汽轮机组启动过程中胀差的控制
汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。
当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。
一.汽轮机胀差的产生汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。
由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。
同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。
汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。
同样转子也因受热发生热膨胀。
转子膨胀大于汽缸,其相对膨胀差被称为正胀差。
汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。
二.胀差过大的危害胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。
汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。
因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。
当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。
不同容量的汽轮机组胀差允许极限值不同。
机组冷态启动各阶段胀差的控制要点解析

摘要:汽轮机与汽缸的相对膨胀,称为胀差。
习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,汽缸膨胀大于转子膨胀时的胀差值为负胀差。
根据汽缸分类又可分为高差、中差、低差。
我厂控制的胀差:高差:18.39—28.92,中差:5.88—15.89,低差:8.19—40.91,单位:MM.研究胀差的变化即是探测汽轮机轴向动静部分的间隙变化,避免发生碰撞,损坏设备,造成重大损失由于汽轮机转子与汽缸的表面积不同,厚度、形状不同,加热、冷却的速度是不一样的,转子加热、冷却速度比汽缸快,因此胀差的规律是热正冷负。
机组冷态启动时转子膨胀快、汽缸膨胀慢,因此控制胀差直接关系到机组安全运行,意义重大。
引言机组冷态启动过程中,从供轴封、冲转、并网带负荷至满负荷.由于转子体积小,膨胀快,反之汽缸膨胀慢,所以控制胀差就要从汽封供轴封做起。
1.汽封供汽抽真空阶段从汽封供汽抽真空到转子冲转前胀差值是一直向正方向变化的。
因为在加热或冷却过程中,转子温度升高或降低的速度都要比汽缸快,相应的膨胀或收缩的速度也要比汽缸快。
在对汽封供汽时,汽封套受热后向两侧膨胀,对整个汽缸的膨胀影响不大。
而与汽封相对应的转子主轴段受热后则使转子伸长。
汽封供热对转子伸长值的影响是由供汽温度来决定的,但加热时间也有影响。
当抽气系统投入并开始抽真空后,如果胀差向正值变化过快,可以采取降低轴封压力或适当提升凝汽器真空的方法,因为通过提升真空可以减少蒸汽在汽封中的滞留时间。
总体上来说,冷态开机,汽封来汽温度和压力应该低一些,真空应该提升的快一点,在确保安全的前提下尽早达到冲转的条件。
1.冲转、暖机升速阶段从冲转到定速,胀差基本上继续上升。
在这一阶段,蒸汽流量小,蒸汽主要在调节级内做功。
转子膨胀快,所以冲转时,要控制低参数冲转。
中速暖机以后再升速时,胀差值才会有减小的趋势。
这主要是因为随着转速的升高,离心力增大,轴向的分力也增大了,而使转子变粗缩短。
同时汽缸温度逐渐上升,汽缸的膨胀速度也在上升,相对迟滞了转子的膨胀值。
【最新精选】汽轮机高低压缸胀差的安装及调试

汽轮机高低压缸胀差的安装及调试汽轮机在启、停过程中,由于转子与汽缸的热交换条件不同,使得它们在膨胀或收缩时出现差别。
这些差别称为汽轮机转子与汽缸的相对膨胀差,简称胀差。
监视胀差是机组启停过程中的一项重要任务。
为避免轴向间隙变化到危险程度使动静部分发生摩擦,不仅应对胀差进行严格监视,而且应对各部分胀差对汽轮机正常运行的影响应有足够的认识。
下面介绍汽轮机胀差的安装及调试步骤。
1)传感器定零在汽轮机转子推轴定位以后,根据拟定的测量范围(通常情况下为±2mm),把传感器调整支架旋到合适的位置。
安装传感器时,应使传感器头端面与被测面保持平行。
测量前置器的输出电压,将零点间隙电压定到-12V(如果测量范围不对称的话,需要根据传感器的灵敏度,零点在量程中的位置,通过计算得出零点间隙电压),锁紧传感器紧固螺母(紧固时要特别注意电压值,稍不注意就会跑掉),传感器就安装好了。
将百分表顶在传感器支架上合适的地方(要能随手轮调节前后移动),根据量程调节百分表,定零。
2)离线采集传感器线性准备好记录纸,调节手轮,先往正方向转0.5mm,记录下此时前置器的间隙电压值。
以此类推,记录下1.0mm、1.5mm、2.0mm 时对应的电压值。
然后回零,检查一下零点间隙电压,差别应该不会超过±0.05v。
往负方向旋转0.5mm,记录下-0.5mm、-1.0mm、-1.5mm、-2.0mm时对应的电压值。
如有必要,可以采集更多的点,比如间隔0.2mm或者0.25mm 3)组态及线性化组态计算机连好模块,把刚才记录的电压值输入组态进行线性化。
好做以后,上传组态至模块。
4)测量值比对与步骤2中的过程相同,此过程需要记录在实际位置,此时组态计算机中对应的显示值。
5)报警和停机保护动作实验旋转手轮,位移量达到在模块中设定的报警和危险定值时,相应的保护回路要有开关量信号输出。
在此过程中还可以作报警迟滞实验,看是否与设定值吻合。
汽轮机组运行过程中差胀的变化及对振动的影响张艳群

汽轮机组运行过程中差胀的变化及对振动的影响张艳群摘要:作为发电厂电力转换的主要动力设备之一,蒸汽轮机容易出现长期使用中差异扩大增加引起的安全隐患现象。
本文分析了汽轮机采用冷启动模式时低压差膨胀超过设计控制值的原因。
通过检查和测试滑动销系统和单元的轴封系统,可以得出结论,高压和中压推拉杆不能在单元中冷却。
锁定是导致此问题的最重要原因。
通过安装锁定装置来修复滑动销和轴密封系统是冷启动期间气缸膨胀的阻塞以及中压和低压气缸的轴密封系统的气体泄漏的良好解决方案。
由转子膨胀度引起的低压差膨胀和超限问题增加,从而实现了装置的更安全,稳定和经济的操作,提高了装置的工作效率。
关键词:汽轮机组;差胀的变化;振动中图分类号:TM12 文献标识码:A引言汽轮机出现事故的原因是由于膨胀差异更加复杂和多变引起的,因此,在分析涡轮机的大的差动膨胀时,本文将研究涡轮机膨胀大事故的故障处理。
1、机组概况该蒸汽轮机是汽轮机采用某汽轮机厂生产的N600-13.67/5.18/5.38级双轴联合循环机组,三压、无再热、单缸、向下排汽的冲动式可抽汽、可纯凝运行供热汽轮机,配有上汽轮机有限公司生产的三压、无补燃、卧式、自然循环余热锅炉。
该机组汽缸膨胀的绝对死点在低压缸低压轴封端附近,机组汽缸绝对膨胀测点位于机头处;转子膨胀的相对死点在机头推力轴承处,机组差胀测点在低压轴封端附近的#2轴承处。
2、机组冷态启动机组冷态启动,转子与汽缸内的温度均较低。
转子与汽缸受轴封蒸汽的影响均有一定程度的膨胀,由于机组在启动前已盘车数小时,转子与汽缸均已充分膨胀且膨胀相对较小,故认为该机组后续运行过程中差胀的参考初始值为此时TSI系统显示的1.3mm。
机组冷态冲转、定速运行后并网带负荷、打闸停机过程中差胀的变化如图1所示。
机组启动过程中,转子与汽缸均受蒸汽的加热作用而膨胀。
由于转子的质面比低于汽缸,故在冷态冲转过程中转子的膨胀大于汽缸,升速至3000rpm差胀由1.3mm变化至1.9mm。
汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。
汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。
下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。
1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。
解决方法是更换高性能的衬套材料,如高温合金。
2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。
解决方法是优化冷却系统,确保低压缸温度在可控范围内。
3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。
解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。
4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。
解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。
5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。
解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。
综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。
针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。
通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。
我公司汽轮机冷态启动时高压正胀差的控制

我公司汽轮机冷态启动时高压正胀差的控制摘要:初期,№1、2汽轮机在调试过程中,每次冷态启动均会发生高压胀差超过极限值的不安全现象,使机组无法一次性启动成功,不仅延长了机组启动时间,而且对汽轮机的安全十分不利。
为此,通过对机组每次启动过程的分析、总结,制定了针对性措施,确保一次性冲转成功。
关键词:汽轮机;正胀差;冷态启动1.概述我公司汽轮机高压缸的前部和后部用垂直法兰联接,高压缸前部水平中分面法兰高450mm,宽180—210mm,称为高窄法兰,高窄法兰在启动和运行时不会产生较大的热应力,受热膨胀较大,因此未设计汽缸法兰加热装置。
冷态启动时由于轴封温度控制不当,高压胀差会向正方向增大,严重威胁机组的安全。
2.正胀差的概念汽轮机在冷态启动时,转子、汽缸金属温度都比较低,因为转子质量轻,与蒸汽接触面积大,而汽缸质量大、体积也庞大,与蒸汽接触面积小,所以在汽轮机进汽冲动后,蒸汽对转子表面的放热系数比对汽缸表面的放热系数大,转子和汽缸的温升速率不一致,转子的受热膨胀(或者收缩)将会大大的超过汽缸的膨胀(或收缩),这样就会产生转子的膨胀(或收缩)大于汽缸的膨胀(或收缩)。
汽轮机胀差的理论概念是:转子相对于汽缸的膨胀差称为汽轮机的胀差;而转子的膨胀大于汽缸的膨胀称为正胀差。
3.正胀差增大的几个主要原因3.1 主蒸汽的温升速度:这是控制胀差最基本也是最有效的手段,因为胀差产生的原因是汽缸和转子之间存在着温差。
蒸汽温升(温降)速度小,那么汽缸和转子之间的温差也就小,胀差也就小,反之胀差也就增大。
3.2 汽轮机启动冲动转子前,主蒸汽参数的选择是否合理:汽轮机冷态启动时,汽缸金属温度一般都比较低(150℃以下),这时如果蒸汽参数选择不当(进入汽轮机的新蒸汽温度大于汽缸金属温度很多时)就会产生转子加热速度快于汽缸加热速度,汽缸的膨胀因缸体金属温度没有加热到位而发生膨胀迟缓,而转子加热速度很快,这时就会产生转子膨胀大于汽缸膨胀从而产生了正胀差增大现象。
国产330MW 机组汽轮机胀差产生原因及控制措施

一般情况下,厂家会将两个线圈绑扎端部垫块设置为单个绑扎,该种结构会导致线圈无法成为整体,在电机运行的过程中往往会出现振动与位移,磨损绝缘位置,情况严重时会导致护圈与端部线圈位置完全被磨去,为了避免该种问题的发生,对于绕组端部超过铁心外长度的部分增加垫块,绑扎牢固。
具体的检修方法如下:2.3.1端部绑扎不良的处理方式对于该种问题,需要先削掉磨损位置的绝缘,使用桐马环氧粉云母带进行包扎,在护圈与端部线圈位置设置厚涤纶毡,再使用玻璃丝带进行绑扎,浸漆、吹干即可。
2.3.2定子槽楔松脱处理方式在处理该种问题时,需要先将松脱定子槽楔打出,将酚醛布板作为倒梯形形状,将其打入槽内,刷上绝缘漆即可。
2.4转子铜条开焊断裂处理方式一般情况下,转子铜条开裂问题都发生在伸长位置与短路环焊接位置靠近处,在发生问题后,端口位置也没有明显变化,不会观察到缩颈问题,端面吻合依然严密,如果未进行细致的检查,该种问题是很难发现的。
但是仔细的观察就能够发现在断裂面磨光位置、脆性断裂位置以及铜条上半部分沿线有细小断裂点。
在处理该种问题时,需要先将转子抽出,再轻敲铜条,找出断裂位置,使用抛光机处理铜条断裂位置,保护好铁心,使用铜焊进行焊接,将焊接位置锉平,涂上绝缘漆,吹干,将耐火材料撤出,确认无误后吹扫转子,重新装配即可。
3结语总而言之,在高压电机发生故障时,只有轴承故障可以在现场处理,其他故障都需要在修理厂处理,这不仅会花费大量的费用,也会降低生产效率。
基于这一背景,检修人员需要对当前的工艺技术进行总结与改进,将电机故障控制在萌芽状态。
参考文献:[1]索霞,陈广林,高洪兴.高压电机故障原因分析和防范措施[J].内蒙古科技与经济,2011(01).[2]宋阳,周忠顺,范然.高压鼠笼型(同步)电动机软起动研究[J].现代商贸工业,2011(17).[3]王宝恒,吴存良.永磁同步电机变频驱动系统在胶带输送机上的应用[J].自动化与仪器仪表,2012(05).[4]唐开伟,孙杰,李应利.一起弹簧机构手动/电动转换开关故障引起的断路器拒动事故分析[J].宁夏电力,2009(01).实用科技摘要:本文结合北京重型电机厂生产的330MW一次中间再热、三缸两排汽式汽轮机,叙述汽轮机胀差产生的原因,并结合现场实际运行情况分析各种工况下胀差的变化趋势,提出机组变工况时胀差的控制措施,及在运行中总结出的注意事项,保证机组安全可靠运行。
汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差

汽轮机在启停和运行工况下——胀差讲义周国强关键词:汽轮机汽缸、胀差、汽缸的死点、怎么控制胀差、可谓汽轮机的泊桑效应。
汽轮机在启停和工况变化时,转子和汽缸分别以各自的死点为基准膨胀或收缩。
由于汽缸质量大,而接触蒸汽的面积小。
转子的质量小而接触蒸汽的面积大,因而各自的受热面不一样,使得汽缸和转子之间热膨胀的数值各不一样,其二者之间的差值称为相对膨胀,即转子和汽缸的胀差。
一般来说,冷态开机过程中是胀差是正值,稳定状态下胀差接近于零,降负荷和停机惰走时胀差向负向发展,单缸机组尤其明显。
但是对于多缸机组,即中间再热机组,其胀差较单缸机组更为复杂。
汽轮机转子与汽缸的相对膨胀,称为胀差。
1 习惯上规定1.1 转子膨胀大于汽缸膨胀时的胀差值为正胀差;1.2 汽缸膨胀大于转子膨胀时的胀差值为负胀差;1.3 根据汽缸分类又可分为:高差、中差、低I差、低II差。
1.4 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣。
1.5 汽缸是向后膨胀而转子是向前膨胀的。
释:单缸汽轮机的汽缸膨胀,它的死点是在低压缸排气口的中心线,即从低压缸向机头方向膨胀。
转子的膨胀是以机头推力瓦为死点,向发电机方向膨胀。
也就是说,汽缸的膨胀方向和转子的膨胀方向是反向的。
2 使胀差向正值增大的主要原因有2.1 启动时暖机时间太短,升速太快或升负荷太快;2.2 汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱;2.3 滑销系统或轴承台板的滑动性能差,易卡涩;2.4 轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长;2.5 机组启动时,进汽压力、温度、流量等参数过高;2.6 推力轴承磨损,轴向位移增大;2.7汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风;2.8 双层缸的夹层中流入冷汽(或冷水);2.9 胀差指示器零点不准或触点磨损,引起数字偏差;2.10 多转子机组,相邻转子胀差变化带来的互相影响;2.11 真空变化的影响;2.12 转速变化的影响;2.13 各级抽汽量变化的影响,若一级抽汽停用,则影响高差很明显;2.14 轴承油温太高;2.15 机组停机惰走过程中由于“泊桑效应”的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机组启动过程中胀差的控制
作者:王雷
来源:《科技风》2018年第01期
摘要:本文从胀差产生的原理,差胀的重要性,影响差胀的因素及如何控制等方面进行了详细的分析,对汽轮机在启动、停运及正常运行时如何控制胀差有一定的指导作用。
关键词:胀差;膨胀死点;泊桑效应
一、胀差的认识
大功率汽轮机组由于长度增加,机组膨胀死点多,汽缸多采用双层缸、分流缸等结构。
在启停过程中,转子与汽缸因材质、形状、结构以及与蒸汽的接触面积等不同,使得金属与蒸汽进行的热交换条件不同,从而造造成汽缸与转子在轴向的膨胀程度不一致,即出现相对膨胀,相对膨胀通常也俗称为胀差。
胀差是机组启停与甩负荷等过程中需要重点关注的一项重要指标,胀差的大小反应了汽轮机轴向动静间隙的变化情况。
胀差过大或过小,均有造成汽缸与转子的动静部分发生碰磨的可能性,会给机组安全运行造成很大的影响,严重时可能会造成设备毁坏。
因此胀差值做了热工保护,若胀差超限,则热工保护动作使机组紧急停机,可避免发生事故,损坏设备。
二、胀差的分类
胀差分为正胀差与负胀差。
一般规定转子膨胀大于汽缸膨胀时为正胀差,表明动叶与静叶入口的间隙减小,通常这一间隙设计得较大。
当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。
汽缸膨胀大于转子膨胀时为负胀差,说明静叶与动叶入口间隙减小。
当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。
三、胀差产生的原因
胀差产生的原因大致可分为以下几点:
(1)转子和汽缸的制造材料不同,金属热膨胀系数不同。
(2)转子与汽缸质量不同,转子与蒸汽接触面积大,汽缸大与蒸汽接触面积小;转子质量轻、表面积大,质面比较小,汽缸质量大、表面积小,则质面比较大。
(3)转子转动时蒸汽对转子表面的放热系数高于对汽缸表面的放热系数,因此温升速率不一致。
四、胀差的影响因素及控制方法
(一)机组启动状态
汽轮发电机组启动状态对胀差的影响非常大,不同的状态对应着不同的金属温度,对冲转蒸汽参数的要求也不同,对胀差的影响也不尽相同。
火力发电厂习惯于将启动工况仅按启动前汽轮机金属温度的高低分为热态和冷态。
对无中心孔的高中压转子,金属温度大于204℃为热态,金属温度小于204℃为冷态。
(二)轴封供汽温度和供汽时间的影响
冷态启动时轴封供汽温度高于转子表明金属温度,转子受热而变长,表现为正胀差,可能引起轴封摩擦。
为了不使胀差值过大,应选择温度较低的供汽源,并缩短轴封送汽时间至冲转的时间。
热态启动时,轴封供汽应选用高温汽源,要轴封先供汽,后抽真空,这样可以防止汽缸进冷气使得转子受冷收缩,防止轴封供汽后出现负值,应尽量缩短冲轴封供汽与转子冲转之间的间隔时间。
(三)真空的影响
机组冲转前应将真空控制在低值,在汽轮机升速暖机的过程中,真空变化会引起胀差值改变。
如真空下降,为保持转速不变必须增加进汽量,因而摩擦鼓风损失增大,高压转子受热膨胀增加,则胀差值随之增加。
反之,若真空升高时,高压转子胀差减少。
中、低压转子叶片较长,真空高低对中、低压缸通流部分的胀差影响与高压转子相反。
其鼓风摩擦热量比高压转子大,在升速和暖机过程中,当真空降低时,如需要维持转速不变,必须增加进汽量,中低压转子因鼓风摩擦增加的热量被蒸汽带走,胀差随之减少。
在机组停机打闸前适当降低真空是防止机组降速时的泊桑效应(解释见下段)过大致使高低压胀差(尤其是低压胀差)突变的一个手段,因此升速暖机过程中慎用提真空的办法来控制中、低压通流部分的胀差。
泊桑效应:转子高速旋转时,转子径向和轴向受离心力的作用变形变粗变短,这种现象称为泊桑效应。
转子的离心力与转速的平方成正比;在离心力作用下,因转子沿径向拉伸,而轴向则缩短,胀差减小(因弹性材料的应力变化径向与轴向有一定比例关系,当转子径向伸长时,轴向就会随之缩短)。
随着流量增大、转速上升,高压转子的胀差逐渐增大,而中低压转子胀差先随转速升高而增加,达到中速后,胀差又随转速增加而减小。
(四)进汽参数影响
当进入汽缸的蒸汽参数发生变化时,首先对转子造成影响,而对汽缸的影响要稍微滞后,因此会引起胀差变化,蒸汽参数变化速度越快,影响越大。
在汽轮机启停过程中,应选择适当
的冲转参数,保持蒸汽温度和流量变化速度线性变化,避免波动,如此可以控制差胀大幅增加。
(五)汽缸和法兰加热的影响
某些大型机组设计有法兰螺栓加热装置,启动过程中要选择合理的时机,并注意调整加热装置的进汽温度和进汽量,当高、中压缸胀差达到一定数值时及时投入法兰加热装置,以满足加热要求。
同事为了避免法兰加热过度,有效的加热法兰,应控制加热蒸汽温度高于外壁温度控制在80℃左右(最高不超过100℃)
(六)汽缸滑销系统的影响
滑销系统合理布置和使用以满足汽缸多个方向自由膨胀,如轴承座台板充油不重视,油脂质量控制不严以及台板起毛刺等原因,造成启动过程膨胀不畅,一般造成胀差大、延长启动时间。
膨胀受阻表现为膨胀值达不到设计值或是膨胀曲线出现跳跃,甚至有明显碰磨声响。
(七)汽缸疏水的影响
大型机组对汽缸保温的要求较高,如汽缸保温做的不好,会造成汽缸温度偏低且分布不均,进而影响汽缸的膨胀,使汽机膨胀差增大;而汽缸疏水系统因安装或管道堵塞等原因,疏水不畅可能使得下缸温度偏低,上下缸温差较大,影响汽缸膨胀,并可引起汽缸变形,从而使得差胀的变大,严重时甚至发生转子与汽缸的碰磨事故。
五、总结
胀差控制是汽轮机组启动、停机中比较难控制的一个参数,但是只要严格控制好真空、进汽温度和温升速度等重要参数,维护好滑销系统和法兰加热系统,即可将差胀控制在安全的范围内,保障机组安全稳定的启动。
正常运行时,差胀基本无需重点关注,只需在机组停机或跳闸时关注即可。
如发生汽轮机进水等严重事故则需要严明监视胀差变化情况,必要时手动紧急停机。
参考文献:
[1]广东国华粤电台山发电有限公司集控运行规程.。