点A(4,2),所以点A1的坐标为(-4,-2),故选B.【考点】中心对称.3.在平面直角坐标系中,将点A(4,2)绕原点逆时针方向旋转90°后,其对应点A′的坐标为.【答案】(﹣2,4).【解析】如答图,A′的坐标为(﹣2,4).【考点】坐标与图形的旋转变化.4.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)【答案】C【解析】由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.【考点】1.坐标确定位置;2.规律型:点的坐标.5.如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB饶点O按顺时针方向旋转120°得到△OA′B′,则点A′的坐标是()A.(2,﹣2)B.(2,﹣2)C.(2,﹣2)D.(2,﹣2)【答案】B.【解析】∵∠ABO=90°,∠A=30°,OA=4,∴∠AOB=60°,OB=OA=2,AB=OB=2,∴A点坐标为(2,2),∵△OAB饶点O按顺时针方向旋转120°得到△OA′B′,∴∠A′OA=120°,OA′=OA=4,∴∠A′OB=60°,∴点A′和点A关于x轴对称,∴点A′的坐标为(2,﹣2).故选B.【考点】坐标与图形变化-旋转.6.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A B, A、B的坐标分别为(2,a)、(b,3),则a+b= .【答案】2.【解析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.∵A(1,0)转化为A(2,a)横坐标增加了1,1B(0,2)转化为B(b,3)纵坐标增加了1,1则a=0+1=1,b=0+1=1,故a+b=1+1=2.考点: 坐标与图形变化-平移.7.如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,3),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.点B的横坐标为3n(n为正整数),当n=20时,则m= .【答案】58.【解析】根据题意,分别找出n=1、2、3、4时的整点的个数,不难发现n增加1,整点的个数增加3,然后写出横坐标为3n时的表达式即可求n=20时,m的值.试题解析:如图,n=1,即点B的横坐标为3时,整点个数为1,n=2,即点B的横坐标为6时,整点个数为4,n=3,即点B的横坐标为9时,整点个数为7,n=4,即点B的横坐标为12时,整点个数为10,…,所以,点B的坐标为3n时,整点个数为3n-2.故当n=20时,m=3×20-2=58.【考点】点的坐标.8.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是()A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)【答案】C【解析】根据关于坐标原点对称的点的坐标的规律:横纵坐标互为相反数,所以(2,-3)关于原点对称的点为(-2,3).9.如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为 ()A.(-3,-5)B.(3,5)C.(3,-5)D.(5,-3)【答案】B【解析】∵P(x,y)关于y轴对称的点的坐标为(-x,y)∴P(-3,5)关于y轴对称的点的坐标为(3,5).10.将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是 ()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)【答案】A【解析】根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.由此将点A的横坐减2,纵坐标不变可得A′的坐标(0,1).故选A.11.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.【答案】(1)如图(2)P(3,3)【解析】(1)连接AB,作线段AB的垂直平分线MN,作∠xOy的平分线OQ,交MN于点P,P 就是所求的点.(2)∵MN∥y轴,且MN上点的横坐标都为3,∴P点的横坐标为3,又因P点到x轴和y轴的距离相等,∴P点的坐标为(3,3).12.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)【答案】B【解析】∵四边形ABCD先向左平移3个单位,再向上平移2个单位,∴点A也先向左平移3个单位,再向上平移2个单位,∴由图可知,A′坐标为(0,1).13.如图,直线与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是.【答案】(7,3).【解析】旋转不改变图形的大小和性质,所得图形与原图形全等,根据全等三角形的性质,即可得到相应线段的长.试题解析:直线y=-x+4与x轴,y轴分别交于A(3,0),B(0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA长,即为3,∴横坐标为OA+OB=OA+O′B′=3+4=7.∴点B′的坐标为(7,3).考点: 1.坐标与图形变化-旋转;2.一次函数的性质.14.如图,在直角坐标系中,矩形OABC的顶点A(10,0),C(0,4),点P是边OA上一点,若△OPC与△ABP相似,则满足条件的点P有____________________ (用坐标表示)【答案】(2,0),(5,0),(8,0).【解析】设P(x,0)则OP=x,AP=10-x.若△OCP∽△APB时,由对应边成比例可求出x的值;若△OCP∽△ABP时,由对应边成比例可求出x的值.试题解析:设P(x,0)则OP=x,AP=10-x.若△OCP∽△APB时,则即:解得:,.若△OCP∽△ABP时,则即:解得:x=5所以点P的坐标分别为(2,0),(5,0),(8,,0).考点: 相似三角形的性质.15.把ΔABC沿轴向下平移3个单位得到,如果A(2,4),则的坐标是().A.(5,4)B.(-1,4)C.(2,7)D.(2,1)【答案】A.【解析】根据图形的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.A(2,4),沿x轴向右平移3个单位之后可得A′的坐标为(2+3,4),即(5,4),故选A.考点: 坐标与图形变化-平移.16.将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为.【答案】(-1,1).【解析】过点A作AC⊥x轴于点C,过点A′作A′D⊥x轴,因为ΔOAB是等腰直角三角形,所以有OC="BC=AC=1," ∠AOB=∠AOB′=45°,则点A的坐标是(1,1),OA=,又∠A′OB′=45°,所以∠A′OD=45°,OA′=,在RtΔA′OD中,cos∠A′OD=,所以OD=1,A′D=1,所以点A′的坐标是(-1,1).【考点】1、旋转的性质;2、等腰三角形的性质.17.已知,则点P()关于原点的对称点P′在第_____象限【答案】四.【解析】点P()关于原点的对称点P′的坐标为()∵,∴,,∴点P′在第四象限.故答案为四.【考点】关于原点对称的点的坐标.18.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是A.炎陵位于株洲市区南偏东约35°的方向上B.醴陵位于攸县的北偏东约16°的方向上C.株洲县位于茶陵的南偏东约40°的方向上D.株洲市区位于攸县的北偏西约21°的方向上【答案】C【解析】根据方向角确定坐标位置对各选项分析判断后利用排除法求解:A、炎陵位于株洲市区南偏东约35°的方向上正确,故本选项错误;B、醴陵位于攸县的北偏东约16°的方向上正确,故本选项错误;C、应为株洲县位于茶陵的北偏西约40°的方向上,故本选项正确;D、株洲市区位于攸县的北偏西约21°的方向上正确,故本选项错误.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非常实用优秀的教育电子word 文档
中考数学第一轮复习专题训练
附参考答案(图形与坐标)
一、填空题:(每题3分,共36分)
1、点A (3,-2)关于 x 轴对称的点是_____。

2、P (2,3)关于原点对称的点是_____。

3、P (-2,3)到 轴的距离是_____。

4、小红坐在第 5 排 24 号用(5,24)表示,则(6,27)表示小红坐在第__排__号。

5、以坐标平面内点A (2,4),B (1,0),C (-2,0)为顶点的三角形的面积是__。

6、如图1,△AOB 的顶点A 的坐标为_____。

7、如图1,△AOB 沿x 轴向右平移1个单位后,得到△A'O'B',则点A'的坐标为___。

8、如图2,矩形ABOC 的长OB =3,宽AB =2,则点A 的坐标为____。

9、如图3,正方形的边为2,则顶点C的坐标为_____。

10、如图4,△AOB 和它缩小后得到的△COD 。

则△AOB 和△COD 的相似比为___。

11、小东要在电话中告诉同学如图5的图形,他应当怎样描述。

_________________________。

12、如图6,一个机器人从O 点出以,向正东方走3米到达A 点,再向正北方走6米到达A 2点,再向正西方向走9米到达A 3点,再向正南方向走12米到达A 4点,再向正东走15米到达A 5点,按如此规律走下去,当机器人走到A 6点时,离O点的距离是_____米。

二、选择题:(每题 4 分,共 24 分)
1、若点A (m ,n )在第三象限,则点B (-m ,n),在( )
A 、第一象限
B 、第二象限
C 、第三名象限
D 、第四象限
2、若P (m ,2)与点Q (3,n )关于 轴的对称,则m 、n 的值是( ) A 、-3,2 B 、3,-2 C 、-3,-2 D 、3,2 3、A 在B 的北偏东30°方向,则B 在A 的( )
A 、北偏东30°
B 、北偏东60°
C 、南偏西30°
D 、南偏西60° 4、下列说法正确的是( )
A 、两个等腰三角形必是位似图形
B 、位似图形必是全等图形
C 、两个位似图形对应点连线可能无交点
D 、两个位似形对应点连线只有一个交点
5、将△ABC 的三个顶点的纵坐标乘以-1,横坐标不变,则所得图形与原图形的关系是( )
A 、关于 x 轴对称
B 、关于 轴对称
C 、关于原点对称
D 、原图形向 轴负方向平移1个单位
6、如图,每个小正方形的边长为1个单位,对于A 、B 的位置,下列说法错误的是( )
A 、
B 向左平移 2 个单位再向下移 2 个单位与 A 重合
y y y
y 1 2 3 4
A A' O 1 2 3 4 y
x B B' (1) A C B O
x y (2) A C O B y x (3) 北 东 南 西 A 1 A 5 A 3 A 2
A 4 (6) A B
D y C 1 2
3 x (4) 1 2 3
B、A 向左平移2 个单位再向下移2 个单位与B 重合
C、B 在A 的东北方向且相距22个单位
D、若点B 的坐标为(0,0),则点A 的坐标为(-2,-2)
三、解答题:(每题9 分,共54 分)
1、在如图所示的国际象棋棋盘中,双方四只子的位置分别是A(b,3),B(d,5),C(f,7),D(h,2),请在图(1)中描出它们的位置。

图(1)图(2)
2、小明的家在学校的北偏东45°方向,距离学校3km 的地方,请在图(2)中标出小明家P 的位置。

3、将图中的△ABC,沿y轴正方向平移3 个单位,画出相应的图形,指出三个顶点的坐标所发生的变化。

4、下列是小明所在学校的平面示意图小明可以如何描述他所住的宿舍位置,以便来访的小学同学能顺利地找到他的宿舍。

5、小海龟位于图中点A处,按下述中令移动:向前前进3
格;向右移90°,前进5
格;向左移90°,前进3格;向左移90°,前进6格,向右移90°,后退6格;最后向右移90°,前进1格,用粗线将小海龟经过的路线描绘出来,看一看是什么图形。

6、假期中,小王与同学到某海岛上旅游,按照旅游图(如图),他们在A点登陆后应当如何走才能到达景点B?
非常实用优秀的教育电子word文档
非常实用优秀的教育电子word 文档
四、(12分)某城市A 地和B 地之间经常有车辆来
往,C 地和D 地也经常有车辆来往,建立如图所示 的直角坐标条,四地的坐标为A (-3,2), B (-1,-4),C (-5,-3),D (1,1) 拟建一座加油站,那么加油站建在哪里, 对大家都方便?给出具体位置。

五、(12分)如图是某镇的部分单位的示意图,若用(2,5)表示图上镇政府的位置,试在图上建立直角坐标系,并用坐标表示出其他各单位的位置。

六、(12分)在直角坐标系中,第一次将△OAB 变换成OA 1B 1,第二次将△OA 1B 1变
换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A(1,3) ,
A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),
B 1(4,0),B 2(8,0),B 3(16,0)。

(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA 3B 3变换成
△OA 4B 4,则A 4的坐标为______,B 4的坐标为______。

(2)按以上规律将△OAB 进行n 次变换得到△AnBn ,则可知An 的坐标为_____,Bn 的坐标为______。

(3)可发现变换的过程中 A 、A 1、A 2…An 纵坐标均为______。

答案:
(十六)
一、1、(3, 2) 2、(-2, -3) 3、2 4、6 27 5、6 6、(1, 3) 7、(2, 3) 8、(-3, 2) 9、(1, 1) 10、3∶2 11、建立坐标,告诉各点的坐标 12、15
A A 1
A
2 A
3 B
B 1 B 2 B 3
y
x
A
二、1、D2、A3、C4、D5、A6、B
三、1-2、略3、横坐标不变纵坐标加34、略5、一面旗子6、向东前进800米,再向北
前进
200米,再向西走300米,再向北前进600米,最后向东前进100米,就可以到达B点
四、找出AB与CD的交叉点,P(-2,-15)
五、小学(3, 6)中学(5, 6)市场(4, 2)公司(5, 1)化工厂(-1, 1)供电所(-1, 3)
六、(1)(16, 3)(32, 0)(2)(2n, 3)(2n+1, 0)(3)3
非常实用优秀的教育电子word文档。

相关文档
最新文档