2021年中考数学专项练习附答案

合集下载

2021年中考数学专项训练: 数学文化(含答案)

2021年中考数学专项训练:  数学文化(含答案)

一、选择题8.(2020·宁波)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长尺,那么可列方程组为A . 4.50.51y x y x ⎩=+=⎧⎨-B . 4.521y x y x ⎧⎨⎩=+=-C . 4.50.51y x y x ⎩=-=⎧⎨+D . 4.521y x y x ⎧⎨⎩=-=- {答案}A{解析}根据“用一根绳子去量一根木条,绳子还剩余4.5尺”得y =x +4.5;由绳子对折再量木条,木条剩余1尺得0.5y =x -1,所以所列方程组为 4.50.51y x y x ⎩=+=⎧⎨-,因此本题选A . 10.(2020湖州)七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形可以制作一副中国七巧板或一副日本七巧板,如图1所示.分别用这两副七巧板试拼如图2中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( )A .1和1B .1和2C .2和1D .2和2【分析】根据要求拼平行四边形矩形即可.【解答】解:中国七巧板和日本七巧板能拼成的个数都是2,如图所示:故选:D .7. (2020·盐城)把19-这9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x 的值为:( )A.1B.3C.4D.67.A,解析:本题考查“幻方”,可利用方程思想,由图可知对角线和为15,从而求出右下角的数为6,再列8+x+6=15,则x=1 因此本题选A.7.(2020·达州)中国奇书《易经》中记载,远古时期,人们通过在绳子上打结来计数,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满5进1,用来记录孩子自出生后的天数由图可知,孩子自出生后的天数是()A.10B.89C.165D.294{答案}D{解析}由“在从右到左依次排列的绳子上打结,满5进1”可知:最右侧一列绳子上的1个结代表1,右侧第二列绳子上的1个结代表5,右侧第三列绳子上的1个结代表25,右侧第四列绳子上的1个结代表125,所以孩子出生的天数=4+3×5+1×25+2×125=294.13.(2020·随州)幻方是相当古老的数学问顾,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1-9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为 .{答案}9{解析}本题考查了有理数的加减运算,解答过程如下:∵每一横行、每一竖行以及两条斜对角线上的数字之和都是15,∴左上角的数字为15-7-2=6,∴右下角的数字为15-6-5=4,∴m=15-4-2=9.(2020·山西)5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似第5题图{答案}D{解析}本题考查了数学文化,泰勒斯的测量原理是图形的相似.10.(2020·内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意方程是()A. ()1552x x =--B. ()1552x x =++C. ()255x x =--D. ()255x x =++{答案} A{解析}本题考查了一元一次方程的应用,找准等量关系是解题的关键.设索为x 尺,杆子为(5x -)尺,则根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x 一元一次方程.设索为x 尺,杆子为(5x -)尺,根据题意得:12x =(5x -)5-.因此本题选A . 10.(2020·临沂)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( ) A.2392x y x y ⎧=+⎪⎪⎨⎪+=⎪⎩B.2392x y x y ⎧=-⎪⎪⎨-⎪=⎪⎩C.2392x y x y ⎧=+⎪⎪⎨-⎪=⎪⎩D.2392x y x y ⎧=-⎪⎪⎨⎪-=⎪⎩ {答案}B{解析}根据题目已知条件“若每辆车乘坐3人,则空余两辆车”可知:实际乘坐车辆数和车辆总数相差2,即:23x y =-;同时,根据“每辆车乘坐2人,则有9人步行”可得:用总人数减去步行的9人,就是实际乘车人数,进而可以计算出车的总数,即:92x y -=;所以符合要求是B 选项. 5. (2020•呼和浩特)中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了( )A .102里B .126里C .192里D .198里【解析】设第六天走的路程为x 里,则第五天走的路程为2x 里,依此往前推,第一天走的路程为32x 里, 依题意,得:x +2x +4x +8x +16x +32x =378,解得:x =6.32x =192,6+192=198,∴此人第一和第六这两天共走了198里,故选:D .二、填空题15.(2020·嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .{答案}10406x x =+ {解析}本题考查了分式方程的应用,根据第二次每人所得与第一次相同列方程求解.第一次分得的钱为10x ,第二次分得的钱为406x +,因此本题答案为10406x x =+.(2020·江西)9.公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是.【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2513.(2020·襄阳)《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为━或﹣﹣),如正北方向的卦为.从图中三根线组成的卦中任取一卦,这一卦中恰有2根━和1根﹣﹣的概率为__________.{答案}14.{解析}因为图中8卦里有2卦“恰有2根━和1根﹣﹣”,而28=14,从而所示事件的概率为14,故答案为14.15.(2020·南通)《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长一十二步,问阔及长各几步?”译文:“一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽各是多少步?”若设矩形田地的宽为x步,则可列方程为▲ .{答案}x(x+12)=864{解析}设矩形田地的宽为x步,那么长就应该是(x+12)步.根据矩形面积=长×宽,得:x(x+12)=864.故答案为:x(x+12)=864.16. (2020·湘潭)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字形式123456789纵式|||||||||||||||第13题图表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下:6728,则表示的数是________.6708{答案}8167{解析}本题考查了算筹计数法,理解题意是解题的关键.根据算筹计数法来计数即可.根据算筹计数法,表示的数是:8167故答案为:816718.(2020·株洲)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形的外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为________尺.(结果用最简根式表示){答案}{解析}根据正方形性质确定△CDE为等腰直角三角形,CE为直径,根据题意求出正方形外接圆的直径CE,求出CD,问题得解.∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∠=45°,∴CE为直径,ECD由题意得AB=2.5,∴CE=2.5-0.25×2=2,∠⨯,∴CD=CE cos ECD=22∠=45°,∴ECD∴正方形CDEF周长为故答案:15.(2020·黄冈)我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈,尺是长度单位,1丈=10尺)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是尺.第15题图{解析}本题考查了勾股定理的实际应用.根据题意设这个水池深x尺,由题意得,x2+52=(x+1)2,解得:x=12,即这个水池深12尺.因此本题答案为12.{答案}1212.(2020•宁夏)我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是26寸.【解析】由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.三、解答题。

2021年九年级中考数学 专题训练 反比例函数及其应用(含答案)

2021年九年级中考数学 专题训练 反比例函数及其应用(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2021中考数学 专题训练 反比例函数及其应用一、选择题(本大题共10道小题) 1. (2019·上海)下列函数中,函数值y 随自变量x 的值增大而增大的是( )A .y =3xB .y =-3xC .y =3xD .y =-3x2. (2020·海南)下列各点中,在反比例函数y =8x图象上的点是( )A .(-1,8)B .(-2,4)C .(1,7)D .(2,4) 3. (2020·湖北孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图像如图所示,则这个反比例函数的解析式为( )A.I =24RB.I =36RC.I =48RD.I =64R4. 若点A (-4,y 1),B (-2,y 2),C (2,y 3)都在反比例函数y=-的图象上,则y 1,y 2,y 3的大小关系是 ( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1 C .y 2>y 1>y 3 D .y 1>y 3>y 25. (2020·黔东南州)如图,点A 是反比例函数y (x >0)上的一点,过点A 作AC ⊥y 轴,垂足为点C ,AC 交反比例函数y 的图象于点B ,点P 是x 轴上的动点,则△P AB 的面积为( )A .2B .4C .6D .86. (2020·黔西南州)如图,在菱形ABOC 中,AB =2,∠A =60°,菱形的一个顶点C 在反比例函数y =kx(k ≠0)的图象上,则反比例函数的解析式为( )A .y =33x- B .y =3x-C .y =3x-D .y =3x7. (2020·内江)如图,点A 是反比例函数ky x=图象上的一点,过点A 作AC x ⊥轴,垂足为点C ,D 为AC 的中点,若AOD ∆的面积为1,则k 的值为( )A.43B.83C. 3D. 48. 若一次函数y =mx +6的图象与反比例函数y =nx在第一象限的图象有公共点,则有( )A. mn ≥-9B. -9≤mn <0C. mn ≥-4D. -4≤mn ≤09. 如图,☉O的半径为2,双曲线的解析式分别为y=和y=-,则阴影部分的面积为 ( )A .4πB .3πC .2πD .π10. (2019·湖北咸宁)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O 重合,顶点A ,B 恰好分别落在函数y =﹣1x (x <0),y =4x(x >0)的图象上,则sin ∠ABO 的值为A .13B 3C 5D 5二、填空题(本大题共8道小题)11. 已知反比例函数y=kx(k≠0)的图象如图所示,则k的值可能是________(写一个即可).12. 如图,直线y1=kx(k≠0)与双曲线y2=2x(x>0)交于点A(1,a),则y1>y2的解集为________.13. 已知点(m-1,y1),(m-3,y2)是反比例函数y=mx(m<0)图象上的两点,则y1________y2(填“>”或“=”或“<”).14. 如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.15. 如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16. (2019•山西)如图,在平面直角坐标中,点O为坐标原点,菱形ABCD的顶点B在x轴的正半轴上,点A坐标为(–4,0),点D的坐标为(–1,4),反比例函数y=kx(x>0)的图象恰好经过点C,则k的值为__________.17. 如图所示,反比例函数y=kx(k≠0,x>0)的图象经过矩形OABC的对角线AC 的中点D,若矩形OABC的面积为8,则k的值为________.18. (2019·浙江宁波)如图,过原点的直线与反比例函数ykx(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为__________.三、解答题(本大题共6道小题)19. 如图,已知反比例函数y=(x>0)的图象与一次函数y=-x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.20. 如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于第一、三象限内的A(3,5),B(a,-3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB-PC最大,求PB-PC的最大值及点P的坐标;(3)直接写出当y1>y2时,x的取值范围.21. 如图,一次函数y=kx+b与反比例函数y=的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M,N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b->0中x的取值范围;(3)求△AOB的面积.22. 如图,一次函数y=kx+b(k≠0)与y轴交于点B(0,9),与x轴的负半轴交于点A,且tan∠BAO=1.反比例函数y=mx与一次函数y=kx+b的图象交于C、D两点,且BD2+BC2=90.(1)求一次函数的解析式;(2)求反比例函数的解析式;(3)某二次函数的图象经过线段CD的中点,且以B点为顶点,求此二次函数的解析式.23. 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,-4),连接AO,AO=5,sin∠AOC=3 5.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.24. (2019•甘肃)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(–1,n)、B(2,–1)两点,与y轴相交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系.2021中考数学专题训练反比例函数及其应用-答案一、选择题(本大题共10道小题)1. 【答案】A【解析】A、该函数图象是直线,位于第一、三象限,y随x的增大而增大,故本选项正确.B、该函数图象是直线,位于第二、四象限,y随x的增大而减小,故本选项错误.C、该函数图象是双曲线,位于第一、三象限,在每一象限内,y随x的增大而减小,故本选项错误.D、该函数图象是双曲线,位于第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.2. 【答案】D【解析】∵反比例函数的系数8,∴该反比例函数图象上的点的横坐标与纵坐标之积为8,故选D.3. 【答案】C【解析】设反比例函数解析式为I=kR,把图中点(8,6)代入得:k=8×6=48.故选C.4. 【答案】C[解析]由图象可知y2>y1>y3,故选C.5. 【答案】A【解析】利用反比例函数中比例系数k的几何意义求解.如图,连接OA、OB、PC.∵AC⊥y轴,∴S△APC=S△AOC|6|=3,S△BPC=S△BOC|2|=1,∴S△PAB=S△APC﹣S△BPC=2.6. 【答案】B【解析】本题考查了待定系数法、菱形的性质、点的坐标的意义.因为在菱形ABOC中,∠A=60°,菱形边长为2,所以OC=2,∠COB=60°.如答图,过点C作CD⊥OB于点D,则OD=OC·cos∠COB=2×cos60°=2×12=1,CD=OC·sin∠COB=2×sin60°=2×33C在第二象限,所以点C的坐标为(-13.因为顶点C在反比例函数y═kx31k-,得k =3所以反比例函数的解析式为y=3,因此本题选B.yxDBA CO7. 【答案】D【解析】本题考查了反比例函数系数k的几何意义、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.先设出点A的坐标,进而表示出点D的坐标,利用△ADO的面积建立方程求出2mn=,即可得出结论.∵点A的坐标为(m,2n),∴2mn k=,∵D为AC的中点,∴D(m,n),∵AC⊥x轴,△ADO的面积为1,∴()ADO11121222S AD OC n n m mn=⋅=-⋅==,∴2mn=,∴24k mn==,因此本题选D.8. 【答案】A【解析】如解图,根据题意,两个函数的图象在第一象限有公共点,则关于x的方程nx=mx+6有实数根,方程化简为:mx2+6x-n=0,显然m≠0,Δ=36+4mn≥0,所以mn≥-9,由于一次函数与反比例函数y=nx在第一象限的图象有公共点,所以n>0,显然当一次函数y随x的增大而增大时,两个函数图象在第一象限有交点,即mn≥-9符合题意.9. 【答案】C[解析]根据反比例函数y=,y=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=π×22=2π.故选C.10. 【答案】D【解析】如图,过点A,B分别作AD⊥x轴,BE⊥x轴,垂足为D,E,∵点A在反比例函数y=﹣1x(x<0)上,点B在y=4x(x>0)上,∴S△AOD=1,S△BOE=4,又∵∠AOB=90°∴∠AOD=∠OBE,∴△AOD∽△OBE,∴(AOOB)2=14AODOBESS=,∴12AOOB=.设OA=m,则OB=2m,AB22(2)5m m m+=,在Rt △AOB 中,sin ∠ABO=55OA AB m==,故选D .二、填空题(本大题共8道小题)11. 【答案】-2(答案不唯一) 【解析】根据反比例函数的图象在二、四象限,则k <0,如k =-2(答案不唯一).12. 【答案】x >1 【解析】当x >1时,直线的图象在双曲线图象的上方,即y 1>y 2.因此,y 1>y 2的解集为x >1.13. 【答案】> 【解析】∵m <0,∴反比例函数y =mx的图象位于第二、四象限,且在每一象限内y 随x 的增大而增大,又∵m -1>m -3,∴y 1>y 2.14. 【答案】-6 【解析】如解图,连接AC 交y 轴于点D ,因为四边形ABCO 是菱形,且面积为12,则△OCD 的面积为3,利用反比例函数k 的几何意义可得k =-6.15. 【答案】6 【解析】 设A 点的坐标为(a ,9a),直线OA 的解析式为y =kx ,于是有9a =ka ,∴k =9a 2,直线为y =9a 2x ,联立得方程组⎩⎪⎨⎪⎧y =9a 2x y =1x,解得B 点的坐标为(a 3,3a ),∵AO =AC ,A(a ,9a ),∴C(2a ,0),∴S △ABC =S △AOC -S △BOC =12×2a×9a -12×2a×3a =9-3=6.16. 【答案】16 【解析】过点C 、D 作CE ⊥x 轴,DF ⊥x 轴,垂足为E 、F ,∵四边形ABCD 是菱形,∴AB =BC =CD =DA , 易证△ADF ≌△BCE ,∵点A (–4,0),D (–1,4),∴DF =CE =4,OF =1,AF =OA –OF =3, 在Rt △ADF 中,AD =2234+=5,∴OE =EF –OF =5–1=4,∴C (4,4),∴k =4×4=16, 故答案为:16.17. 【答案】2【解析】由题意可知,D 点在反比例函数图象上,如解图所示,过点D 作DE ⊥x 轴于点E ,作DF ⊥y 轴于点F ,则k =x D ·y D =DF·DE =S 矩形OEDF ,又D 为对角线AC 中点,所以S 矩形OEDF =14S 矩形OABC =2,∴k =2.18. 【答案】6 【解析】如图,连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF ,∵过原点的直线与反比例函数y kx=(k >0)的图象交于A ,B 两点, ∴A 与B 关于原点对称, ∴O 是AB 的中点, ∵BE ⊥AE , ∴OE =OA , ∴∠OAE =∠AEO , ∵AE 为∠BAC 的平分线, ∴∠BAE =∠DAE , ∴∠DAE =∠AEO , ∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,km ),∵AC =3DC ,DH ∥AF ,∴3DH =AF , ∴D (3m ,3k m ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC 14=S △ADG ,∵S △AOC =S △AOF +S 梯形AFHD +S △HDC 1122k =+⨯(DH +AF )×FH +S △HDC 114223k k m =+⨯⨯2m 112142243236k k km k m +⨯⨯⨯=++=12,∴2k =12,∴k =6;故答案为6.三、解答题(本大题共6道小题)19. 【答案】解:(1)把B (6,n )代入一次函数y=-x +4中,可得n=-×6+4=1,所以B 点的坐标为(6,1).又B 在反比例函数y=(x>0)的图象上,所以k=xy=1×6=6,所以k 的值为6,n 的值为1.(2)由(1)知反比例函数的解析式为y=.当x=2时,y==3;当x=6时,y==1,由函数图象可知,当2≤x ≤6时函数值y 的取值范围是1≤y ≤3.20. 【答案】解:(1)将A(3,5)的坐标代入y2=得,5=,∴m=15.∴反比例函数的解析式为y2=.当y2=-3时,-3=,∴x=-5,∴点B的坐标为(-5,-3).将A(3,5),B(-5,-3)的坐标代入y1=kx+b得,解得∴一次函数的解析式为y1=x+2.(2)令y1=0,则x+2=0,解得x=-2.∴点C的坐标为(-2,0).设一次函数图象与y轴交于点D.令x=0,则y1=2.∴点D的坐标为(0,2).连接PB,PC,当B,C和P不共线时,由三角形三边关系知,PB-PC<BC; 当B,C和P共线时,PB-PC=BC,∴PB-PC≤BC.由勾股定理可知,BC==3.∴当P与D重合,即P点坐标为(0,2)时,PB-PC取最大值,最大值为3.(3)当y1>y2时,x的取值范围为x>3或-5<x<0.21. 【答案】解:(1)∵点A在反比例函数y=图象上,∴=4,解得m=1,∴点A的坐标为(1,4).又∵点B 也在反比例函数y=图象上,∴=n ,解得n=2,∴点B 的坐标为(2,2).∵点A ,B 在y=kx +b 的图象上,∴,解得 ∴一次函数的解析式为y=-2x +6.(2)根据图象得:kx +b ->0时,x 的取值范围为x<0或1<x<2.(3)∵直线y=-2x +6与x 轴的交点为N ,∴点N 的坐标为(3,0),∴S △AOB =S △AON -S △BON =×3×4-×3×2=3.22. 【答案】(1)∵tan ∠BAO =1,∴OA =OB ,∵点B (0,9),∴点A (-9,0),∴⎩⎨⎧b =9-9k +b =0,解得⎩⎨⎧k =1b =9,∴一次函数的解析式为y =x +9;(2)联立⎩⎪⎨⎪⎧y =x +9y =m x得x 2+9x -m =0,设点C 、D 的横坐标分别为x 1、x 2,∵BD 2+BC 2=90,∴(2x 2)2+(2x 1)2=90即2(x 21+x 22)=90,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=(-9)2-2(-m )=45,即81+2m =45,解得m =-18,∴反比例函数解析式为y =-18x ;(3)设所求的二次函数的解析式为y =ax 2+9(a ≠0),由(1)和(2)得⎩⎪⎨⎪⎧y =x +9y =-18x,解得⎩⎨⎧x 1=-3y 1=6或⎩⎨⎧x 2=-6y 2=3,则线段CD 的中点为(x 1+x 22,y 1+y 22)即(-92,92),代入y =ax 2+9得92=(-92)2a +9,解得a =-29,故所求的二次函数的解析式为y =-29x 2+9.23. 【答案】(1)【思路分析】如解图,过点A 作AE ⊥x 轴于点E ,由三角函数求出点A 坐标,再用待定系数法求出反比例函数的解析式便可.解:如解图过点A 作AE ⊥x 轴于点E ,∵OA =5,sin ∠AOC =35,∴AE =OA·sin ∠AOC =5×35=3,OE =OA 2-AE 2=4,∴A(-4,3),(3分)设反比例函数的解析式为y =k x (k≠0),把A(-4,3)代入解析式,得k =-12,∴反比例函数的解析式为y =-12x .(5分)(2)【思路分析】先把B 点坐标代入所求出的反比例函数解析式,求出m 的值,进而求出直线AB 的解析式,再求出点D 的坐标,便可求△AOD 与△BOD 的面积之和,即△AOB 的面积.解:把B(m ,-4)代入y =-12x 中,得m =3,∴B(3,-4).设直线AB 的解析式为y =kx +b ,把A(-4,3)和B(3,-4)代入得,⎩⎨⎧-4k +b =33k +b =-4, 解得⎩⎨⎧k =-1b =-1,(7分) ∴直线AB 的解析式为y =-x -1,(8分)则AB 与y 轴的交点D(0,-1),∴S △AOB =S △AOD +S △BOD =12×1×4+12×1×3=3.5.(10分)24. 【答案】(1)一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)S△ABD=3.(3)y1<y2.【解析】(1)∵反比例函数y=mx经过点B(2,–1),∴m=–2,∵点A(–1,n)在y=2x-上,∴n=2,∴A(–1,2),把A,B坐标代入y=kx+b,则有221k bk b-+=+=-⎧⎨⎩,解得11kb=-=⎧⎨⎩,∴一次函数的解析式为y=–x+1,反比例函数的解析式为y=–2x.(2)∵直线y=–x+1交y轴于C,∴C(0,1),∵D,C关于x轴对称,∴D(0,–1),∵B(2,–1),∴BD∥x轴,∴S△ABD=12×2×3=3.(3)∵M(x1,y1)、N(x2,y2)是反比例函数y=–2x上的两点,且x1<x2<0,s∴y1<y2.一天,毕达哥拉斯应邀到朋友家做客。

2021年中考数学单项式的次数和系数专题卷(附答案)

2021年中考数学单项式的次数和系数专题卷(附答案)

2021年中考数学单项式的次数和系数专题卷(附答案)一、单选题1.单项式的系数是()A. 5B.C. 2D.二、填空题2.单项式的次数是________.3.是________次单项式.4.单项式的次数________.三、解答题5.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求的值.6.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求的值7.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同.求:的值.8.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n 的值.9.符合下列条件的单项式有几个? 请你一一写出来.①系数为;②所含字母为m,n;③次数为5.四、综合题10.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式- x2y4的次数为c.(1)a=________,b=________,c=________.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.11.字母a,b,c,d所表示的数如下表:字母表示的数的平方根的相反数单项式的系数(1)直接写出上表中各字母所表示的数(2)计算(1)中最大数与最小数的差。

答案一、单选题1. B二、填空题2. 53. 34.3三、解答题5. 由多项式是六次四项式,则m+1+2=6,m=3,由单项式的次数与这个多项式的次数相同,则2n+2=6,n=2,当m=3,n=2时,=13.6. 解:因为多项式是六次四项式,所以这个多项式里最高的项为,所以,因为单项式的次数与多项式的次数相同,所以单项式的次数为,所以,所以.7. 解:∵多项式是六次四项式,∴2+m+1=6,解得:m=3.又∵单项式4.5x2n y5﹣m的次数也为6,∴2n+5﹣m=6,解得:n=2,故可得:m2+n2= 32+22=13.8. ∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.9. 解:由题意可得:符合条件的单项式有:m4n,m3n2,m2n3,mn4.四、综合题10. (1)﹣4;1;6(2)解:如图所示,,点A,B,C即为所求.(3)解:AB=b-a=1-(-4)=5,AC=c-a=6-(-4)=10. ∵10÷5=2,∴AC=2AB.11. (1)解:a为的平方根,∴,b为的相反数,∴c= = =a是单项式的系数,则(2)解:故最大的是,最小的是则最大与最小的两个数的差为:。

2021年中考数学复习:三角形的角平分线、中线和高 专项练习题(含答案)

2021年中考数学复习:三角形的角平分线、中线和高 专项练习题(含答案)

2021年中考数学复习:三角形的角平分线、中线和高专项练习题一.选择题1.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90°C.∠BAF=∠CAF D.S△ABC =2S△ABF2.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.A.4个B.3个C.2个D.1个3.钝角三角形三条高所在的直线交于()A.三角形内B.三角形外C.三角形的边上D.不能确定4.画△ABC中AC边上的高,下列四个画法中正确的是()A.B.C.D.5.下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点6.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.7.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.8.如图所示,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有()A.1条B.2条C.3条D.5条9.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定10.如图,在△ABC中,AB边上的高是()A.AD B.BE C.BF D.CF二.填空题11.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.12.已知:AD、AE分别是△ABC的高,中线,BE=6,CD=4,则DE的长为.13.若线段AD是△ABC的中线,且BD=3,则BC长为.14.如图,在△ABC中,BC边上的中垂线DE交BC于点D,交AC于点E,AB=5cm,AC=8cm,则△ABE的周长为.15.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.16.如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长多4cm.若AB=16cm,那么AC=cm.。

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021 中考数学专题训练:全等三角形一、选择题1. 下列各图中a,b,c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙2. 如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能..判定△ABE≌△ACD()A. ∠B=∠CB. AD=AEC. BD=CED. BE=CD3. 如图,AB⊥CD,且AB=CD.E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+cB.b+cC.a-b+cD.a+b-c4. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC .BC =DC ,∠A =∠D D .∠B =∠E ,∠A =∠D5. (2019•临沂)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥,若4AB =,3CF =,则BD 的长是A .0.5B .1C .1.5D .26. 如图,已知点A ,B ,C ,D 在同一条直线上,△AEC ≌△DFB.如果AD=37 cm ,BC=15 cm ,那么AB 的长为 ( )A .10 cmB .11 cmC .12 cmD .13 cm7. 如图,AB ⊥BC ,BE ⊥AC ,垂足分别为B ,E ,∠1=∠2,AD=AB ,则下列结论正确的是( )A .∠1=∠EFDB .BE=EC C .BF=CD D .FD ∥BC8. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3等于( )A .90°B .120C .135°D .150°9. 如图,点G 在AB 的延长线上,∠GBC ,∠BAC 的平分线相交于点F ,BE ⊥CF于点H .若∠AFB =40°,则∠BCF 的度数为( )A.40°B.50°C.55°D.60°10. 如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上二、填空题11. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.12. 如图,已知点B,C,F,E在同一直线上,∠1=∠2,∠A=∠D,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是____________(只需写出一个).13. 如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A 为圆心,小于AC的长为半径画弧,分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为________.14. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC≌△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).15. (2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.16. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.17. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.18. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题19. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.20. 如图,AD∥BC,AB⊥BC于点B,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F.(1)若∠ABF=63°,求∠ADE的度数;DE=BF+EF.21. 如图②,在△ABC中,AB=AC,AB>BC,点D在边BC上,且CD=2BD,点E,F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,求△ABE与△CDF的面积之和.2021 中考数学 专题训练:全等三角形-答案一、选择题1. 【答案】B [解析]依据SAS 全等判定可得乙三角形与△ABC 全等;依据AAS 全等判定可得丙三角形与△ABC 全等,不能判定甲三角形与△ABC 全等.故选B .2. 【答案】D【解析】A.当∠B =∠C 时,在△ABE 与△ACD 中,⎩⎨⎧∠A =∠AAB =AC ∠B =∠C,∴△ABE ≌△ACD (ASA);B.当AD =AE 时,在△ABE 与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);C.当BD =CE 时,∵AB =AC ,∴AD =AE ,在△ABE与△ACD 中,⎩⎨⎧AB =AC∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS);D.当BE =CD 时,在△ABE与△ACD 中,有AB =AC ,BE =BD ,∠A =∠A ,只满足两边及一对角对应相等的两个三角形不一定全等.故选D.3. 【答案】D [解析]∵AB ⊥CD ,CE ⊥AD ,BF ⊥AD , ∴∠CED=∠AFB=90°,∠A=∠C , 又∵AB=CD ,∴△CED ≌△AFB,∴AF=CE=a ,DE=BF=b ,DF=DE -EF=b -c , ∴AD=AF +DF=a +b -c ,故选D .4. 【答案】C5. 【答案】B【解析】∵CF AB ∥,∴A FCE ∠=∠,ADE F ∠=∠,在ADE △和FCE △中,A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE △≌△,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选B .6. 【答案】B[解析] ∵△AEC ≌△DFB ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=37 cm ,BC=15 cm , ∴AB==11(cm).7. 【答案】D[解析] 在△AFD 和△AFB 中,∴△AFD ≌△AFB. ∴∠ADF=∠ABF . ∵AB ⊥BC ,BE ⊥AC , ∴∠BEC=∠ABC=90°.∴∠ABF+∠EBC=90°,∠C+∠EBC=90°. ∴∠ADF=∠ABF=∠C. ∴FD ∥BC.8. 【答案】C[解析] 在图中容易发现全等三角形,将∠3转化为与其相等的对应角后可以看出∠3与∠1互余.故∠1+∠3=90°.易得∠2=45°,故∠1+∠2+∠3=135°.9. 【答案】B[解析] 如图,过点F 分别作FZ ⊥AE 于点Z ,FY ⊥CB 于点Y ,FW ⊥AB 于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.10. 【答案】D【解析】如解图,①当OM1=2时,点N1与点O重合,△PMN 是等边三角形;②当ON2=2时,点M2与点O重合,△PMN是等边三角形;③当点M3,N3分别是OM1,ON2的中点时,△PMN是等边三角形;④当取∠M1PM4=∠OPN4时,易证△M1PM4≌△OPN4(SAS),∴PM4=PN4,又∵∠M4PN4=60°,∴△PMN是等边三角形,此时点M,N有无数个,综上所述,故选D.二、填空题11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】AB=DE(答案不唯一)13. 【答案】65°14. 【答案】答案不唯一,如∠C=∠E或AB=FD等15. 【答案】70【解析】∵∠ABC=90°,AB=AC,∴∠CBF=180°–∠ABC=90°,∠ACB=45°,在Rt△ABE和Rt△CBF中,AB CBAE CF=⎧⎨=⎩,∴Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为:70.16. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.17. 【答案】两直线平行,内错角相等SAS全等三角形的对应角相等内错角相等,两直线平行18. 【答案】32°[解析] ∵PD=PE=PF,PD⊥AB交BA的延长线于点D,PE⊥AC 于点E,PF⊥BC交BC的延长线于点F,∴CP平分∠ACF,BP平分∠ABC.∴∠PCF=12∠ACF,∠PBF=12∠ABC.∴∠BPC=∠PCF-∠PBF=12(∠ACF-∠ABC)=12∠BAC=32°.三、解答题19. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,即AC平分∠BAD. (2)由(1)知∠BAE=∠DAE.在△BAE与△DAE中,∴△BAE≌△DAE(SAS),∴BE=DE.20. 【答案】解:(1)∵AD∥BC,AB⊥BC,∴∠ABC=∠BAD=90°.∵DE⊥AC,BF⊥AC,∴∠BFA=∠AED=90°.∴∠ABF+∠BAF=∠BAF+∠DAE=90°. ∴∠DAE=∠ABF=63°.∴∠ADE=27°.(2)证明:由(1)得∠DAE =∠ABF ,∠AED =∠BFA =90°.在△DAE 和△ABF 中,⎩⎨⎧∠DAE =∠ABF ,∠AED =∠BFA ,AD =BA ,∴△DAE ≌△ABF(AAS). ∴AE =BF ,DE =AF.∴DE =AF =AE +EF =BF +EF.21. 【答案】∵∠1=∠2=∠BAC ,且∠1=∠BAE +∠ABE ,∠2=∠CAF +∠ACF ,∠BAC =∠BAE +∠CAF ,∴∠BAE =∠ACF ,∠ABE =∠CAF.在△ABE 和△CAF 中,⎩⎨⎧∠BAE =∠ACF ,AB =CA ,∠ABE =∠CAF ,∴△ABE ≌△CAF(ASA). ∴S △ABE =S △CAF .∴S △ABE +S △CDF =S △CAF +S △CDF =S △ACD . ∵CD =2BD ,△ABC 的面积为15, ∴S △ACD =10. ∴S △ABE +S △CDF =10.。

2021年中考数学复习:圆周角定理 专项练习题1(含答案)

2021年中考数学复习:圆周角定理 专项练习题1(含答案)

2021年中考数学复习:圆周角定理专项练习题11.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且,若∠ABC=∠CAD,则弦AC=.2.如图,⊙O的直径AB垂直于弦CD,垂足为E.如果∠B=60°,AC=6,那么CD的长为.3.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=10,BC=4,则DP=.4.如图,四边形ABCD内接于⊙O,若∠BCD=130°,则∠BOD=°.5.如图,⊙O上有两定点A、B,点P是⊙O上一动点(不与A、B两点重合),若∠OAB =35°,则∠APB的度数是.6.如图,点A,B,C在⊙O上,∠BOC=2∠AOB,如果∠BAC=40°,那么∠ACB的度数是.7.如图,在⊙O中,弦CD与直径AB相交于点P,∠ABC=65°.则∠CDB的大小等于.8.如图,AB是⊙O的弦,OC⊥AB,垂足为C,将劣弧沿弦AB折叠交OC于D且CD =OD,若AB=2,则⊙O的直径为.9.如图,点A,B,C在⊙O上,∠ABC=90°,BD平分∠ABC交⊙O于点D.若CD=5,BC=8,则AB的长为.10.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),M,N分别是BP,AB的中点.若AB=4,∠APB=30°,则MN长的最大值为.11.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为.12.如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于.13.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.14.如图,A、D是⊙O上的两点,BC是直径,若∠D=32°,则∠OAC=度.15.如图,小杨将一个三角板放在⊙O上,使三角板的一直角边经过圆心O,测得AC=10cm,AB=6cm,则⊙O的半径长为cm.。

2021年中考数学有理数的除法专题(附答案)

2021年中考数学有理数的除法专题(附答案)

2021年中考数学有理数的除法专题(附答案)一、单选题1.下列运算结果等于2的是()A. -12B. -(-2)C. -1÷2D. (-1)×22.计算:﹣4÷2的结果是()A. ﹣8B. 8C. ﹣2D. 23.数学课上,李老师出示了下列4道计算题:① ;②-22;③± ;④8÷(-2).其中运算结果相同的题目是()A. ①②B. ①③C. ②④D. ③④4.如图,数轴上有、、三点,O为原点,、分别表示仙女座星系、M87黑洞与地球的距离(单位:光年).下列选项中,与点表示的数最为接近的是()A. B. C. D.5.如图,若A,B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD.6.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A. a>bB. a<bC. ab>0D. >07.下列运算的结果中,是正数的是()A. (﹣2014)﹣1B. ﹣(2014)﹣1C. (﹣1)×(﹣2014)D. (﹣2014)÷20148.下列各式中,值最小的是()A. ﹣5+3B. ﹣(﹣2)3C.D. 3÷(﹣)9.已知456456=23×a×7×11×13×b,其中a、b均为质数.若b>a,则b-a之值为()A. 12B. 14C. 16D. 1810.的结果是()A. B. C. D.11.实数a、b在数轴上的位置如图所示,下列各式成立的是()A. B. a-b>0 C. ab>0 D. a+b>012.在算式(﹣2)□(﹣3)的□中填上运算符号,使结果最小,运算符号是()A. 加号B. 减号C. 乘号D. 除号二、填空题13.计算:﹣12÷3=________.14.对于两个非零实数x,y,定义一种新的运算:.若,则的值是________.三、解答题15.计算6÷(﹣),方方同学的计算过程如下,原式=6 +6 =﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.答案一、单选题1.B2.C3.C4.D5.B6.A7.C8.D9.C 10.B 11.A 12.A二、填空题13.-4 14.-1三、解答题15.解:方方的计算过程不正确,正确的计算过程是:原式=6÷ =6÷(﹣)=6×(﹣6)=﹣36.。

2021年九年级数学中考专题训练:三角形(含答案)

2021年九年级数学中考专题训练:三角形(含答案)

2021中考专题训练:三角形一、选择题1. 下列长度的三根小木棒能构成三角形的是()A. 2 cm,3 cm,5 cmB. 7 cm,4 cm,2 cmC. 3 cm,4 cm,8 cmD. 3 cm,3 cm,4 cm2. 如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A. 35°B. 95°C. 85°D. 75°3. (2019•荆门)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是A.95︒B.100︒C.105︒D.110︒4. 如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A. 5B. 7C. 8D. 105. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20 25 30 35小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为()A.10元B.15元C.20元D.25元6. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种7. (2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM 的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是A.15°B.30°C.45°D.60°8. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A.70°B.108°C.110°D.125°二、填空题9. 如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为.10. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.11. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.12. 如图,已知∠A=54°,∠B=31°,∠C=21°,则∠1=________°.13. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF=°.14. 如图,△ABC三边的中线AD,BE,CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是________.15. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.16. 如图,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是.三、解答题17. 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.18. 如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=25°,∠E=30°,求∠BAC的度数.19. 在△ABC中,∠B=55°,且3∠A=∠B+∠C,求∠A和∠C的度数.20. 如图,AD,AE分别是△ABC的角平分线和高.(1)若∠B=50°,∠C=60°,求∠DAE的度数;(2)若∠C>∠B,猜想∠DAE与∠C-∠B之间的数量关系,并加以证明.21. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.22. 观察与转化思想如图是五角星形,求∠A +∠B +∠C +∠D +∠E的度数.2021中考专题训练:三角形-答案一、选择题1. 【答案】D 【解析】根据三角形两边之和大于第三边,两边之差小于第三边,进行判断,A 中2+3=5不能构成三角形;B 中2+4<7不能构成三角形;C 中3+4<8不能构成三角形;只有D 选项符合.2. 【答案】C 【解析】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE =60°,∴∠ACD =2∠ACE =120°,∵∠A +∠B =∠ACD ,∠B =35°,∴∠A =∠ACD -∠B =120°-35°=85°.3. 【答案】C 【解析】如图,由题意得,2454903060∠=︒∠=︒︒=︒,-,∴3245∠=∠=︒, 由三角形的外角性质可知,134105∠=∠+∠=︒,故选C .4. 【答案】D【解析】∵DE、DF是△ABC的中位线,∴DE∥AB,DF∥BC,DE=12AB,DF=12BC,∴四边形BEDF是平行四边形,∵AB=4,BC=6,∴DE=BF=2,DF=BE=3,∴四边形BEDF的周长为:2(DE+DF)=10.5. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.6. 【答案】C7. 【答案】B【解析】∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=12∠ACM,则∠BEC=∠ECM–∠EBM=12×(∠ACM–∠ABC)=12∠A=30°,故选B.8. 【答案】C[解析] ∵在△ABC中,∠ACB=70°,∠1=∠2,∴∠2+∠BCP=∠1+∠BCP=∠ACB=70°.∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.二、填空题9. 【答案】34°[解析]根据题意可得BA=BD,∵∠B=40°,∴∠BAD=∠BDA=70°.∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°,∴∠DAC=∠BAC-∠BAD=34°,故答案为34°.10. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.11. 【答案】54°【解析】如解图,过点C 作直线CE ∥a ,则a ∥b ∥CE ,则∠1=∠ACE ,∠2=∠BCE ,∵∠ACE +∠BCE =90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.12. 【答案】106[解析] 由三角形的外角性质可知,∠CDB =∠A +∠C =75°,∴∠1=∠CDB +∠B =106°.13. 【答案】68[解析] ∵∠AFD=158°,∴∠CFD=180°-∠AFD=180°-158°=22°. ∵FD ⊥BC , ∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°. ∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°. ∴∠EDF=180°-90°-22°=68°.14. 【答案】4【解析】∵△ABC 三边的中线AD ,BE ,CF 相交于点G ,∴S △ABD=S △ACD =12S △ABC =12×12=6,AG =2GD ,∴由三角形的面积公式得S △ACG =23S△ACD =4,又∵AE =CE ,∴S △CEG =12S △ACG =2,同理S △BGF =2,∴S 阴影=2+2=4.15. 【答案】4∶3 【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE =DF =h ,则S △ABD S △ACD=12AB·h12AC·h =43.16. 【答案】190°[解析] 如图,正九边形的一个内角为=140°,∠3+∠4=90°,则∠1+∠2=140°×2-90°=190°.三、解答题17. 【答案】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°. ∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.18. 【答案】解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.19. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.20. 【答案】解:(1)在△ABC中,∵∠B=50°,∠C=60°,∴∠BAC=70°.∵AD是△ABC的角平分线,∴∠BAD =∠DAC =12∠BAC =35°. ∵AE 是BC 上的高,∴∠AEB =90°. ∴∠BAE =90°-∠B =40°. ∴∠DAE =∠BAE -∠BAD =5°. (2)∠DAE =12(∠C -∠B). 证明:∵AE 是△ABC 的高, ∴∠AEC =90°. ∴∠EAC =90°-∠C. ∵AD 是△ABC 的角平分线, ∴∠DAC =12∠BAC.∵∠BAC =180°-∠B -∠C , ∴∠DAC =12(180°-∠B -∠C). ∴∠DAE =∠DAC -∠EAC =12(180°-∠B -∠C)-(90°-∠C) =12(∠C -∠B).21. 【答案】解:∵∠NBC =60°,∠NBA =∠BAS =45°, ∴∠ABC =∠NBC -∠NBA =60°-45°=15°. 又∵∠BAC =∠BAS +∠SAC =45°+30°=75°, ∴在△ABC 中,∠C =180°-(75°+15°)=90°.22. 【答案】解:如图,∵∠1是△CEG 的外角,∴∠1=∠C +∠E.同理可得∠AFB =∠B +∠D.∵在△AFG中,∠A+∠1+∠AFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学压轴题训练1. (2016青海)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致为( )2. (2015资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C →D→O的路线匀速运动,设∠APB=y(单位:度),那么y与P运动的时间x(单位:秒)的关系图是( )3. 如图,正方形ABCD的顶点A(0,22),B(22,0),顶点C,D位于第一象限,直线l:x=t,(0≤t≤2)将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是( )4. (2016泰安)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )5. 如图,正方形ABCD边长为1,E、F、G、H分别为AB、BC、CD、DA边上的点,且AE =BF=CG=DH.设小正方形EFGH的面积为y,AE=x,则y关于x的函数图象大致是( )6. 如图,等边△ABC的边长为2 cm,点P从点A出发,以1 cm/s的速度向点C移动,同时点Q从点A出发,以1 cm/s的速度沿A→B→C的方向向点C移动,若△APQ的面积为S(cm2),则下列最能反映S(cm2)与移动时间t(s)之间函数关系的大致图象是( )7. 如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )8. (2016鄂州)如图,O是边长为4 cm的正方形ABCD的中心,M是BC的中点,动点P 由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1 cm/s,设P点的运动时间为t(s),点P的运动路径与OA,OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是( )9. (2014莆田)如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是( )10. (2016钦州)如图,△ABC 中,AB =6,BC =8,tan ∠B =43.点D 是边BC 上的一个动点(点D 与点B 不重合),过点D 作DE ⊥AB ,垂足为E ,点F 是AD 的中点,连接EF.设△AEF 的面积为y ,点D 从点B 沿BC 运动到点C 的过程中,D 与B 的距离为x ,则能表示y 与x 的函数关系的图象大致是( )11. 如图,两个等腰Rt △ABC 、Rt △DEF 的斜边都为4 2 cm ,点D 、M 分别是AB 、AC 边上的中点,DE 与AC(或BC)交于点P ,当点P 从点M 出发以1 cm/s 的速度沿M →C 运动至点C 后又立即沿C →B 运动至点B 结束.若运动时间为t(单位:s),Rt △ABC 和Rt △DEF 重叠部分的面积为y(单位:cm 2),则y 关于t 的图象大致是( )12. 如图,在▱ABCD 中,∠A =60°,AB =6 cm ,BC =12 cm ,点P 、Q 同时从顶点A 出发,点P 沿A →B →C →D 方向以2 cm/s 的速度前进,点Q 沿A →D 方向以1 cm/s 的速度前进,当Q 到达点D 时,两个点随之停止运动.设运动时间为x s ,P 、Q 经过的路径与线段PQ 围成的图形的面积为y(单位:cm 2),则y 与x 的函数图象大致是( )13. (2016天水)如图,边长为2的等边△ABC 和边长为1的等边△A ′B ′C ′,它们的边B ′C ′,BC 位于同一条直线l 上,开始时,点C ′与B 重合,△ABC 固定不动,然后把△A ′B ′C ′自左向右沿直线l 平移,移出△ABC 外(点B ′与C 重合)停止,设△A ′B ′C ′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是( )【答案】1.B 【解析】当点P在AD上时,△ABP的底边AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底边AB不变,高不变,所以△ABP 的面积S不变;当点P在EF上时,△ABP的底边AB不变,高减小,所以△ABP的面积S随着时间t的增大而减小;当点P在FG上时,△ABP的底边AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底边AB不变,高减小,所以△ABP的面积S随着时间t的增大而减小.故选B.2.B 【解析】当点P 在点O 处时,∠APB =∠AOB =90°,当点P 沿OC 运动到点C 时,∠APB =12∠AOB =45°;当点P 在CD ︵上运动时,∠APB =12∠AOB =45°;当点P 沿DO 运动到点O 时,∠APB 从45°增大到90°.结合选项可知B 选项符合.3.C 【解析】根据图形知道,当直线l :x =t 在BD 的左侧时,S =t 2,当直线l :x =t 在BD 右侧时,S =-(t -2)2+1,结合选项,只有选项C 符合.4.C 【解析】∵∠APC 是△ABP 的外角,∴∠APC =∠PAB +∠B ,同理∠BDP =∠PAB+∠APD ,又∵∠B =∠APD ,∴∠APC =∠BDP ,∵∠B =∠C =60°,∴△BDP ∽△CPA ,∴BP AC=BD PC ,即x 4=y 4-x ,整理得,y =-14x 2+x ,故选C. 5.C 【解析】依题意,得y =S 正方形ABCD -S △AEH -S △BEF -S △CFG -S △DGH =1-4×12(1-x)x =2x 2-2x +1,即y =2x 2-2x +1(0≤x ≤1),抛物线开口向上,对称轴为x =12,故选C. 6.C 【解析】当0≤t ≤2时,S =12·t ·sin60°·t =34t 2,此函数抛物线开口向上,且函数图象为抛物线右侧的一部分;当2<t ≤4时,S =12×2·sin60°(4-t)=-32t +23,此函数图象是直线的一部分,且S 随t 的增大而减小.所以符合题意的函数图象只有C.7.B 【解析】∵AB =4,AC =x ,∴BC =AB 2-AC 2=16-x 2,∴S △ABC =12AC ·BC =12x 16-x 2,∵此函数不是二次函数,也不是一次函数,∴排除A 、C ,∵AB 为定值,当OC ⊥AB 时,△ABC 面积最大,此时AC =22,即当x =22时,y 最大,故排除D ,选B.8.A 【解析】根据题意,当0<t ≤4时,S =12×AP ×AD 2=12×t ×42=t ,面积S 随时间t 的增大而增大;当4<t ≤6时,S =S 四边形ABMO -S ΔMOP =12×(2+4)×2-12×(6-t)×2=t ,因此S 始终是t 的正比例函数,故选A.9.C 【解析】∵∠ABE =45°,∠A =90°,∴△ABE 是等腰直角三角形,∴AE =AB =2,∴BE =2AB =22,∵BE =DE ,PD =x ,∴PE =DE -PD =22-x ,∵PQ ∥BD ,BE =DE ,∴QE =PE =22-x ,又∵△ABE 是等腰直角三角形,∴点Q 到AD 的距离为22(22-x)=2-22x ,∴y =12x(2-22x)=-24(x 2-22x +2)+22=-24(x -2)2+22,结合选项,只有C 选项符合.10.B 【解析】∵BD =x ,DE ⊥AB ,tan ∠B =43,∴在Rt △BED 中,BE =35x ,DE =45x ,∵AB =6,∴AE =6-35x ,又∵点F 为AD 的中点,∴S △AEF =12S △ADE =12×12AE ·DE ,∴y =S △AEF =14×(6-35x)×45x ,化简得y =-325x 2+65x(0<x ≤8),∴y 与x 的函数关系式为开口向下的二次函数,且自变量x 的取值范围为0<x ≤8,结合题中给出的选项,只有选项B 符合. 11 C 【解析】如解图,连接DM ,过点D 作DH ⊥BC 于点H ,记DF 与BC 相交于点N ,∵点D 、M 分别是AB ,AC 边的中点,∴DM =12BC =2 cm ,MC =12AC =2 cm ,∴DM =MC ,∴四边形DMCH 为正方形,∴DH =DM ,又∵∠NDH +∠HDP =90°,∠HDP +∠PDM =90°,∴∠NDH =∠PDM ,第11题解图∴△DNH ≌△DPM.①当点P 从点M 出发,沿M →C 运动时,即0≤t <2时,y =S △DNH +S 四边形DHCP =S △DPM +S 四边形DHCP =S 正方形DMCH =4 cm 2;②当点P 运动至点C 时,即t =2时,y =S △DBC =4 cm 2; ③当点P 从点C 出发沿C →B 运动至B 处时,即2<t ≤6时,y =S △DBP =12×BP ·DH =12(6-t)×2=6-t ,可知y 是t 的一次函数,故选C.12.A 【解析】当点P 在AB 上时,即0≤x ≤3时,P 、Q 经过的路径与线段PQ 围成的图形的面积=12x ×3x =32x 2;当点P 在BC 上时,即3<x ≤9时,P 、Q 经过的路径与线段PQ 围成的图形的面积=12×3×33+12(2x -6+x -3)×33=932x -93,y 随x 的增大而增大;当点P 在CD 上时,即9<x ≤12时,P 、Q 经过的路径与线段PQ 围成的图形的面积=12×33-12(12-x)(123-3x)=-32x 2+123x -36 3.综上,选项A 符合题意. 13.B 【解析】由题意知:在△A ′B ′C ′移动的过程中,阴影部分总为等边三角形.当0≤x ≤1时,重合部分边长为x ,此时y =12x ×32x =34x 2;当1<x ≤2时,重合部分为△A ′B ′C ′,此时y =12×1×32=34;当2<x ≤3时,重合部分边长为3-x ,此时y =12(3-x)×32(3-x)=34(3-x)2.由以上分析可知,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线y =34的一部分,右边为开口向上的抛物线的一部分,且顶点为(3,0),最高点为(2,34),结合选项中的图象可知,选项B 符合.题型二 阴影部分面积计算针对演练1. 如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,将Rt △ABC 绕点A 按逆时针方向旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是( )A. π6B. π3C. 1+π6D. 1第1题图第2题图2. 如图,在半径为2 cm 的⊙O 中,点C 、点D 是AB ︵的三等分点,点E 是直径AB 的延长线上一点,连接CE 、DE ,则图中阴影部分的面积是( ) A. 3 cm 2 B. 2π3 cm 2 C. 2π3- 3 cm 2 D. 2π3+ 3 cm 2 3. 如图,正方形ABCD 的面积为12,点M 是AB 的中点,连接AC 、DM 、CM ,则图中阴影部分的面积是( )A. 6B. 4.8C. 4D. 3第3题图第4题图4. (2016桂林)如图,在Rt △AOB 中,∠AOB =90°,OA =3,OB =2,将Rt △AOB 绕点O 顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA ,ED 长为半径画AF ︵和DF ︵,连接AD ,则图中阴影部分面积是( )A. πB. 54π C. 3+π D. 8-π5. 如图,四边形ABCD 是菱形,点O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.第5题图第6题图6. (2015赤峰)如图,平行四边形ABCD 中,AB =AC =4,AB ⊥AC ,O 是对角线的交点,若⊙O 过A 、C 两点,则图中阴影部分的面积之和为________.7. (2015武威)如图,半圆O 的直径AE =4,点B ,C ,D 均在半圆上,若AB =BC ,CD =DE ,连接OB ,OD ,则图中阴影部分的面积为________.第7题图第8题图8. 如图,在△ABC 中,已知点D 、E 、F 分别为BC ,AD ,CE 的中点,且S △ABC =4 cm 2,则阴影部分的面积为________.9. 如图,在等腰直角三角形ABC 中,∠C =90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD的圆心分别为点A、点B,且AC=2,则图中阴影部分的面积为________(结果保留π).第9题图第10题图10. 如图,在矩形ABCD中,AB=3,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是________.11. 如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB 边上的点D处,已知MN∥AB,MC=6,NC=23,则图中阴影部分的面积为________.第11题图第12题图12. 如图,在矩形ABCD中,点O在BC边上,OB=2OC=2,以O为圆心,OB的长为半径画弧,这条弧恰好经过点D,则图中阴影部分的面积为________.13. 如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是________.第13题图第14题图14. 如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE 相交于点Q,若S△APD=16 cm2,S△BQC=25 cm2,则图中阴影部分的面积为________cm2.15. 如图,正方形ABCD的边长为1,分别以点A、D为圆心,1为半径画弧BD、AC,两弧相交于点F,则图中阴影部分的面积为________.第15题图第16题图第17题图16. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE 所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积是________.17. 如图,在矩形ABCD中,AB=6 cm,BC=8 cm,E、F分别是BC、CD的中点,连接BF、DE,则图中阴影部分的面积是________ cm2.【答案】1.B 【解析】在Rt △ABC 中,∵AC =BC =2,∴AB =AC 2+BC 2=2,∴S 阴影=S 扇形DAB =30π×22360= π3.第2题解图2.B 【解析】如解图,连接OC 、OD 、CD ,∵点C 、点D 是AB ︵的三等分点,∴∠DOB =∠COD =60°,又∵CO =OD ,∴CO =OD =CD ,∴∠DOB =∠CDO =60°,∴CD ∥AB ,∴S △CED =S △COD ,∴S 阴影=S 扇形COD =60π×22360=2π3cm 2.3.C 【解析】如解图,设DM 与AC 交于点E ,∵四边形ABCD 是正方形,∴AM ∥CD ,AB =CD ,∴△AME ∽△CDE ,∵点M 是AB 的中点,∴AM CD =12,∴AE CE =EM DE =AM CD =12,∵S 正方形ABCD =12,∴S △ABC =12S 正方形ABCD =6,∴S △ACM =12S △ABC =3,∴S △AEM =13S △ACM =1,S △CEM =23S △ACM =2,∴S △AED =2S△AEM=2,∴S 阴影=S △CEM +S △AED =2+2=4,故选C.第3题解图第4题解图4.D 【解析】如解图,过点D 作DH ⊥AE 于点H ,∵∠AOB =90°,OA =3,OB =2,∴AB =OA 2+OB 2=13,由旋转的性质可知,OF =OA =3,OE =OB =2,DE =EF =AB =13,∴AE=OA +OE =5,易证△DHE ≌△BOA ,∴DH =OB =2,∴S阴影=S △ADE +S △EOF +S扇形AOF-S扇形DEF=12AE ·DH +12OE ·OF +90π×OA 2360-90π×DE 2360=12×5×2+12×2×3+90×π×32360-90×π×(13)2360=8-π.5.15 【解析】∵菱形的两条对角线的长分别为10和6,∴菱形的面积=12×10×6=30,∵点O 是菱形两条对角线的交点,∴阴影部分的面积=12×30=15.第6题解图6.4 【解析】如解图,设BD 与⊙O 交于点E 和F 两点.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵⊙O 过A ,C 两点,∴扇形AOE 与扇形FOC 关于点O 成中心对称,∴S 扇形AOE=S 扇形FOC ,∴S 阴影=S △AOB =12×12AC ·AB =12×12×4×4=4.7.π 【解析】如解图,连接OC ,在半圆O 中,AB =BC ,CD =DE ,∴AB ︵=BC ︵,CD ︵=DE ︵,∴∠AOB =∠BOC ,∠COD =∠DOE , ∴S 阴影=S 扇形OAB +S 扇形ODE =12S扇形AOC +12S扇形COE =12S半圆AOE =12×π×222=π,∴阴影部分的面积为π.第7题解图8.1 cm 2【解析】∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC ,∴S △ABE +S △ACE =12S △ABC=12×4=2 cm 2,∴S △BCE =12S △ABC =12×4=2 cm 2,∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×2=1 cm 2.9.2-π2 【解析】∵BC =AC =2,∠C =90°,∴AB =22,∵点D 为AB 的中点,∴AD =BD =2,∴S 阴影=S △ABC -S 扇形EAD -S 扇形FBD =12×2×2-45π×(2)2360×2=2-π2.10.32-π4 【解析】根据已知可得∠ABC =90°,∵在Rt △ABC 中,tan ∠CAB =13=33,∠CAB =30°,∴∠BAB ′=30°,∴S 阴影=S △AB ′C ′-S 扇形BAB ′=12AB ′·B ′C ′-30π·(3)2360=12×3×1-π4=32-π4. 11.18 3 【解析】∵MC =6,NC =23,∠C =90°,∴S △CMN =63,由折叠性质得△CMN ≌△DMN ,∴△CMN 与△DMN 对应高相等,∵MN ∥AB ,∴△CMN ∽△CAB 且相似比为1∶2,∴两者的面积比为1∶4,从而得S △CMN ∶S 四边形MABN =1∶3,∴S 阴影=S 四边形MABN =18 3.第12题解图12.2π3- 3 【解析】设弧与AD 交于点E ,如解图,连接OE ,过点O 作OP ⊥AD 于点P ,由题意得,OB =OE =OD ,∴OD =2OC =2,∴∠ODC =30°,则∠ODE =60°,∴△ODE 为等边三角形,∴S △ODE =12×2×3=3,则S 阴影=S 扇形EOD -S △ODE =60×π×22360-3=2π3- 3.第13题解图13.2π3- 3 【解析】如解图,连接BD ,设BE 交 AD 于点G ,BF 交CD 于点H ,∵在菱形ABCD 中,∠A =60°,AB =2,∴BD =BC =2,由题意知扇形圆心角为60°,∴∠DBG =∠CBH ,∠GDB =∠C ,∴△DGB ≌△CHB ,∴S 阴影=S 扇形EBF - S △DBC =60×π×22360-12×2×3=2π3- 3.第14题解图14.41 【解析】如解图,连接EF ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴S △EFC=S △BCF ,∴S △EFQ =S △BCQ ,同理,S △EFD =S △ADF ,∴S △EFP =S △ADP ,∵S △APD =16 cm 2,S △BQC =25 cm 2,∴S 阴影=S △EFP +S △EFQ =16+25=41 cm 2.15.32-π6【解析】如解图,过点F 作FE ⊥AD 于点E ,连接AF 、DF ,∵正方形ABCD的边长为1,∴AE =12AD =12AF =12,∴∠AFE =∠BAF =30°,∴∠FAE =60°,EF =32,∴△ADF 为等边三角形,∴∠ADF =60°,∴S 弓形AF =S 扇形ADF -S △ADF =60π×12360-12×1×32=π6-34,∴S阴影=2(S扇形BAF-S弓形AF)=2×(30π×12360-π6+34)=32-π6.第15题解图16.22-2 【解析】如解图,设CD 与AB 1交于点O ,∵在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,∴AE =BE =2,由折叠性质易得△ABB 1为等腰直角三角形,∴S △ABB1=12BA ·AB 1=2,S △AB1E =1,CB 1=2BE -BC =22-2,∵AB ∥CD ,∴∠OCB 1=∠B =45°,又∵∠B 1=∠B =45°,∴CO =OB 1=2-2,∴S △COB1=12CO ·OB 1=3-22,∴S重叠=S △AB1E-S △COB1=1-(3-22)=22-2.第16题解图第17题解图17.32 【解析】如解图,连接BD ,EF ,设BF 与ED 相交于点G.∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =6 cm ,AD =BC =8 cm ,∴S △ABD =S △BCD =12S 矩形ABCD =12×6×8=24cm 2,∵E 、F 分别是BC 、CD 的中点,∴EF ∥BD ,EF =12BD ,∴△GEF ∽△GDB ,∴DG =2GE ,∵S △BDE =12S △BCD ,∴S △BDG =23S △BDE =13S △BCD =13×24=8 cm 2,∴S 阴影=S △ABD +S △BDG =24+8=32 cm 2.题型三 规律探索题类型一 数式规律针对演练1. (2016新疆)如图,下面每个图形中的四个数都是按相同规律填写的,根据此规律确定x 的值为________.第1题图2. (2016绥化)古希腊数学家把数1,3,6,10,15,21…叫三角数,它有一定的规律.若把第一个三角数记为a 1,第二个三角数记为a 2,…,第n 个三角数记为a n ,计算a 1+a 2,a 2+a 3,a 3+a 4,…,由此推算a 399+a 400=________.3. (2016济宁)按一定规律排列的一列数:12,1,1, ,911,1113,1317,…,请你仔细观察,按照此规律方框内的数字应为________.4. (2016郴州)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,….试猜想,32016的个位数字是________.5. (2016百色)观察下列各式的规律:(a -b)(a +b)=a 2-b 2;(a -b)(a 2+ab +b 2)=a 3-b 3;(a -b)(a 3+a 2b +ab 2+b 3)=a 4-b 4;…;可得到(a -b)(a 2016+a2015b +…+ab2015+b2016)=________.6. 请观察下列等式的规律:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17),17×9=12(17-19),…,则11×3+13×5+15×7+…+199×101=________. 7. (2016滨州)观察下列式子: 1×3+1=22; 7×9+1=82; 25×27+1=262; 79×81+1=802; …可猜想第2016个式子为______________. 8. (2016黄石)观察下列等式:第1个等式: a 1=11+2=2-1,第2个等式a 2=12+3=3-2,第3个等式:a3=13+2=2-3,第4个等式:a4=12+5=5-2,按上述规律,回答以下问题:(1)请写出第n个等式:a n=__________________;(2)a1+a2+a3+…+a n=__________.9. (2011省卷20,9分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是________,它是自然数________的平方,第8行共有________个数;(2)用含n的代数式表示:第n行的第一个数是________,最后一个数是________,第n行共有________个数;(3)求第n行各数之和.【答案】1.370 【解析】观察可得,第n 个图形的数字为:当2n =20时,n =10,∴x =2n(2n -1)-n =20×(20-1)-10=370.2.160000 【解析】由a 1+a 2=4=22,a 3+a 4=6+10=16=42,a 5+a 6=15+21=36=62,…,依此类推可得a n +a n +1=(n +1)2,∴a 399+a 400=4002=160000.3.1 【解析】将原来的一列数变形为12,33,55,□,911,1113,1317,观察可以得出分子依次为从小到大排列的连续奇数,分母是依次从小到大排列的质数,故方框内填77,故答案为1.4.1 【解析】从前几个3的幂来看,它的个位数依次是3,9,7,1,第5个数跟第一个数的个位数相同,于是3的整数次幂的个位数是每四个数一个循环,2016÷4=504,于是32016的个位数与34的个位数相同,即为1.5.a2017-b2017【解析】由题可知,(a -b)(a +b)=a 2-b 2,(a -b)(a 2+ab +b 2)=a 3-b 3,(a -b)(a 3+a 2b +ab 2+b 3)=a 4-b 4,…,∴(a -b)(a n+a n -1b +an -2b 2+…+a 2bn -2+ab n -1+b n)=an +1-bn +1,∴当n =2016时,(a -b)(a2016+a2015b +…+ab 2015+b 2016)=a2017-b2017.6.50101 【解析】原式=12(1-13)+12(13-15)+12(15-17)+…+12(199-1101)=12(1-13+13-15+15-17+…+199-1101)=12(1-1101)=50101. 7.(32016-2)×32016+1=(32016-1)2 【解析】第①个式子转化为:(31-2)×31+1=(31-1)2,第②个式子转化为: (32-2)×32+1=(32-1)2,第③个式子转化为: (33-2)×33+1=(33-1)2,第④个式子转化为: (34-2)×34+1=(34-1)2,…,由以上规律可得,第n 个式子为: (3n-2)×3n+1=(3n-1)2,当n =2016时,第2016个式子为:(32016-2)×32016+1=(32016-1)2.8.(1)1n +n +1=n +1-n ;(2)n +1-1 【解析】(1)a 1=11+2=2-1,a 2=12+3=3-2,a 3=13+4=4-3,…,a n =1n +n +1=n +1-n ;(2)a 1+a 2+a 3+…+a n =(2-1)+(3-2)+(4-3)+(5-4)+…+(n +1-n)=n +1-1.9.解:(1)64,8,15;【解法提示】仔细观察第一行最后一个数是1=12,且共有1个数;第二行最后一个数是4=22,且共有3个数,第三行最后一个数是9=32,且共有5个数,以此类推,可知第n 行最后一个数可以表示为n 2,且共有(2n -1)个数,所以第8行最后一个数是82=64,共有2×8-1=15个数;(2)n 2-2n +2,n 2,2n -1;【解法提示】由(1)中的分析得知第n 行的第一个数是(n -1)2+1=n 2-2n +2,最后一个数是n 2,第n 行共有(2n -1)个数;(3)第n 行各数之和为:n 2-2n +2+n 22×(2n -1)=(n 2-n +1)(2n -1).类型二图形规律针对演练一、图形累加规律探索1. (2016荆州)如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2017个白色纸片,则n的值为( )第1题图A. 671B. 672C. 673D. 6742. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为 ( )第2题图A. 21B. 24C. 27D. 303. (2016重庆B卷)观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )第3题图A. 43B. 45C. 51D. 534. (2015曲靖)用火柴棒按如图所示的方式摆大小不同的“H”,依此规律,摆出第9个“H”需用火柴棒________根.第4题图5. (2015深圳)观察下列图形,它们是按照一定规律排列的,依照此规律,第五个图有________个太阳.第5题图6. (2016安顺)观察下列砌钢管的横截面图:第6题图则第n个图的钢管数是__________(用含n的式子表示).【答案】1.B 【解析】对于每个图中的白色纸片的个数,依次是4,7=4+3,10=4+3×2,…,那么,第n 个图中的白色纸片的个数为4+3×(n -1)=3n +1,令3n +1=2017,解得n =672.2.B 【解析】第①个图形有6个小圆圈,第②个图形有6+3=9个小圆圈,第③个图形有6+3×2=12个小圆圈,…,按照这个规律,第个图形有6+3(n -1)=3n +3个小圆圈,故第⑦个图形一共有3×7+3=24个小圆圈.3.C 【解析】图形①中星星的颗数为:2=1+(2×1-1),图形②中星星的颗数为:6=(1+2)+(2×2-1),图形③中星星的颗数为:11=(1+2+3)+(2×3-1),图形④中星星的颗数为:17=(1+2+3+4)+(2×4-1),…,图形中星星的颗数为:(1+2+…+n)+(2n -1)=n (n +1)2+2n -1,所以图形⑧中星星的颗数为:8×(8+1)2+2×8-1=51.4.29 【解析】∴第9个“H ”所需的火柴棒的数量为3×9+2=29根.5.21 【解析】∵所有图形中,第一行太阳的个数分别为1,2,3,4,…,n ,∴第五个图形第一行太阳的个数为5,∵所有图形中,第二行太阳的个数分别为1,2,4,8,…,2n -1,∴第五个图形第二行太阳的个数为24=16个太阳,∴第五个图形共有5+16=21个太阳.6.32n 2+32n 【解析】由表可知,第n 个图的钢管数是3n (n +1)2=32n 2+32n.二、图形成倍递变规律探索1. (2016六盘水)如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…,若∠A =70°,则∠A n 的度数为( )A. 70°2nB. 70°2n +1C. 70°2n -1D. 70°2n -2第1题图第2题图2. (2016内江)一组正方形按如图所示的方式放置,其中顶点B 1在y 轴上,顶点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2016B 2016C 2016D 2016的边长是( )A. (12)2015B. (12)2016C. (33)2016D. (33)20153. (2016南平)如图,已知直线l :y =2x ,分别过x 轴上的点A 1(1,0)、A 2(2,0)、…、A n (n ,0),作垂直于x 轴的直线交l 于点B 1、B 2、…、B n ,将△OA 1B 1、四边形A 1A 2B 2B 1、…、四边形A n -1A n B n B n -1的面积依次记为S 1、S 2、…、S n ,则S n =( )A. n 2B. 2n +1C. 2nD. 2n -1第3题图第4题图4. (2016威海)如图,点A 1的坐标为(1,0),A 2在y 轴的正半轴上,且∠A 1A 2O =30°,过点A 2作A 2A 3⊥A 1A 2,垂足为A 2,交x 轴于点A 3;过点A 3作A 3A 4⊥A 2A 3,垂足为A 3,交y 轴于点A 4;过点A 4作A 4A 5⊥A 3A 4,垂足为A 4,交x 轴于点A 5;过点A 5作A 5A 6⊥A 4A 5,垂足为A 5,交y 轴于点A 6;…按此规律进行下去,则点A 2016的纵坐标为________.5. (2016钦州)如图,∠MON =60°,作边长为1的正六边形A 1B 1C 1D 1E 1F 1,边A 1B 1、F 1E 1分别在射线OM 、ON 上,边C 1D 1所在的直线分别交OM 、ON 于点A 2、F 2,以A 2F 2为边作正六边形A 2B 2C 2D 2E 2F 2,边C 2D 2所在的直线分别交OM 、ON 于点A 3,F 3,再以A 3F 3为边作正六边形A 3B 3C 3D 3E 3F 3,…,依此规律,经第n 次作图后,点B n 到ON 的距离是________.第5题图【答案】1.C 【解析】在∵△ABA 1中,AB =A 1B ,∴∠A =∠BA 1A ,∵A 1A 2=A 1B 1,∴∠B 1A 2A 1=12∠BA 1A ,同理,∠B 2A 3A 2=12∠B 1A 2A 1=14∠BA 1A ,∴∠A n =12n -1∠BA 1A =70°2n -1.2.D 【解析】易得△B2C2E2∽△C1D1E1,∴B2C2C1D1=B2E2C1E1=C2E2D1E1=C2E2B2E2=tan30°,∴B2C2=C1D1·tan30°=33,∴C2D2=33,同理,B3C3=C2D2·tan30°=(33)2,由此猜想B n C n=(33)n-1,∴当n=2016时,B2016C2016=(33)2015,故选D.3.D 【解析】由题意可知,△OA1B1∽△OA2B2∽△OA3B3∽…∽△OA n B n且相似比为1∶2∶3∶…∶n,∴其面积比为1∶4∶9∶…∶n2,∴S1∶S2∶S3∶…∶S n=1∶3∶5∶…∶(2n-1),∵A1(1,0),过点A1作垂直于x轴的直线交l:y=2x于点B1,∴OA1=1,A1B1=2,∴S△OA1B1=1,∴S n=2n-1.4.-31007 3 【解析】∵A1(1,0),∠A1A2O=30°,∴A2(0,3),∵A2A3⊥A1A2,∴∠A3A2O=60°,∴∠A2A3O=30°,∴A3(-3,0),同理,A4(0,-33),A5(9,0),A6(0,93),A7(-27,0),A8(0,-273),…,即,A2(0,3),A4(0,-33),A6(0,93),A8(0,-273),列表如下:∴A n=3×12(3)n--,∵2016÷2-1=1007,∴A2016的纵坐标是-31007 3.5.3n-1 3 【解析】由题意可知,∠MON=60°,设点B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可求,OB3=18,则h3=18×32=93,…,依此可得,OB n=2×3n-1,则h n=2×3n-1×32=3n-13,∴点B n到ON的距离为3n-1 3.三、图形循环规律探索1. (2016河南)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( )A. (1,-1)B. (-1,-1)C. (2,0)D. (0,-2)第1题图第2题图2. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2016个梅花图案中,共有________个“”图案.3. 如图,正五边形五个顶点标有数字1、2、3、4、5,一只青蛙在五个顶点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若它停在偶数点上,则下一次沿逆时针方向跳一个点;若青蛙从标有数字5的顶点开始跳,第一次跳后落在标有数字2的顶点上,第二次跳后落在标有数字1的顶点上,…,则第2017次跳后所停的顶点对应的数字为__________.第3题图4. (2016三明)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是________.第4题图第5题图5. (2016聊城)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…,则正方形OB2015B2016C2016的顶点B2016的坐标是________.【答案】1.B 【解析】∵菱形OABC的顶点坐标为O(0,0),点B的坐标是(2,2),∴BO与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点D就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).2.504 【解析】观察图形可知,“”图案方向依次向下、向左、向上、向右,每四个为一个循环周期.∵2016÷4=504,∴前2016个梅花图案中,有504个“”图案.3.2 【解析】由5起跳,5是奇数,沿顺时针下一次能跳2个点,落在2上.由2起跳,2是偶数,沿逆时针下一次只能跳一个点,落在1上,1是奇数,沿顺时针跳两个点,落在3上.由3起跳,是奇数,沿顺时针跳两个点,落在5上.2-1-3-5-2,周期为4,∵又由2017=4×504+1,∴经过2017次跳后它停在的点所对应的数为2.4.(20,0) 【解析】将点P的横纵坐标分开来看,P n的横坐标始终在变化且逐渐增大,而P n的纵坐标变化呈周期变化,即1,1,0,-1,-1,0,所以每6个点P的纵坐标为一个循环,显然60÷6=10,恰好能够整除,所以点P60的纵坐标为0,即在x轴上,显然P6,P12,P18,…,这些点的横坐标为:2,4,6,…,所以点P6k的纵坐标为2k,∴点P60的横坐标为20,∴点P60的坐标为(20,0).5.(21008,0) 【解析】∵点B的位置依次落在第一象限、y轴正半轴、第二象限、x 轴负半轴、第三象限、y轴负半轴、第四象限、x轴正半轴,…,每8次一循环,2016÷8=252,∴点B2016落在x轴正半轴,故B2016的纵坐标是0;OB n是正方形的对角线,OB1=2,OB2=2=(2)2,OB3=22=(2)3,…,∴OB2016=(2)2016=21008,∴点B2016的坐标为(21008,0).题型四反比例函数与一次函数综合题针对演练1. 如图,一次函数y=kx+1(k≠0)与反比例函数y=mx(m≠0)的图象有公共点A(1,2),直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别相交于点B,C,连接AC.(1)求k和m的值;(2)求点B的坐标;(3)求△ABC的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1. (1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2y x=的图象与一次函数y =kx +b 的图象交于点A 、B ,点A 、B 的横坐标分别为1、-2,一次函数图象与y 轴交于点C ,与x 轴交于点D. (1)求一次函数的解析式; (2)对于反比例函数2y x=,当y <-1时,写出x 的取值范围; (3)在第三象限的反比例函数图象上是否存在一点P ,使得S △ODP = 2S △OCA ?若存在,请求出点P 的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b(k 、b 为常数,k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C.CD ⊥x 轴,垂足为D.若OB =2OA =3OD =6. (1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx的解集.第4题图5. 如图,点A(-2,n),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x>0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC. (1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A(-1,n).(1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E. (1)求点A 的坐标; (2)若AE =AC. ①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D(6,1),点C 是双曲线第三象限上的动点,过点C 作CA⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC. (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =k x 与直线y =x 交于点C ,若OB 2-AB 2=4.(1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A(1,2)是一次函数y =kx +1与反比例函数y =mx的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N(3,0),且与一次函数的图象交于点B ,∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x =23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103,又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y),则OP =x ,PA =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1,即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点,∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B(2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5, 令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0),即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A(1,2)、B(-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1;(2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P(m ,n), ∵S △ODP =2S △OCA ,∴12×1×(-n)=2×12×1×1, ∴n =-2,∵点P(m ,-2)在反比例函数图象上,∴-2= 2m,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A(3,0),B(0,6),D(-2,0). 将点A(3,0)和B(0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C(-2,10)代入y =nx,得10=2n -,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分) (2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩。

相关文档
最新文档