第13讲 最大公约数与最小公倍数
最大公约数与最小公倍数

最大公约数与最小公倍数一,最大公约数如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数。
几个自然数公有的约数,叫做这几个自然数的公约数。
公约数中最大的一个公约数,称为这几个自然数的最大公约数。
如果数a能被数b整除,a就叫做b的倍数,b就叫做作a 的约数.约数和倍数都表示一个数与另一个数的关系,不能单独存在.如只能说16是某数的倍数,2是某数的约数,而不能孤立地说16是倍数,2是约数.“几个自然数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数.例如12,16的公约数有1,2,4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4.12,15,18的最大公约数是3,记为(12,15,18)=3.常用的求最大公约数的方法是分解质因数法和短除法.分解质因数法,把每个数分别分解质因数,再把各数中的全部公有质因数提取出来连乘,所得的积就是这几个数的最大公约数.例如,求24和60的最大公约数.24=2×2×2×3,60=2×2×3×5,24与60的全部公有的质因数是2,2和3,它们的积是2×2×3=12,所以(24,60)=12.短除法,先用这几个数的公约数连续去除,一直除到所有的商互质为止,然后把所有的除数连乘起来,所得的积就是这几数的最大公约数.例如,求24,48,60的最大的公约数.(24,48,60)=2×3×2=12二,最小公倍数最小公倍数(Least Common Multiple,缩写L.C.M.),如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,对于两个整数来说,指该两数共有倍数中最小的一个。
计算最小公倍数时,通常会借助最大公约数来辅助计算。
其中,4是最小的公倍数,叫做他们的最小公倍数。
例如,十天干和十二地支混合称呼一阴历年,干支循环回归同一名称的所需时间,就是 12 和 10 的最小公倍数,即是60 ──一个“甲子”。
最大公约数与最小公倍数

最大公约数与最小公倍数最大公约数(Greatest Common Divisor,简称GCD)与最小公倍数(Least Common Multiple,简称LCM)是数学中常用的概念。
它们在整数运算、分数化简、代数方程等方面起着重要的作用。
本文将介绍最大公约数与最小公倍数的定义、计算方法以及应用场景。
定义与计算方法最大公约数是指两个或多个整数共有的约数中最大的一个数。
例如,对于整数12和16,它们的公约数有1、2、4,其中最大的公约数为4。
用符号表示为GCD(12,16)= 4。
最小公倍数是指两个或多个整数的公倍数中最小的一个数。
例如,对于整数8和12,它们的公倍数有24、48、72,其中最小的公倍数为24。
用符号表示为LCM(8,12)= 24。
计算最大公约数可以通过因数分解、辗转相除法或欧几里得算法来进行。
其中,因数分解将给定的数进行质因数分解,然后取各质因数的幂次最小值进行乘积;辗转相除法是通过使用除法的余数来逐步缩小两个数的差距,直到找到最大公约数;欧几里得算法是将两个数取模并取余,然后再继续对除数和余数进行相同的操作,直到余数为零,此时除数即为最大公约数。
计算最小公倍数可以通过计算两个数的乘积,再除以最大公约数来得出。
应用场景最大公约数与最小公倍数在数学中有广泛的应用,下面将介绍一些常见的应用场景。
1. 分数化简当需要对分数进行化简时,常常需要求分子和分母的最大公约数,然后将其约分。
通过约分,可以使分数的表示更加简洁,更易于进行运算。
例如,对于分数18/24,可以求出分子和分母的最大公约数为6,然后分子和分母同时除以6,得到化简后的分数3/4。
2. 求解线性方程在求解线性方程时,通常需要根据方程中系数的最小公倍数来消去系数,以简化运算。
例如,对于方程2x + 3y = 12,需要消去系数2和3。
它们的最小公倍数为6,将方程两边同时乘以6,得到12x + 18y = 72。
3. 简化比例在数学与实际问题中,经常需要将给定的比例进行化简,以简化计算或比较。
最大公倍数和最小公倍数求法

一、观察法.运用能被2、3、5整除的数的特征进行观察.例如,求225和105的最大公约数.因为225、105都能被3和5整除,所以225和105至少含有公约数(3×5)15.因为225÷15=15,105÷15=7.15与7互质,所以225和105的最大公约数是15.二、查找约数法.先分别找出每个数的所有约数,再从两个数的约数中找出公有的约数,其中最大的一个就是最大公约数.例如,求12和30的最大公约数.12的约数有:1、2、3、4、6、12;30的约数有:1、2、3、5、6、10、15、30.12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数.三、分解因式法.先分别把两个数分解质因数,再找出它们全部公有的质因数,然后把这些公有质因数相乘,得到的积就是这两个数的最大公约数.例如:求125和300的最大公约数.因为125=5×5×5,300=2×2×3×5×5,所以125和300的最大公约数是5×5=25.四、关系判断法.当两个数关系特殊时,可直接判断两个数的最大公约数.例如,两个数互质时,它们的最大公约数就是这两个数的乘积;两个数成倍数关系时,它们的最大公约数就是其中较小的那个数.五、短除法.为了简便,将两个数的分解过程用同一个短除法来表示,那么最大公约数就是所有除数的乘积.例如:求180和324的最大公约数.因为:5和9互质,所以180和324的最大公约数是4×9=36.六、除法法.当两个数中较小的数是质数时,可采用除法求解.即用较大的数除以较小的数,如果能够整除,则较小的数是这两个数的最大公约数.例如:求19和152,13和273的最大公约数.因为152÷19=8,273÷13=21.(19和13都是质数.)所以19和152的最大公约数是19,13和273的最大公约数是13.七、缩倍法.如果两个数没有之间没有倍数关系,可以把较小的数依次除以2、3、4……直到求得的商是较大数的约数为止,这时的商就是两个数的最大公约数.例如:求30和24的最大公约数.24÷4=6,6是30的约数,所以30和24的最大公约数是6.八、求差判定法.如果两个数相差不大,可以用大数减去小数,所得的差与小数的最大公约数就是原来两个数的最大公约数.例如:求78和60的最大公约数.78-60=18,18和60的最大公约数是6,所以78和60的最大公约数是6.如果两个数相差较大,可以用大数减去小数的若干倍,一直减到差比小数小为止,差和小数的最大公约数就是原来两数的最大公约数.例如:求92和16的最大公约数.92-16=76,76-16=60,60-16=44,44-16=28,28-16=12,12和16的最大公约数是4,所以92和16的最大公约数就是4.九、辗转相除法.当两个数都较大时,采用辗转相除法比较方便.其方法是:以小数除大数,如果能整除,那么小数就是所求的最大公约数.否则就用余数来除刚才的除数;再用这新除法的余数去除刚才的余数.依此类推,直到一个除法能够整除,这时作为除数的数就是所求的最大公约数.例如:求4453和5767的最大公约数时,可作如下除法.5767÷4453=1余13144453÷1314=3余5111314÷511=2余292511÷292=1余219292÷219=1余73219÷73=3最大公约数和最小公倍数的求法一、观察法.运用能被2、3、5整除的数的特征进行观察.例如,求225和105的最大公约数.因为225、105都能被3和5整除,所以225和105至少含有公约数(3×5)15.因为225÷15=15,105÷15=7.15与7互质,所以225和105的最大公约数是15.二、查找约数法.先分别找出每个数的所有约数,再从两个数的约数中找出公有的约数,其中最大的一个就是最大公约数.例如,求12和30的最大公约数.12的约数有:1、2、3、4、6、12;30的约数有:1、2、3、5、6、10、15、30.12和30的公约数有:1、2、3、6,其中6就是12和30的最大公约数.三、分解因式法.先分别把两个数分解质因数,再找出它们全部公有的质因数,然后把这些公有质因数相乘,得到的积就是这两个数的最大公约数.例如:求125和300的最大公约数.因为125=5×5×5,300=2×2×3×5×5,所以125和300的最大公约数是5×5=25.四、关系判断法.当两个数关系特殊时,可直接判断两个数的最大公约数.例如,两个数互质时,它们的最大公约数就是这两个数的乘积;两个数成倍数关系时,它们的最大公约数就是其中较小的那个数.五、短除法.为了简便,将两个数的分解过程用同一个短除法来表示,那么最大公约数就是所有除数的乘积.例如:求180和324的最大公约数.5和9互质,所以180和324的最大公约数是4×9=36.六、除法法.当两个数中较小的数是质数时,可采用除法求解.即用较大的数除以较小的数,如果能够整除,则较小的数是这两个数的最大公约数.例如:求19和152,13和273的最大公约数.因为152÷19=8,273÷13=21.(19和13都是质数.)所以19和152的最大公约数是19,13和273的最大公约数是13.七、缩倍法.如果两个数没有之间没有倍数关系,可以把较小的数依次除以2、3、4……直到求得的商是较大数的约数为止,这时的商就是两个数的最大公约数.例如:求30和24的最大公约数.24÷4=6,6是30的约数,所以30和24的最大公约数是6.八、求差判定法.如果两个数相差不大,可以用大数减去小数,所得的差与小数的最大公约数就是原来两个数的最大公约数.例如:求78和60的最大公约数.78-60=18,18和60的最大公约数是6,所以78和60的最大公约数是6.如果两个数相差较大,可以用大数减去小数的若干倍,一直减到差比小数小为止,差和小数的最大公约数就是原来两数的最大公约数.例如:求92和16的最大公约数.92-16=76,76-16=60,60-16=44,44-16=28,28-16=12,12和16的最大公约数是4,所以92和16的最大公约数就是4.九、辗转相除法.当两个数都较大时,采用辗转相除法比较方便.其方法是:以小数除大数,如果能整除,那么小数就是所求的最大公约数.否则就用余数来除刚才的除数;再用这新除法的余数去除刚才的余数.依此类推,直到一个除法能够整除,这时作为除数的数就是所求的最大公约数.例如:求4453和5767的最大公约数时,可作如下除法.5767÷4453=1余13144453÷1314=3余5111314÷511=2余292511÷292=1余219292÷219=1余73219÷73=3于是得知,5767和4453的最大公约数是73.辗转相除法适用比较广,比短除法要好得多,它能保证求出任意两个数的最大公约数.つないだ手。
最大公约数与最小公倍数

最大公约数与最小公倍数最大公约数和最小公倍数是数学中常见的概念,用于计算两个或多个数的公共因数和公共倍数。
本文将详细介绍最大公约数和最小公倍数的定义、计算方法以及它们在实际问题中的应用。
一、最大公约数(Greatest Common Divisor,简称GCD)最大公约数指的是两个或多个数中能够同时整除的最大的正整数。
在计算最大公约数时,我们常用到欧几里得算法。
这个算法基于一个简单的原理:两个整数的最大公约数等于其中较小数和两数相除余数的最大公约数。
例如,如果要计算30和45的最大公约数,首先用较大的数除以较小的数:45 ÷ 30 = 1 余 15然后将较小的数(30)与余数(15)进行计算:30 ÷ 15 = 2 余 0余数为0时,计算结束。
此时,最大公约数为较小的数(15)。
当涉及到多个数的最大公约数计算时,可以逐一计算两个数的最大公约数,得到的结果再与下一个数计算最大公约数,以此类推直到最后一个数。
最大公约数在实际问题中常用于简化分数、约简比例以及计算整数倍等方面。
它也是许多算法和数学问题的重要组成部分。
二、最小公倍数(Least Common Multiple,简称LCM)最小公倍数指的是两个或多个数中能够被它们同时整除的最小正整数。
计算最小公倍数时,我们可以使用最大公约数来简化计算。
最小公倍数可以通过以下公式计算得到:最小公倍数 = 两数的乘积 / 最大公约数例如,如果要计算12和15的最小公倍数,首先计算它们的最大公约数:12的因数为1、2、3、4、6、1215的因数为1、3、5、15可以看出,它们的最大公约数为3。
然后,将两个数的乘积除以最大公约数得到最小公倍数:(12 × 15)÷ 3 = 60因此,12和15的最小公倍数为60。
最小公倍数在实际问题中常用于解决时间、速度、周期等相关计算。
例如,计算两个车辆同时从起点出发,分别以不同速度绕圈行进,要求它们再次同时回到起点的最短时间,即可使用最小公倍数来得到答案。
最大公约数与最小公倍数的应用

最大公约数与最小公倍数的应用最大公约数(Greatest Common Divisor,简称GCD)和最小公倍数(Least Common Multiple,简称LCM)是数学中常见的概念,在数论和代数学中具有广泛的应用。
它们能够帮助我们解决很多实际问题,从分数化简到找出最优解,都离不开最大公约数和最小公倍数的运用。
本文将详细介绍最大公约数和最小公倍数的定义、计算方法以及一些实际应用案例。
一、最大公约数的定义和计算最大公约数指的是两个或多个整数能够整除的最大的正整数。
如果两个数a和b的最大公约数为d,则表示为GCD(a,b)= d。
最大公约数的计算可以使用欧几里得算法(Euclidean Algorithm)来进行。
欧几里得算法的原理是:假设有两个正整数a和b,其中a > b。
首先,用a除以b得到余数r1,即r1 = a % b。
然后,再用b除以r1得到余数r2,即r2 = b % r1。
接着,再用r1除以r2得到余数r3,以此类推,直到余数为0。
此时,上一步得到的余数r2就是a和b的最大公约数。
例如,求解最大公约数GCD(24,36):24 ÷ 36 = 0 余数2436 ÷ 24 = 1 余数1224 ÷ 12 = 2 余数0因此,GCD(24,36)= 12。
二、最小公倍数的定义和计算最小公倍数是指两个或多个整数的公共倍数中最小的正整数。
如果两个数a和b的最小公倍数为l,则表示为LCM(a,b)= l。
最小公倍数的计算可以通过最大公约数来进行。
最小公倍数与最大公约数的关系是:两个数的乘积等于它们的最大公约数与最小公倍数的积。
即 a × b = GCD(a,b)× LCM(a,b)。
利用这个关系可以得到计算最小公倍数的公式:LCM(a,b)= (a × b)/ GCD(a,b)。
例如,求解最小公倍数LCM(24,36):24 × 36 = 864GCD(24,36)= 12因此,LCM(24,36)= 864 / 12 = 72。
最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。
例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
数的最大公约数与最小公倍数知识点总结

数的最大公约数与最小公倍数知识点总结数的最大公约数与最小公倍数是数学中的常见概念,涉及到整数的性质和运算规则。
在解决实际问题和数学计算中,了解和掌握这些知识点对于提高计算效率和解题能力非常重要。
下面将对数的最大公约数与最小公倍数进行知识点的总结。
一、最大公约数最大公约数指的是两个或多个数中都能整除的最大的一个数。
最大公约数的计算可以通过以下几种方法进行:1. 列举法:分别列出两个或多个数的所有因数,找出它们的公共因数,并选择其中最大的一个作为最大公约数。
2. 素数分解法:将两个或多个数分别进行素因数分解,然后提取出共有的素因数并相乘,结果即为最大公约数。
3. 辗转相除法(欧几里得算法):假设有两个数a和b,令r为a除以b所得的余数,如果r为0,则b即为最大公约数;如果r不为0,则将b赋值给a,将r赋值给b,然后继续进行除法运算,直到余数为0为止。
最大公约数在实际应用中有很多用途,比如简化分数、求解整数倍问题等。
二、最小公倍数最小公倍数指的是两个或多个数中能够被它们整除的最小的数。
最小公倍数的计算可以通过以下几种方法进行:1. 列举法:列出两个或多个数的所有倍数,找出它们的公共倍数,并选择其中最小的一个作为最小公倍数。
2. 素数分解法:将两个或多个数分别进行素因数分解,然后提取出所有的素因数并相乘,结果即为最小公倍数。
3. 最大公约数法:假设有两个数a和b,它们的最小公倍数可以通过最大公约数来求解,公式为:最小公倍数=两数乘积/最大公约数。
最小公倍数在实际应用中也有很多用途,比如解决同时到达问题、计算工作效率等。
三、最大公约数与最小公倍数的关系最大公约数与最小公倍数之间存在着以下关系:1. 两个数的乘积等于它们的最大公约数与最小公倍数的积,即a*b=最大公约数*最小公倍数。
2. 如果两个数互质(最大公约数为1),那么它们的最小公倍数就等于它们的乘积。
3. 最大公约数与最小公倍数之间并不总是存在倍数关系。
最小公倍数和最大公约数的关系证明

最小公倍数和最大公约数的关系证明
首先,我们需要知道最大公约数和最小公倍数的定义。
最大公约数是指能够同时整除两个或多个整数的最大正整数,而最小公倍数是指能够被两个或多个整数同时整除的最小正整数。
假设有两个整数a和b,它们的最大公约数为d,最小公倍数为l。
那么有以下的关系式:
a = m * d
b = n * d
l = k * d
其中,m和n为整数,且m、n与d互质,k为整数。
这个关系式可以用辗转相除法证明。
我们先来证明a和b的乘积等于它们的最大公约数和最小公倍数的乘积。
根据定义,我们有:
a *
b = (m * d) * (n * d) = m * n * d * d
l * d = k * d * d
因为m、n与d互质,所以m * n与d互质。
因此,k = m * n。
那么有:
a *
b = m * n * d * d = k * d * d = l * d
因此,我们证明了a和b的乘积等于它们的最大公约数和最小公倍数的乘积。
接下来,我们来证明a和b的最小公倍数等于它们的乘积除以最大公约数。
我们有:
l = k * d = (m * n) * d
a *
b = m * n * d * d = l * d
因此,我们可以得到:
l = a * b / d
这就证明了a和b的最小公倍数等于它们的乘积除以最大公约数。
综上所述,最小公倍数和最大公约数之间存在以下的关系:a和b的最小公倍数等于它们的乘积除以最大公约数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13讲最大公约数与最小公倍数(二)
这一讲主要讲最大公约数与最小公倍数的关系,并对最大公约数与最小公倍数的概念加以推广。
在求18与12的最大公约数与最小公倍数时,由短除法
可知,(18,12)=2×3=6,[18,12]=2×3×3×2=36。
如果把18与12的最大公约数与最小公倍数相乘,那么
(18,12)×[18,12]
=(2×3)×(2×3×3×2)
=(2×3×3)×(2×3×2)
=18×12。
也就是说,18与12的最大公约数与最小公倍数的乘积,等于18与12的乘积。
当把18,12换成其它自然数时,依然有类似的结论。
从而得出一个重要结论:
两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积。
即,
(a,b)×[a,b]=a×b。
例1两个自然数的最大公约数是6,最小公倍数是72。
已知其中一个自然数是18,求另一个自然数。
解:由上面的结论,另一个自然数是(6×72)÷18=24。
例2两个自然数的最大公约数是7,最小公倍数是210。
这两个自然数的和是77,求这两个自然数。
分析与解:如果将两个自然数都除以7,则原题变为:“两个自然数的最大公约数是1,最小公倍数是30。
这两个自然数的和是11,求这两个自然数。
”
改变以后的两个数的乘积是1×30=30,和是11。
30=1×30=2×15=3×10=5×6,
由上式知,两个因数的和是11的只有5×6,且5与6互质。
因此改变后的两个数是5和6,故原来的两个自然数是
7×5=35和7×6=42。
例3 已知a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c。
分析与解:因为12,15都是a的约数,所以a应当是12与15的公倍数,即是[12,15]=60的倍数。
再由[a,b,c]=120知, a只能是60或120。
[a,c]=15,说明c没有质因数2,又因为[a,b,c]=120=23×3×5,所以c=15。
因为a是c的倍数,所以求a,b的问题可以简化为:“a是60或120,(a,b)=12,[a,b]=120,求a,b。
”
当a=60时,
b=(a,b)×[a,b]÷a
=12×120÷60=24;
当a=120时,
b=(a,b)×[a,b]÷a
=12×120÷120=12。
所以a,b,c为60,24,15或120,12,15。
要将它们全部分别装入小瓶中,每个小瓶装入液体的重量相同。
问:每瓶最多装多少千克?
分析与解:如果三种溶液的重量都是整数,那么每瓶装的重量就是三种溶液重量的最大公约数。
现在的问题是三种溶液的重量不是整数。
要解决这个问题,可以将重量分别乘以某个数,将分数化为整数,求
出数值后,再除以这个数。
为此,先求几个分母的最小公倍数,[6,4,9]=36,三种溶液的重量都乘以36后,变为150,135和80,
(150,135,80)=5。
上式说明,若三种溶液分别重150,135,80千克,则每瓶最多装5千克。
可实际重量是150,135,80的1/36,所以每瓶最多装
在例4中,出现了与整数的最大公约数类似的分数问题。
为此,我们将最大公约数的概念推广到分数中。
如果若干个分数(含整数)都是某个分数的整数倍,那么称这个分数是这若干个分数的公约数。
在所有公约数中最大的一个公约数,称为这若干个分数的最大公约数。
由例4的解答,得到求一组分数的最大公约数的方法:
(1)先将各个分数化为假分数;
(2)求出各个分数的分母的最小公倍数a;
(3)求出各个分数的分子的最大公约数b;
类似地,我们也可以将最小公倍数的概念推广到分数中。
如果某个分数(或整数)同时是若干个分数(含整数)的整数倍,那么称这个分数是这若干个分数的公倍数。
在所有公倍数中最小的一个公倍数,称为这若干个分数的最小公倍数。
求一组分数的最小公倍数的方法:
(1)先将各个分数化为假分数;
(2)求出各个分数的分子的最小公倍数a;
(3)求出各个分数的分母的最大公约数b;
一个陷井。
它们之中谁先掉进陷井?它掉进陷井时另一个跳了多远?
同理,黄鼠狼掉进陷井时与起点的距离为
所以黄鼠狼掉进陷井时跳了31 1/2÷6 3/10=5(次)。
黄鼠狼先掉进陷井,它掉进陷井时,狐狸跳了
练习13
1.将72和120的乘积写成它们的最大公约数和最最小公倍数的乘积的形式。
2.两个自然数的最大公约数是12,最小公倍数是72。
满足条件的自然数有哪几组?
3.求下列各组分数的最大公约数:
4.求下列各组分数的最小公倍数:
部分别装入小瓶中,每个小瓶装入液体的重量相同。
问:最少要装多少瓶?
于同一处只有一次,求圆形绿地的周长。