2017-2018学年度第一学期高三港澳台第一次模拟考试数学(一)

合集下载

2017-2018学年高三一模考试文科数学测试卷及答案

2017-2018学年高三一模考试文科数学测试卷及答案

2017-2018 学年度咼三年级第一次模拟考试文科数学试卷一、选择题:本大题共 12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的A. 2 _2iB. 2 2iC. _2 _ 2 iD. -2 2i2. 已知命题p : -i n 三N , 3n .2018,则一p 为( )A. —n. N , 3n £;20 18B . —n^N , 3n .2018C.n N, 3n ^2 018 D. -I n 三 N , 3“ ::: 2 01 8f1~]3. 设集合 M ={x|x —x,0} , N = x| 1 ,则是()IxJA. M ? NB. N ? MC. M =ND. M U N =R4.某校高中三个年级人数饼图如图所示,按年级用分层抽样的方法抽取一个样本,已知样本中高一年级学生有8人,则样本容量为(边过点 P (1, -2),则 sin 2 v = ()3 3 4A.B .-C .—D5556.等腰直角三角形 ABC 中,A =90、,该三角形分别绕 AB , BC 所在直线旋转,则2个几 何体的体积之比为(1.2(1 —i)5.以角v 的顶点为坐标原点,始边为 x 轴的非负半轴,建立平面直角坐标系 xOy ,若角二终2A. 向右平移生个单位长度2B. 向右平移二个单位长度4C. 向左平移二个单位长度2D. 向左平移二个单位长度4B .求 135 - ... - (2 n - 1)C.求12 - 22・32亠 亠nA .1 :、、.、C7. 已知a =45c A. a ::: c ::.aC.b :::c ::8.为了得到yIx_可yD . 2 :1该程序所能实现的功能是 ()sin 2x •丄的图象() I 3丿设计的程序框图,210.某几何体的三视图如图所示,则该几何体的表面积是(D.求12 ■■■■■ (n -1)A. 5 4、、2B. 9C. 6 5、, 2D. 2 3 4 5311. 已知P为抛物线亍二x上异于原点0的点,PQ _ x轴,垂足为Q ,过PQ的中点作x轴一P Q的平行线交抛物线于点M,直线QM交y轴于点N,则 ----------- =()N O2 3A. B. 1C. — D. 23 212. 已知函数f (x) =x -2xcosx,则下列关于f(x)的表述正确的是( )A. f (x)的图象关于y轴对称 B . f (x)的最小值为-1C. f (x)有4个零点 D . f (x)有无数个极值点二、填空题:本题共4小题,每小题5分,共20分.13. 已知 a =(_1,1) , b =(1, _2),贝U (a 2b) a =.x - y _ 0I14. 设x , y满足约束条件x・2y_3_0,则z = 2x 3 y的最小值是.x - 2 y -1 乞02 2x y15. 已知双曲线C : 1 (m .0),则C的离心率的取值范围是.1 亠m 1 —mc a b16. 在八ABC中,角A , B , C的对边分别为a, b, c,若S ABC,贝V 的最大4 b a值是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17〜21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答(一)必考题:共60分.17.已知数列{ a n }是以1为首项的等差数列,数列{X }是以q (q =1)为公比的等比数列(1)求{a n }和{b n }的通项公式;天进货当天销售•如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失 3元.根据以往的销售情况,按 [0,100),[1 00,200),[200,300),[3 00,400), [400,500]进行分组,得到如图所示的频率分布直方图(1) 根据频率分布直方图计算该种鲜鱼日需求量的平均数 X (同一组中的数据用该组区间中 点值代表);(2) 该经销商某天购进了 300公斤这种鲜鱼,假设当天的需求量为 X 公斤(0乞X 空500),利 润为Y 元.求Y 关于x 的函数关系式,并结合频率分布直方图估计利润 Y 不小于700元的概率•19.如图,在三棱柱 ABC -A 1B 1C 1中,平面 A ’B ’C _平面 AA 1C 1C ,乙BAC =90-(2) 若.'^1 B 1C 是边长为2的等边三角形,求点 B 1到平面ABC 的距离.(2)若 S 、= a 1b n 6"丄亠 亠%丄b 2-, 求S n .18.某水产品经销商销售某种鲜鱼,售价为每公斤 20元,成本为每公斤15元.销售宗旨是当2 220.已知椭圆-:X2 - y2=1 (a b - 0)的左焦点为F,上顶点为A,长轴长为2 6,B为a b(1)若椭圆:的方程;(2)若C为椭圆:上一点,满足AC//BM , AMC=6 0;,求m的值.x 121. 已知函数 f (x)% ,g (x) = e* " .. .. In x —a .x(1)求f (x)的最大值;(2)若曲线y=g(x)与x轴相切,求a的值.(二)选考题:共10分•请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分•22. 选修4-4 :坐标系与参数方程在直角坐标系xOy中,圆6 : (x-1)2 - / =1,圆C 2 : (X-3)2 ・y2=9.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求6, C2的极坐标方程;「X =t CO S 0((2)设曲线C3 : (t为参数且t式0),C3与圆6,C2分别交于A,B,求S少cy =t sin a的最大值.23. 选修4-5 :不等式选讲设函数f(x)=|x+1| — x的最大值为m.(1)求m的值;2 2(2)若正实数a,b满足a • b = m,求—一-——的最小值.b 十1 a +1②一①可得,S= 2n +1 + (2n + 2n —1 + ・・・ +=2n +2— 2n — 4.(18) 解:(I) x = 50 x 0.001 O X 100 + 150X 0.002 0x 100 + 250 x 0.003 0 x 100+ 350 x 0.002 5x 100+ 450 x 0.001 5 x 100 = 265 .…4 分(H)当日需求量不低于 300公斤时,利润 Y = (20 — 15) x 300 = 1 500元;当日需求量不足 300公斤时,利润 Y = (20 — 15) x — (300 — x ) x 3 = 8x — 900元;故 Y =°x- 900, 0< X V 300,…8 分故 丫= 1 500, 300W x < 500. 分由 Y 》700 得,200W x < 500, 所以 F ( Y > 700) = P (200 w x w 500)=0.003 0x 100 + 0.002 5x 100 + 0.001 5x 100=0.7 .(19) 解:参考答案•选择题:A 卷: DACCD BDBCA CDB 卷: AACCD DBBCA CD •填空题: (13)— 4 (14)— 5(15) (1 ,2)(16) 2 2三•解答题: (17) 解:(I)设{a n }的公差为 d , {6}的首项为 b,贝 U a n = 1 + (n — 1) d , b n = bg n —1 •卩 + d= b,依题意可得孑2d = b 1(q — 1),2K1 + d ) bq = bq ,d =1,解得b 1= 2,q = 2,所以 a n = n , b n = 2.S= 1X 2n+ 2X 2n —1+ - +1n x 2 ,所以 n +12S = 1 x 2.. 2+ 2x 2 +•••+ n x 2 ,2 12) — n x 2…12分…12分(I)过点B作AC的垂线,垂足为0,由平面 ABC 丄平面 AACC,平面 ABC n 平面 AACC = AC 得BO ±平面AACQ,又AC 平面AACC 得B0丄AC. 由/BAC= 90°, AB// AB ,得 AB 丄 AC 又 BOd A 1B 1 = B i ,得 AC 丄平面 A i B i C. 又CA 平面ABC,得ACLCA .又 AML BM , AC// BM 所以 k BM = k AC =所以AB //平面ABC所以B 到平面ABC 的距离等于 A 到平面ABC 的距离,设其为 d , 由 Vq -AB = V B-AA 1 C 得,1 1 1 1 X-X ACX ABX d = ;x :x ACX A C x B O,3 23 2所以 d = B 0= <;3.即点B 到平面ABC 的距离为,3. (20) 解:(I)依题意得 A (0 , b ) , F ( — c , 0),当 ABL l 时,B ( — 3, b ),,r b b 2 2由 AF 丄 BF 得 k AF • k BF = • =— 1,又 b + c = 6.c — 3 + c解得 c = 2, b = ,2.2 2所以,椭圆r 的方程为x 6+2 =1.(n)由(I)得A (0 ,寸2),所以 k AM =—…7分m厂所以直线AC 的方程为y =(^+羽,2 2m xv — 12my = —x + 订2与—+ — = 1 联立得(2 + 3m )x + 12mx= 0,所以 x c = ?十 §m ,—12m 乔(叶0),在直角△ AM (中,由/ AMC 60° 得,|AC = ,3|AM ,整理得:(,3m+ 2) 2= 0, 解得m=—晋.…10分…12分当X V 1时,f (x ) > 0, f ( x )单调递增;当X > 1时,f (X )V 0 , f ( x )单调递减,1 故x = 1时,f (X )取得最大值f (1) = e . e ,,, x —1 1 1(n)因为 g (x ) = e + -2— x — 1,X X 设切点为(t , 0),则 g (t ) = 0,且 g (t ) = 0,t — 1 1 1 t —1 1即 e + 严一 -—1 = 0, e — t ■一 In t — t + a = 0,1 t 一!所以 a = - + In t +1 — e .人 X —1 1 1令 h ( x ) = e + 2— — 1, x x1 X 1 x — !由(I )得f ( X )<e ,所以g w e ,即e >x ,等号当且仅当x = 1时成立,21 1 (X — 1) (X + 1)所以h (x ) >x + T — - — 1 = - >0,等号当且仅当 x = 1时成立, X X X故 a = 1.(22)解:依题意得 I AB = 6cos a — 2cos C 2(3 , 0)到直线 AB 的距离 d = 3|sin a | ,1(21)解:1 — x(X )二丁所以当且仅当 x = 1 时,h ( x ) = 0, 所以t = 1.…11分 …12分 C 1:cos 0 , y = p sin 0 2 . 2 一 -2 2 2.2 p cos 0 + p sin 0 — 2 p cos 可得,+ 1= 1,所以2cosG: 2 2 2.2 p cos 0 + p sin 0 — 6 p cos + 9= 9,所以p = 6cos a = 4COS a ,所以S\ABC>= x d x | AB = 3|sin 2 a | ,故当a=±丁时,&AB(2取得最大值3. …10分4(23)解:丁一1, X W一1,(I) f (x) = |x + 1| —| x| = 2X + 1, —1 v X V 1,、1, X> 1,由f(x)的单调性可知,当x> 1时,f(x)取得最大值1.所以m= 1. …4分(n )由(i )可知, a + b = 1, bh +吕=3(bh +h b +1)+(a +1)] 2 . 2 . 1 22 a (a +1) b (b +1) =-[a + b ++] 3 b +1=1(a + b )2 1 a = b = g 时取等号.b 21 —-的最小值为 a +1 3 > 1(a2 + b 2 + 2a (a + 1)b (b +1) b + 1 a +1 ) a + 1 当且仅当 …10分。

最新-2018年高三第一次模拟考试答案 精品

最新-2018年高三第一次模拟考试答案 精品

2018—2018年高三第一次模拟考试 数学试题参考解答及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.第(14)小题的第一个空2分、第二个空3分. (11)0.82 (12)3(13)320 (14)030 三、解答题(15)本小题主要考查等比数列的概念、通项公式及前n 项和公式等基本知识,考查运算求解能力.满分12分.解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得 181162a =,解得 12a =. …9分将12a =代入②得()21324213n=--,即 3243n=,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. …12分 (16)本小题主要考查三角函数的图象和性质等基本知识以及利用三角公式进行恒等变换的技能,考查运算求解能力.满分14分.解:(Ⅰ)()f x =22sin 2cos sin x x x +-=sin 2cos 2x x +…3分sin 2cos 222x x ⎫+⎪⎪⎭sin 2cos cos 2sin44x x ππ⎫+⎪⎭)4x π+. …7分(Ⅱ)列表如下:…3分…6分…14分(17)本小题主要考查空间线面关系,考查空间想像能力和推理论证能力.满分14分.证明:(Ⅰ)∵底面ABCD是正方形,∴BD⊥AC.…2分∵C1C⊥底面ABCD,BD⊂底面ABCD,∴BD⊥C1C.∵AC ⊂平面A1ACC1,C1C⊂平面A1ACC1,且AC∩C1C=C,∴BD⊥平面A1ACC1.…5分∵BD⊂平面A1BD,∴平面1A BD⊥平面11A ACC.…7分(Ⅱ)连B1C.…9分在△1A BD中,∵O是BD的中点,M是BA1的中点,∴MO∥A1D.…10分∵A1 B1∥DC,且A1 B1=DC,∴四边形A1 DC B1为平行四边形.∴ A 1D ∥B 1C . …12分 ∴ MO ∥B 1C , 且B 1C ⊂平面11B BCC ,MO ⊄平面11B BCC ,∴ MO //平面11B BCC . …14分说明:直线在平面内,既可用符号“”表示,也可用符号“⊂”表示,而且应特别让学生知道后一种表示. (18)本小题主要考查运用数学知识解决实际问题的能力.满分12分.解:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-≤<=时当时当时当50002000,1252032000500,251015000,201)(x x x x x x x f ……………6 分(2)∵ 17516525<<,∴ 老李2018年12月份的应纳税金额在500~2000元之间由16525101=-x ,得1900=x , ……………………9分∴ 老李12月份的工资总收入为3500元,∴ 老李2018年1月份的工资总收入为4200%)201(3500=+⋅(元),应纳税金额为260016004200=-=x (元), …………11分 ∴ 2651252600203)2600(=-⋅=f (元),即老李2018年1月份应缴纳个人所得税265元(12分) (19)本小题主要考查直线的方程、圆的方程、直线与圆的位置关系等基本知识,考查综合运用数学知识分析和 解决问题的能力.满分14分.解:(Ⅰ)依题意,可设圆C 的方程为()()222x a y b r -+-=,且a 、b 满足方程组()3330,2231 1.3a b b a --⎧++=⎪⎪⎨+⎪⨯-=-⎪+⎩由此解得 0a b ==. …5分 又因为点P (1,1)在圆C 上,所以()()()()222221110102r a b =-+-=+++=.故圆C 的方程为222x y +=. …7分 (Ⅱ)由题意可知,直线PA 和直线PB 的斜率存在且互为相反数,故可设PA 所在的直线方程为1(1)y k x -=-,PB 所在的直线方程为1(1)y k x -=--.由221(1),2y k x x y -=-⎧⎨+=⎩ 消去y ,并整理得222(1)2(1)(1)20k x k k x k ++-+--=. ① …10分 设()11,A x y ,又已知P (1,1),则1x 、1为方程①的两相异实数根,由根与系数的关系得()2121211k x k --=+,即212211k k x k --=+.同理,若设点B 22(,)x y ,则可得222211k k x k +-=+. …12分于是 12121212(1)(1)AB y y k x k x k x x x x --+-==--=1212()2k x x k x x +--=1. 而直线OP 的斜率也是1,且两直线不重合,因此,直线OP 与AB 平行. …14分 (20)本小题主要考查函数、方程、不等式等基本知识,考查综合运用数学知识分析和解决问题的能力.满分14 分.解:(Ⅰ)当0a =时,1()2f x x c =-+.由(1)0f =得:102c -+=,即12c =,∴ 11()22f x x =-+.显然x >1时,()f x <0,这与条件②相矛盾,不合题意. ∴ 0a ≠,函数21()2f x ax x c =-+是二次函数. …2分 由于对一切x ∈R ,都有()0f x ≥,于是由二次函数的性质可得20140.2a ac >⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,-- 即010.(*)16a ac >⎧⎪⎨≥>⎪⎩,…4分 由(1)0f =得 12a c +=,即12c a =-,代入(*)得 11216a a ⎛⎫-≥ ⎪⎝⎭. 整理得 2110216a a -+≤,即2104a ⎛⎫-≤ ⎪⎝⎭. 而2104a ⎛⎫-≥ ⎪⎝⎭,∴ 14a =.将14a =代入(*)得,14c =, ∴ 14a c ==. …7分另解:(Ⅰ)当0a =时,1()2f x x c =-+. 由(1)0f =得 102c -+=,即12c =, ∴ 11()22f x x =-+.显然x >1时,()f x <0,这与条件②相矛盾,∴ 0a ≠,因而函数21()2f x ax x c =-+是二次函数. …2分 由于对一切x ∈R ,都有()0f x ≥,于是由二次函数的性质可得20140.2a ac >⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,-- 即010.16a ac >⎧⎪⎨≥>⎪⎩, …4分由此可知 a c >>0,0,∴ 22a c ac +⎛⎫≤ ⎪⎝⎭.由(1)0f =,得 12a c +=,代入上式得 116ac ≤. 但前面已推得 116ac ≥, ∴ 116ac =. 由 1,161,2ac a c ⎧=⎪⎪⎨⎪+=⎪⎩ 解得 14a c ==. …7分(Ⅱ)∵ 14a c ==, ∴ 2111()424f x x x =-+. ∴ 2111()()424g x f x m x x m x ⎛⎫=-=-++ ⎪⎝⎭. 该函数图象开口向上,且对称轴为21x m =+. …8分 假设存在实数m 使函数2111()()424g x f x mx x m x ⎛⎫=-=-++ ⎪⎝⎭在区间[],2m m +上有最小值-5. ① 当m <-1时,21m +<m ,函数()g x 在区间[],2m m +上是递增的, ∴ ()g m =-5,即21115424m m m ⎛⎫-++=- ⎪⎝⎭, 解得 m =-3或m =73. ∵ 73>-1, ∴ m =73舍去. …10分② 当-1≤m <1时,m ≤21m +<m +1,函数()g x 在区间[],21m m +上是递减的,而在区间[]21,2m m ++上是递增的,∴ ()21g m +=-5,即()()211121215424m m m ⎛⎫+-+++=- ⎪⎝⎭.解得 m =12--m =12-+均应舍去. …12分 ③当m ≥1时,21m +≥m +2,函数()g x 在区间[],2m m +上是递减的, ∴ ()2g m +=-5,即()()2111225424m m m ⎛⎫+-+++=- ⎪⎝⎭.解得 m =1--m =1-+m =1--应舍去.综上可得,当m =-3或m =1-+()()g x f x mx =-在区间[],2m m +上有最小值-5. …14分。

2017-2018学年度第一学期高三港澳台12月月考数学试卷

2017-2018学年度第一学期高三港澳台12月月考数学试卷

12017-2018学年度第一学期高三港澳台12月月考 数学试卷(满分150分,考试用时120分钟)一、选择题:(本大题共12小题,每小题5分,共60分.)1、设平面向量(1,2),(3,2)a b =-=-,则2+a b = ( )(A ) (1,0) (B )(1,2) (C ) (2,4) (D )(2,2)2、设集合{}|24xA x =≤,集合{}|lg(1)B x y x ==-,则A B 等于( )(A )(1,2)(B ) [)1,2 (C )(]1,2 (D )[]1,23、5)221(y x -的展开式中32y x 的系数是( )(A )20- (B ) 5- (C )5 (D )20 4、设i为虚数单位,已知1211,12i z z i -==-++,则|z 1| ,|z 2| 的大小关系是( ) (A )|z 1| <|z 2| (B )|z 1| =|z 2| (C )|z 1| >|z 2| (D )无法比较5、函数cos()23x y π=+的图像按向量(,0)3a π=- 平移后,所得图像对应的函数为( )(A )cos 2x y = (B )cos 2x y =- (C )sin 2x y = (D )sin 2xy =-222624:1y y x C x C b=--=、设直线与双曲线的一条渐近线平行,则的离心率为( )(A(B(C )3 (D )57、六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192B.216C.240D.2888、投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648B.0.432C.0.36D.0.312 9、函数()()sin cos 1sin cos 1y x x x x =+-的最大值为( )(A ) 1 (B )34 (C ) 34- (D ) 1- 10、正四棱锥的各棱长均为1,则它的体积是( )61.62.63.33.D C B A 11、椭圆的中心为点(1,0),E -它的一个焦点为(3,0),F -相应于焦点F 的准线方程为7.2x =-则这个椭圆的方程是( )A 、222(1)21213x y -+= B 、222(1)21213x y ++=C 、22(1)15x y -+= D 、22(1)15x y ++= 12、已知函数f (x )的定义域为R.当x<0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x ); 当x>12时,f 1x 2⎛⎫+ ⎪⎝⎭=f 1x 2⎛⎫- ⎪⎝⎭,则f (6)= ( )A. 2B. 0C. 1D.-2二、填空题 :(本大题共6小题,每小题5分,共30分.) 13、设S n 是等差数列{a n }的前n 项和, 若a 1+a 3+a 5=6, 则S 5=________ 14、点(31),-关于直线0x y +=的对称点为_____________ 15、已知点P (3, 1, 5)及直线L :212111-=-+=-z y x 都在平面α上,则平面α的平面方程式是____________.16、用2x x +除多项式53343x x x ++-得到的余式为17、在平面直角坐标系中,O 为原点,)0,1(-A ,)3,0(B ,)0,3(C . 动点D 满足1||=,则||++的最大值是________.18、一公司计划从10名员工(6男4女)中选出一个5人小组参加某项目的研发,需要确定组长1人,副组长1人及组员3人,且组长、副组长中至少有一人为女性,则共有__________种不同的选取方法(用数字作答).22017-2018学年度第一学期高三港澳台12月月考数学答题卡(时间:120分钟 满分:150分)一、 单项选择题,每题5分,共60分二、填空题,每题5分,共30分13、______________ 14、______________15、______________ 16、______________ 17、______________ 18、______________三、解答题:本大题共4小题;每小题15分.解答应写出文字说明,证明过程或演算步骤。

港澳台高三数学上学期入学考试试题

港澳台高三数学上学期入学考试试题

港澳台2017届高三数学上学期入学考试试题一、选择题:本大题共12小题;每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将答案填在题后括号内。

1.若一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .ππ221+B .ππ41+C .ππ21+ D .ππ21+ 2。

若0a b >>,则下列不等式不成立...的是( ) A .11a b < B .||||a b > C .ab b a 2>+ D .b a ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛21213。

已知函数()()()246060x x x f x x x ⎧-+≥⎪=⎨+<⎪⎩,则满足()()1f x f >的x 取值范围是( ) A.()()3 13 -+∞,,B. ()()3 12 -+∞,,C. ()()1 13 -+∞,, D 。

()() 31 3-∞-,, 4.圆0204222=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为( )A 10B -68C 12D 10或-685.已知ΔABC 和点M 满足错误!+错误!+错误!=0.若存在实数m 使得错误!+错误!=m 错误!成立,则m =( )A .2B .3C .4D .5 6.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是( )A 113a << B 1a > C 13a < D 1a =7.将x y cos =的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将图象沿x 轴负方向平移4π个单位,则所得图象的解析式为( ) (A)x y sin = (B )x y 2sin -= (C)cos 24y x π⎛⎫=+ ⎪⎝⎭ (D)cos 24xy π⎛⎫=+ ⎪⎝⎭8.数列a n =错误!,其前n 项之和为错误!,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为 ( ) A .-10 B .-9 C .10 D .99。

2017年港澳台侨联考【数学】真题答案

2017年港澳台侨联考【数学】真题答案

2017年中华人民共和国普通高等学校联合招收华侨、港澳地区、台湾省学生入学考试数学答案解析一、1.【答案】D【点评】考查并集的概念、集合的简单运算,属于简单题。

【解析】并集就是所有可能的元素放到一起,重合的只写一次,此题已经给定了集合A 、B ,直接可得4UB ={1,2J,4}。

2.【答案]A【点评】考查两角的和差三角函数公式,特殊三角函数值,属千简单题。

【解析】直接套公式即得,cos20°cos25°-sin20°sin25°=c o s (2o 0.+i5°)=co s45°= -..{i, 23.【答案】C【点评】考查向量的夹角公式,向量的坐标运算,属于简单题。

【解析】直接套公式cos(a,E)吵.fi{-句+l•l1 =··, —= 摩1声产=--,故夹角为120°024.【答案】D【点评)考查复数的简单运算,属千简单题。

【解析】直接套公式得(妇)2 = 3+2../i;-1上乌2 42 25.【答案】A【点评】考查等差数列的通项公式和求和公式,解不等式,属千简单题。

【解析】直接套公式等差数列的前n 项和公式,S 52: S4 2: S 6 <=> 5a i + 10d�:� 屈+6d 2 6a 1 +15d得20+1Od216+ 6d 2 24 + 15d , 解得-区d�-...;..:8 9或s,-,,.s .-,,.s , �{s,-�产0=>尸'即尸丑心0'解得-I 年-汇S,.-SA云Oa �+a 长�02at + 9d�O 96.【答案】D【点评】考查椭圆的定义、几何性质,椭圆的焦点三角形,余弦公式,展千简单题。

【解析】我们强调过在椭圆的焦点三角形中,只需要利用余弦公式,和椭圆第一定义。

由余弦公式得平='\/22+22-2.x 2x2xcos 气幼;再用椭圆第一定义得,椭圆的长轴长2a=印屯P=2+2../3。

高三数学第一次模拟考试试题1

高三数学第一次模拟考试试题1

江苏省南通市2017届高三数学第一次模拟考试试题参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.棱锥的体积公式:13V Sh =棱锥,其中S 为棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 函数2sin(3)3y x π=-的最小正周期为 ▲ .2. 设集合{}13A =,,{}25B a =+,,{}3A B =,则AB = ▲ .3. 复数2(1+2i)z =,其中i 为虚数单位,则z 的实部为 ▲ .4. 口袋中有若干红球、黄球和蓝球,从中摸出一只球.已知摸出 红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为 ▲ .5. 如图是一个算法的流程图,则输出的n 的值为 ▲ . 6. 若实数x ,y 满足243700x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≤,≥,≥,则z =3x +2y 的最大值为 ▲ .7. 抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(共14题)、解答题(共6题),满分为160分,考试时间为120分钟。

考试结束后,请将答题卡交回。

2. 答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写在答题卡上。

3. 作答试题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置作答一律无效。

如有作图需要,可用2B 铅笔作答,并请加黑、加粗,描写清楚。

输出n 11n a ←←,16a <结束(第5题)开始32a a ←+2n n ←+N Y学生 第1次 第2次 第3次 第4次 第5次 甲 65 80 70 85 75 乙8070758070则成绩较为稳定(方差较小)的那位学生成绩的方差为 ▲ . 8. 如图,在正四棱柱ABCD –A 1B 1C 1D 1中,3cm AB =,11cm AA =,则三棱锥D 1–A 1BD 的体积为 ▲ 3cm .9. 在平面直角坐标系xOy 中,直线20x y +=为双曲线22221(00)x y a b a b -=>>,的一条渐近线,则该双曲线 的离心率为 ▲ .10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为 ▲ 升. 11.在△ABC 中,若2BC BA AC AB CA CB ⋅+⋅=⋅,则sin sin AC的值为 ▲ . 12.已知两曲线()2sin f x x =,()cos g x a x =,π(0)2x ∈,相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为 ▲ .13.已知函数()4f x x x =+-,则不等式2(2)()f x f x +>的解集用区间表示为 ▲ . 14.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点(11)A ,,且AB ⊥AC ,则线段BC 的长的取值范围为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、 证明过程或演算步骤. 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A . 以OA 为始边作锐角β,其终边与单位圆交于点B ,AB 25. ABCDA 1B 1C 1D 1 (第8题)(1)求cos β的值; (2)若点A 的横坐标为513,求点B 的坐标.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)直线PA ∥平面BDE ; (2)平面BDE ⊥平面PCD .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>的离心率为22,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线2y =于点Q ,求2211OP OQ +的值.18.(本小题满分16分)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点, 点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在 直线BC 下方点M ,N 处,FN 交边BC 于点P ),再沿直线PE 裁剪. (1)当∠EFP =4π时,试判断四边形MNPE 的形状,并求其面积;(2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由.AB CDFEP(第16题)ABCODPExyA 1 B(第15题)β αOxyQOP(第17题)219.(本小题满分16分)已知函数2()ln f x ax x x =--,a ∈R .(1)当38a =时,求函数()f x 的最小值;(2)若10a -≤≤,证明:函数()f x 有且只有一个零点; (3)若函数()f x 有两个零点,求实数a 的取值范围.20.(本小题满分16分)已知等差数列{}n a 的公差d 不为0,且1k a ,2k a ,…,n k a ,…(12k k <<…n k <<…)成等比数列,公比为q .(1)若11k =,23k =,38k =,求1a d的值; (2)当1a d为何值时,数列{}n k 为等比数列; (3)若数列{}n k 为等比数列,且对于任意n *∈N ,不等式2n n k n a a k +>恒成立,求1a 的取值 范围.南通市2017届高三第一次调研测试数学Ⅱ(附加题)若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C 为AO 的中点,弦DE 过 点C 且满足CE =2CD ,求△OCE 的面积.B .[选修4-2:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点11P (,)在矩阵A 对应的变换作用下变为33P '(,),求矩阵A .C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长. D .[选修4-5:不等式选讲](本小题满分10分)求函数3sin y x =+【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出OA BEDC(第21-A 题)文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在棱长为2的正方体ABCD –A 1B 1C 1D 1中,P 为棱C 1D 1的中点,Q 为棱BB 1上的点, 且1(0)BQ BB λλ=≠.(1)若12λ=,求AP 与AQ 所成角的余弦值;(2)若直线AA 1与平面APQ 所成的角为45°, 求实数λ的值.23.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线22(0)x py p =>上的点(1)M m ,到焦点F 的距离为2. (1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直 线PF 与抛物线相交于A ,B 两点,求△EAB 面积的最小值.y = f (x )(第23题)yOxF AB PEBADC 1(第22题)A 1D 1B 1CQP南通市2017届高三第一次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 函数2sin(3)3y x π=-的最小正周期为 ▲ .【答案】23π 2. 设集合{}13A =,,{}25B a =+,,{}3A B =,则AB = ▲ .【答案】{}135,,3. 复数2(1+2i)z =,其中i 为虚数单位,则z 的实部为 ▲ .【答案】3-4. 口袋中有若干红球、黄球和蓝球,从中摸出一只球.摸出红球的概率为0.48,摸出黄球的概率为0.35,则摸出蓝球的概率为▲ . 【答案】0.175. 如图是一个算法的流程图,则输出的n 的值为 ▲ .【答案】56. 若实数x ,y 满足243700x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤,≤,≥,≥,则z =3x +2y 的最大值为 ▲ .【答案】77. 抽样统计甲、乙两名学生的5次训练成绩(单位:分),结果如下:则成绩较为稳定(方差较小)的那位学生成绩的方差为 ▲ . 【答案】208. 如图,在正四棱柱ABCD –A 1B 1C 1D 1中,3cm AB =,(第5题)A 1BC 1D 111cm AA =,则三棱锥D 1–A 1BD 的体积为 ▲ 3cm .【答案】329. 在平面直角坐标系xOy 中,直线20x y +=为双曲线22221(00)x y a b a b -=>>,的一条渐近线,则该双曲线的离心率为 ▲ .10.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为 ▲ 升. 【答案】132211.在△ABC 中,若2BC BA AC AB CA CB ⋅+⋅=⋅,则sin sin AC的值为 ▲ .12.已知两曲线()2sin f x x =,()cos g x a x =,π(0)2x ∈,相交于点P .若两曲线在点P 处的切线互相垂直,则实数a 的值为 ▲ .13.已知函数()4f x x x =+-,则不等式2(2)()f x f x +>的解集用区间表示为 ▲ .【答案】(2)(2)-∞-+∞,,14.在平面直角坐标系xOy 中,已知B ,C 为圆224x y +=上两点,点(11)A ,,且AB ⊥AC ,则线段BC 的长的取值范围为 ▲ .【答案】+二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边作锐角α,其终边与单位圆交于点A .以OA 为始边作锐角β,其终边与单位圆交于点B ,AB. (1)求cos β的值; (2)若点A 的横坐标为513,求点B 的坐标. 【解】(1)在△AOB 中,由余弦定理得,2222cos AB OA OB OA OB AOB =+-⋅∠,所以222cos 2OA OB AB AOB OA OB +-∠=⋅ ……………2分22211352115+-==⨯⨯,即3cos 5β=. ………………………………………………………………………6分 (2)因为3cos 5β=,π(0)2β∈,,所以4sin 5β==. …………………………………………8分因为点A 的横坐标为513,由三角函数定义可得,5cos 13α=,因为α为锐角,所以12sin 13α. ……………………10分所以()5312433cos cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=-,………………12分 ()1235456sin sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=. 所以点3356()6565B -,. …………………………………………………………14分 16.(本小题满分14分)如图,在四棱锥P -ABCD 中,四边形ABCD 为平行四边形,AC ,BD 相交于点O ,点E 为PC 的中点,OP =OC ,PA ⊥PD .求证:(1)直线PA ∥平面BDE ; (2)平面BDE ⊥平面PCD .【证明】(1)连结OE ,因为O 为平行四边形ABCD 对角线的交点,所以O 为AC 中点. 又因为E 为PC 的中点,所以OE ∥PA . ……………………4分(第15题)(第16题)ABCODPE又因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以直线PA ∥平面BDE . ……………………………………………………6分 (2)因为OE ∥PA ,PA PD ⊥,所以OE PD ⊥. ………………………………8分因为OP OC =,E 为PC 的中点,所以OE PC ⊥. …………………………10分 又因为PD ⊂平面PCD ,PC ⊂平面PCD ,PCPD P =,所以OE ⊥平面PCD . …………………………………………………………12分 又因为OE ⊂平面BDE ,所以平面BDE ⊥平面PCD . ……………………14分17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1.(1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值. 【解】(1)由题意得,c a =,21a c c-=, …………2分解得a 1c =,1b =.所以椭圆的方程为2212x y +=. …………………………………………………4分(2)由题意知OP 的斜率存在.当OP 的斜率为0时,OP =,OQ =22111OP OQ +=. …………6分 当OP 的斜率不为0时,设直线OP 方程为y kx =.由2212x y y kx ⎧+=⎪⎨⎪=⎩,,得()22212k x +=,解得22221x k =+,所以222221k y k =+,所以2222221k OP k +=+. ………………………………………………………………9分因为OP OQ ⊥,所以直线OQ 的方程为1y x k=-.由1y y xk ⎧=⎪⎨=-⎪⎩得x =,所以2222OQ k =+. ………………………………12分(第17题)所以222221*********k OP OQ k k ++=+=++. 综上,可知22111OP OQ +=. ……………………………………………………14分 18.(本小题满分16分)如图,某机械厂要将长6 m ,宽2 m 的长方形铁皮ABCD 进行裁剪.已知点F 为AD 的中点, 点E 在边BC 上,裁剪时先将四边形CDFE 沿直线EF 翻折到MNFE 处(点C ,D 分别落在 直线BC 下方点M ,N 处,FN 交边BC 于点P ),再沿直线PE 裁剪. (1)当∠EFP =4π时,试判断四边形MNP E 的形状,并求其面积; (2)若使裁剪得到的四边形MNPE 面积最大,请给出裁剪方案,并说明理由. 【解】(1)当∠EFP =4π时,由条件得 ∠EFP =∠EFD =∠FEP =4π. 所以∠FPE =2π.所以FN ⊥BC , 四边形MNPE 为矩形.…… 3分 所以四边形MNPE 的面积S=PN MN ⋅=2 m 2.………… 5分(2)解法一:设<<2EFD θθπ∠=(0),由条件,知∠EFP =∠EFD =∠FEP =θ.所以22sin sin PF=θθ=π-22(), 23sin NP=NF PF θ-=-2, 23tan ME θ=-. ………………………………………………………………8分 由230sin 230tan <<2θθθ⎧->⎪2⎪⎪->⎨⎪⎪π⎪⎩,,0,得2sin 32tan 3<<.2θθθ⎧2>⎪⎪⎪>⎨⎪⎪π⎪⎩*,,()0 所以四边形MNPE 面积为ABCDFEPMN(第18题)1()2S=NP ME MN +122(3)(3)22sin tan +θθ⎡⎤=--⨯⎢⎥2⎣⎦226tan sin 2=θθ--2222(sin cos )6tan 2sin cos =θθθθθ+--36(tan )tan θθ=-+ ………………………………………………………12分362tan 623tan θθ-=-≤. 当且仅当3tan tan =θθ,即tan 33==θθπ,时取“=”.………………14分 此时,*()成立. 答:当3EFD π∠=时,沿直线PE 裁剪,四边形MNPE 面积最大, 最大值为623- m 2. …………………………………………………………16分 解法二:设BE t = m ,3<<6t ,则6ME t =-.因为∠EFP =∠EFD =∠FEP ,所以PE =PF 2232BP t BP -+=-(). 所以21323t BP=t --(),213333323t NP=PF=PE=t BP =t t ------+-()(). ………8分 由223<<613023133023t tt tt t ⎧⎪⎪-⎪>⎨-⎪⎪--+>⎪-⎩,,(),()得23<<61312310.t t t t ⎧⎪>⎨⎪-+<⎩*,,()所以四边形MNPE 面积为1()2S=NP ME MN +2113362223t t +t t ⎡⎤-=-+-⨯⎢⎥-⎣⎦()()() 23306723t t t -+=-()…………………………………………………………12分 326323t +t ⎡⎤=--⎢⎥-⎣⎦()62 3.-≤当且仅当32323t =t --(),即=3+3t +时取“=”. ………14分 此时,*()成立.答:当点E 距B 点3时,沿直线PE 裁剪,四边形MNPE 面积最大,最大值为6- m 2. …………………………………………………………16分19.(本小题满分16分)已知函数2()ln f x ax x x =--,a ∈R .(1)当38a =时,求函数()f x 的最小值;(2)若10a -≤≤,证明:函数()f x 有且只有一个零点; (3)若函数()f x 有两个零点,求实数a 的取值范围.【解】(1)当38a =时,23()ln 8f x x x x =--.所以(32)(2)31()144x x f x x x x+-'=--=,(x>0). ……………………………2分令()0f x '=,得2x =,当(02)x ∈,时,()0f x '<;当(2)x ∈+∞,时,()0f x '>, 所以函数()f x 在(02),上单调递减,在(2)+∞,上单调递增.所以当2x =时,()f x 有最小值1(2)ln 22f =--.………………………………4分(2)由2()ln f x ax x x =--,得2121()210ax x f x ax x x x--'=--=>,. 所以当0a ≤时,221()<0ax x f x x--'=, 函数()f x 在(0+)∞,上单调递减,所以当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.……………………6分因为当0a -1≤≤时,(1)1<0f a =-,221e e ()>0e ea f -+=, 所以当0a -1≤≤时,函数()f x 在(0+)∞,上有零点.综上,当0a -1≤≤时,函数()f x 有且只有一个零点. ………………………8分 (3)解法一:由(2)知,当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.因为函数()f x 有两个零点,所以>0a . ………………………………………9分由2()ln f x ax x x =--,得221()(0)ax x f x x x--'=>,,令2()21g x ax x =--.因为(0)10g =-<,2>0a ,所以函数()g x 在(0)+∞,上只有一个零点,设为0x .当0(0)x x ∈,时,()0()0g x f x '<<,;当0()x x ∈+∞,时,()0()0g x f x '>>,. 所以函数()f x 在0(0)x ,上单调递减;在0()x +∞,上单调递增. 要使得函数()f x 在(0+)∞,上有两个零点,只需要函数()f x 的极小值0()0f x <,即200ln 0ax x x --<. 又因为2000()210g x ax x =--=,所以002ln 10x x +->, 又因为函数()2ln 1h x =x x +-在(0+)∞,上是增函数,且(1)0h =, 所以01x >,得0101x <<. 又由20210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<. ……………………………………………………………………13分 以下验证当01a <<时,函数()f x 有两个零点.当01a <<时,21211()10a ag a a a a -=--=>,所以011x a<<. 因为22211e e ()10e e e e a af -+=-+=>,且0()0f x <.所以函数()f x 在01()ex ,上有一个零点.又因为2242222()ln (1)10a f a a a a a a =----=>≥(因为ln 1x x -≤),且0()0f x <.所以函数()f x 在02()x a,上有一个零点.所以当01a <<时,函数()f x 在12()e a,内有两个零点.综上,实数a 的取值范围为(1)0,. ……………………………………………16分 下面证明:ln 1x x -≤.设()1ln t x x x =--,所以11()1x t x x x-'=-=,(x>0). 令()0t x '=,得1x =.当(01)x ∈,时,()0t x '<;当(1)x ∈+∞,时,()>0t x '. 所以函数()t x 在(01),上单调递减,在(1)+∞,上单调递增. 所以当1x =时,()t x 有最小值(1)0t =. 所以()1ln 0t x x x =--≥,得ln 1x x -≤成立. 解法二:由(2)知,当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.因为函数()f x 有两个零点,所以>0a . ………………………………………9分 由2()ln 0f x ax x x =--=,得关于x 的方程2ln x x a x+=,(x>0)有两个不等 的实数解. 又因为ln 1x x -≤,所以222ln 211(1)1x x x a x x x +-==--+≤,(x>0). 因为x>0时,21(1)11x--+≤,所以1a ≤.又当=1a 时,=1x ,即关于x 的方程2ln x x a x+=有且只有一个实数解. 所以<<1a 0. ……………………………………………………………………13分 (以下解法同解法1)20.(本小题满分16分)已知等差数列{}n a 的公差d 不为0,且1k a ,2k a ,…,n k a ,…(12k k <<…n k <<…)成等比数列,公比为q .(1)若11k =,23k =,38k =,求1a d的值; (2)当1a d为何值时,数列{}n k 为等比数列;(3)若数列{}n k 为等比数列,且对于任意n *∈N ,不等式2n n k n a a k +>恒成立,求1a 的取值 范围.【解】(1)由已知可得:1a ,3a ,8a 成等比数列,所以2111(2)(7)a d a a d +=+, ………2分整理可得:2143d a d =.因为0d ≠,所以143a d =. ……………………………4分 (2)设数列{}n k 为等比数列,则2213k k k =.又因为1k a ,2k a ,3k a 成等比数列,所以[][][]2111312(1)(1)(1)a k d a k d a k d +-+-=+-. 整理,得21213132132(2)(2)a k k k d k k k k k k --=---+. 因为2213k k k =,所以1213213(2)(2)a k k k d k k k --=--. 因为2132k k k ≠+,所以1a d =,即11a d=.………………………………………6分 当11a d=时,1(1)n a a n d nd =+-=,所以n k n a k d =. 又因为1111n n n k k a a q k dq --==,所以11n n k k q -=. 所以1111nn n n k k q q k k q +-==,数列{}n k 为等比数列. 综上,当11a d=时,数列{}n k 为等比数列.………………………………………8分 (3)因为数列{}n k 为等比数列,由(2)知1a d =,11(1)n n k k q q -=>.1111111n n n n k k a a q k dq k a q ---===,11(1)n a a n d na =+-=.因为对于任意n *∈N ,不等式2n n k n a a k +>恒成立. 所以不等式1111112n n na k a q k q --+>,即111112n n k q a n k q -->+,111111110222n n n n k q q na k q k q --+<<=+恒成立.……………………10分下面证明:对于任意的正实数(01)εε<<,总存在正整数1n ,使得11n n εq <. 要证11n n εq<,即证11ln ln ln n n q ε<+.因为11ln e 2x x x <≤,则1122111ln 2ln n n n =<,解不等式1211ln ln n n q ε<+,即1122211()ln ln 0n q n ε-+>, 可得121114ln ln q εn +->,所以21114ln ln ()q εn +->. 不妨取20114ln ln ()1q εn ⎡⎤+-=+⎢⎥⎢⎥⎣⎦,则当10n n >时,原式得证. 所以11102a <≤,所以12a ≥,即得1a 的取值范围是[)2+∞,. ……………16分 21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.................... 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)已知圆O 的直径4AB =,C 为AO 的中点,弦DE 过点C 且满足CE =2C D ,求△OCE 的面积. 【解】设CD x =,则2CE x =.因为1CA =,3CB =,由相交弦定理,得CA CB CD CE ⋅=⋅, 所以21322x x x ⨯=⋅=,所以6x =2分 取DE 中点H ,则OH DE ⊥.因为2222354()28OH OE EH x =-=-=,所以10OH =.…………………………………………………………………………6分 又因为26CE x ==,所以△OCE 的面积111015622S OH CE =⋅= …………………………10分 B .[选修4-2:矩阵与变换](本小题满分10分)已知向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量.在平面直角坐标系xOy 中,点11P (,)在矩阵A 对应的变换作用下变为33P '(,),求矩阵A . 【解】设a b c d ⎡⎤=⎢⎥⎣⎦A ,OEDC(第21-A 题)H因为向量11⎡⎤⎢⎥-⎣⎦是矩阵A 的属于特征值–1的一个特征向量,所以111(1)111a b c d -⎡⎤⎡⎤⎡⎤⎡⎤=-=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦.所以11a b c d -=-⎧⎨-=⎩,. ………………………………4分 因为点11P (,)在矩阵A 对应的变换作用下变为33P '(,),所以1313a b c d ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.所以+3+3a b c d =⎧⎨=⎩,. …………………………………………………8分解得1a =,2b =,2c =,1d =,所以1221⎡⎤=⎢⎥⎣⎦A .………………………………10分 C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,求直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长. 【解】解法一:在4sin ρθ=中,令π4θ=,得π4sin =224ρ=,即AB =22. …………………10分 解法二:以极点O 为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系. 直线π()4θρ=∈R 的直角坐标方程为y x =①, ………………………………………3分 曲线4sin ρθ=的直角坐标方程为2240x y y +-=②. ……………………………6分 由①②得00x y =⎧⎨=⎩,,或22x y =⎧⎨=⎩,,……………………………………………………………8分所以(00)(22)A B ,,,, 所以直线π()4θρ=∈R 被曲线4sin ρθ=所截得的弦长AB =22. ………………10分 D .[选修4-5:不等式选讲](本小题满分10分)求函数3sin 222cos 2y x x =++【解】23sin 222cos 2=3sin 4cos y x x x x =+++…………………………………………2分由柯西不等式得2222222(3sin cos )(34)(sin cos )25y x x x x =+++=≤,……………………………8分所以max 5y =,此时3sin =5x .所以函数3sin y x =+5. …………………………………10分【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在棱长为2的正方体ABCD –A 1B 1C 1D 1中,P 为棱C 1D 1的中点,Q 为棱BB 1上的点, 且1(0)BQ BB λλ=≠. (1)若12λ=,求AP 与AQ 所成角的余弦值; (2)若直线AA 1与平面APQ 所成的角为45°, 求实数λ的值.【解】以{}1AB AD AA ,,为正交基底,建立如图所示空间直角坐标系A xyz -.(1)因为=(122)AP ,,,=(201)AQ ,,, 所以cos =||||AP AQ AP AQ AP AQ ⋅<>,.所以AP 与AQ .………………………………………4分 (2)由题意可知,1=(002)AA ,,,=(202)AQ λ,,. 设平面APQ 的法向量为n ()x y z =,,, 则00AP AQ ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即220220x y z x z λ++=⎧⎨+=⎩,.令2z =-,则2x λ=,2y λ=-.所以n (222)λλ=--,,.…………………………………………………………6分 又因为直线1AA 与平面APQ 所成角为45°, 所以|cos<n ,1AA >|11=||||AA AA⋅n n ==(第22题)可得2540λλ-=,又因为0λ≠,所以45λ=. ……………………………10分 23.(本小题满分10分)在平面直角坐标系xOy 中,已知抛物线22(0)x py p =>上的点(1)M m ,到焦点F 的距离为2. (1)求抛物线的方程;(2)如图,点E 是抛物线上异于原点的点,抛物线在点E 处的切线与x 轴相交于点P ,直 线PF 与抛物线相交于A ,B 两点,求△EAB 面积的最小值. 【解】(1)抛物线22(0)x py p =>的准线方程为2p y =-, 因为(1)M m ,,由抛物线定义,知12pMF =+, 所以122p+=,即2p =, 所以抛物线的方程为24x y =.……………………………………………………3分 (2)因为214y x =,所以12y x '=. 设点2()04t E t t ≠,,,则抛物线在点E 处的切线方程为21()42t y t x t -=-.令0y =,则2t x =,即点(0)2tP ,.因为(0)2t P ,,(01)F ,,所以直线PF 的方程为2()2ty x t =--,即20x ty t +-=. 则点2()4t E t ,到直线PF的距离为d ==.…………………5分联立方程2420x y x ty t ⎧=⎪⎨⎪+-=⎩,,消元,得2222(216)0t y t y t -++=. 因为2242(216)464(4)0t t t ∆=+-=+>,所以1y =,2y =,y = f (x )(第23题)yOxF AB PEaa所以221212222164(4)1122t t AB y y y y t t ++=+++=++=+=. ………………7分 所以△EAB的面积为3222214(4)1(4)22t t S t t++=⨯=⨯. 不妨设322(4)()x g x x +=(0)x >,则12222(4)()(24)x g x x x+'=-.因为(0x ∈时,()0g x '<,所以()g x在(0上单调递减;)x ∈+∞上,()0g x '>,所以()g x在)+∞上单调递增.所以当x =时,32min 4)()g x ==所以△EAB的面积的最小值为10分欢迎您的下载,资料仅供参考!。

港澳台联考数学真题

港澳台联考数学真题

2017年港澳台联考数学(真题)一:选择题:本大题共12小题;每小题5分,共60分。

1.若集合{}{},4,3,2,3,2,1==B A 则)(=⋃B A2.设向量()()1,3,1,3-==→→b a ,则→→b a 和的夹角为( ) 3.设等差数列{}n a 的前n 项和为n S ,,,46451S S S a ≥≥=则公差d 的取值范围是( )4.椭圆C 的焦点为),0,1(),0,1(21F F -点P 在C 上,,32,2212π=∠=P F F P F 则C 的长轴长为( ) 5.函数)(x f y =的图像与函数)1ln(-=x y 的图像关于y 轴对称,则)()(=x f 6.设10<<a ,则( )9.4个数字1和4个数字2可以组成不同的8位数共有( )个10.正三棱锥111C B A ABC -各棱长均为1,D 为1AA 的中点,则四面体BCD A 1的体积是( )11.已知双曲线)0,0(1:2222>>=-b a by a x C 的右焦点为)0,(c F ,直线)(c x k y -=与C 的右支有两个交点,则( )12.函数)(x f 的定义域()+∞∞-,,若)1()(+=x f x g 和)1()(-=x f x h 都是偶函数,则( ) 二:填空题:本大题共6小题;每小题5分,共30分。

13.6)2(-x 的展开式中5x 的系数是 .(用数字作答)14.在ABC ∆中,D 为BC 的中点,,5,6,8===AD AC AB 则=BC .15.若曲线)1(11>-+=x x x y 的切线l 与直线x y 43=平行,则l 的方程为 . 16.直线023=--y x 被圆0222=-+x y x 截得的线段长为 .17.若多项式)(x p 满足2)1(,1)2(=-=p p ,则)(x p 被22--x x 除所得的余式为 .18.在空间直角坐标系中,向量→a 在三个坐标平面内的正投影长度分别为1,2,2,则→a = . 三:解答题:本大题共4小题;每小题15分,共60分。

港澳台全国联考模拟测试一数学

港澳台全国联考模拟测试一数学

全国港澳台数学联考阶段测试(一)(时间:120分钟 满分:150分)一、选择题。

(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请把所选项目的字母填在对应的答题卡上)1、()51x -的展开式中,2x 的系数是( )A . 5 B. -5 C. 10 D. -102、已知(1,1,2),(2,,4)a b x =-=-,且//a b ,则x 的值是( )A . -10 B. 10 C. 2 D. -23、已知点A(1,-1,2)和点B(-1,0,4),与向量AB方向相反的单位向量是( )A .()2,1,2-B .()2,1,2--C .212,,333⎛⎫- ⎪⎝⎭D .212,,333--⎛⎫⎪⎝⎭4、用2x x +除多项式54442x x x -++得到的余式是( ) A .4+2x B .9+2x C .+2x D .9-7x5、下列多项式是多项式332x x x -+的因式是( )A .2-1xB .-2xC .+2xD .+1x6、某人有3个不同的电子邮箱,他要发5个电子邮件,发送的方法的种数( )A . 8 B. 15 C. 243 D. 125 7、过点P(3,2,5)且与z 轴平行的直线方程是()A .32x y =⎧⎨=⎩B .35x z =⎧⎨=⎩C .25y z =⎧⎨=⎩ D .5z =8、若点(1,2)既在函数y k ,b 的值分别为( )A .-3,7B .3,7C .3,-7D .-3,-79、4名男生和2名女生排成一排照相,要求2名女生必须相邻,则不同的排列方法为( )10、从4台甲型和5台乙型电视机中任意取出3台,要求至少有甲型与乙型电视机各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种11、下列四个运算中,正确的是( )0.lim 1x x A x →= ()()x 21c o s ()21(),l i m 12s i n ()2x x f x x f x x x ππππ→⎧+<⎪⎪⎪===⎨⎪⎪>⎪⎩B.若则 11.lim11x x C x →--=- .l i 1x D →= 12、四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法有( )A .150种 B.147种 C.144种D.141种二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第一学期高三港澳台第一次模拟考试
数学试卷
A 、100
B 、-100
C 、-90
D 、90
9、已知 3a
=5
b

1 1
且 -=2,贝U m
之值为(
).
a b
A . 15
B .、15
C . 土. 15
D . 225
满分150分,考试用时120分钟
、选择题:(本大题共12小题,每小题5分,共60分.) 1
、 已知i 为虚数单位,复数 z = i(2 -i)的模z =()
.3 C 、
.5
2、 z 2 11 0— (1 — 0.5—2) € 3 的值为(
3、
4、
5、
6、
7、
8、
1
A .— 3
设集合A 二 B. C.
D.
x -1 “B

x2 乞
0 vx v2> B. C. D.
设 a,b € R,则 “(a-b)a 2<0”是"a<b ”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 已知f 若函数 函数 D.既不充分也不必要条件
(x ) = x 5
+ ax 3
+ bx — 8,且 f (— 5) = 10,那么 f ( 5)
等于
10 B .— 10 C.— 18
D . — 26
1
f(x)=x
(x 2)在x=a 处有最小值,则 a 等于(
x —2
1-3
C 、4
D 、3
1x|x-1?心
「x|x - 1
4
3
若多项式x mx • nx -16含有因式x -1和x -2,贝y mn =(
★ 1 ★
10、 函数y = log 2 (x :=(1,亠•))的反函数是 (
)
x -1
A.y = 2」1(x R)
B.^ -2^1(x (1,::))
1
C.y = 2i(x R)
D.y=2^(x R, x= 1)
11、 关于 x 的不等式 x 2-2ax -8a 2 ::: 0(a 0)的解集为(x^x ?),且 乂2-人=15,则 a =(
)
5
7
15
15
(A)-
(B)-
(C).;
(D)-
12、 已知函数 f(x)是(」:「:)上的偶函数,若对于 x_0,都有f(x ・2) f (x),且当
x [0, 2)时,f (x)二 log 2 (x • 1 ,则 f(-2008) f (2009)的值为()
(A) -2
(B) -1
(C) 1
(D) 2
二、填空题:(本大题共6小题,每小题5分,共30分.)
13、 _____________________________________ 不等式 J x -4兰3的解集是
14、 已知 f(lnx —1)=2x + 3,贝U f(x) = ______________
(1+i)3 -
15、 ____________________________________________ 复数z= —L 的共轭复数z=
i
16、 用x 1除多项式p(x)的余式为2,用x 2除多项式p(x)的余式为1,则用x 2 • 3x • 2
除多项式p(x)的余式为 _______________ .
17、 用x 2 1除多项式x 5 x^ 3x 3 • 4x - 3得到的余式为 _________________
18、 当x 「0,2丨时,函数f x 二ax 2 • 4(a -1)x-3在x=2时取得最大值,则 a 的取值范 围是
I
2017-2018学年度第一学期高三港澳台第一次模拟考试
数学答题卡
(时间:120分钟 满分:150分)
-、 b 1
20、已知定义域为 R 的函数f(x) x
是奇函数。

2+12
(I)求b 的值;
(n)判断函数 f x 的单调性;
2 2
(川)若对任意的t R ,不等式f(t - 2t) • f(2t - k”: 0恒成立,求k 的取值范围.
二、 填空题,每题5分,共30分
13、 _______________ 14、 _____________________ 15、 _______________________ 16、 _______________ 17、 _____________________ 18、 _______________________
三、解答题:本大题共 4小题;每小题15分•解答应写出文字说明,证明过程或演算步骤。

I ;19、当实数m 是什么值时,关于 x 的方程2(m+1)x 2+4mx + 3m-2 =0有两个负根? I I
I
)

(
室 考
21、求关于x不等式3ax2-6(a 1)x 12<0的解集22、某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x
3
(百台),其总成本为G(x)(万元),其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)满足
丨-0 % 4=2 (00x3 5 )耐
R(x) ,,那么根据上述统计规律:
[ 10.2 (XA5)
(1)要使工厂赢利,产品x应控制在什么范围?
(2)工厂生产多少台产品时赢利最大?并求出此时每台产品的售价为多少?。

相关文档
最新文档