必修三,样本估计总体
数学必修三《用样本估计总体》

极差、方差、标准差
极差:是指一组数据中最大数据与最小数据的差. 方差:是各个数据与平均数之差的平方的平均数,即
s2 1 n
2
x1 x Leabharlann x2 x 2 xn x 2 ,
组距
0.5 0.4
0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
三种数字特征的优缺点
1、众数体现了样本数据的最大集中点,但它 对其它数据信息的忽视使得无法客观地反映 总体特征.
2、中位数是样本数据所占频率的等分线,它不 受少数几个极端值的影响,这在某些情况下是优 点,但它对极端值的不敏感有时也会成为缺点。
成绩(单 位: 米)
人数
1.50 1.60 1.65
2
3
2
1.70 3
1.75 4
1.80 1
1.85 1
1.90 1
众数、中位数、平均数与频率分布直方图的关系
1、众数在样本数据的频率分布直方图中,就是最高矩形的中点 的横坐标。 2、在频率分布直方图中,中位数左边和右边的直方图的面积应 该相等,由此可以估计中位数的值。下图中蓝色实线代表居民月 均用水量的中位数的估计值,此数据值为2.03t. 3、平均数是频率分布直方图的“重心”.是直方图的平衡点.如 黄色实线频率
【思考】为了直观反映样本数据在各组中的分布情况,我 们将上述频率分布表中的有关信息用下面的图形表示:
频率 组距
0.5 0.4 0.3 0.2 0.1
O0.5 1 1.5 2 2.5 3 3.5 4 4.5
人教版高中数学必修三第二章第2节用样本的数字特征估计总体的数字特征 课件 (2)

2)从标准差的定义和计算公式都可以得出:S 0。 当 S 0 时,意味着所有的样本数据都等于样本 平均数。
课后作业:
课本 P81 习题2.2 A组 6、7.
P79练习答案
解: 依题意计算可得
x1=900 s1≈23.8
x2=900 s2 ≈42.6
如果你是教练,你应当如何对这次射击情 况作出评价?如果这是一次选拔性考核,你应 当如何作出选择?
x甲7
x乙7
两人射击 的平均成绩是一样的. 那么两个
人的水平就没有什么差异吗?
频率 0.3
0.2
0.1 频率
4
频率
5 67 8 (甲)
9 10
0.4 0.3
0.2 0.1
4 5 6 7 8 9 10 (乙)
于,是 样本 x1,x2 数 , xn到 据 x 的 “平均 ”是 :距离
x1xx2xxnx
S
.
n
1.标准差定义:是样本数据到平均数的一种平 均距离。它用来描述样本数据的分散程度。在 实际应用中,标准差常被理解为稳定性。
假设样本数据是 x1,x2,xn, 平均数是 x
2、标准差算法及其公式为:
1)算出样本数据的平均数 。 2)算出每个样本数据与样本数据平均数的差: 3)算出(2)中 的平方。 4)算出(3)中n个平方数的平均数,即为样本方差。 5)算出(4)中平均数的算术平方根,即为样本标准差。
s1 n[x (1x)2(x2x)2 (xnx)2]
3.关于标准差的说明: 1)标准差较大,数据的离散程度较大;标准差较 小,数据的离散程度较小。
规律:标准差越大, 则a越大,数据的 离散程度越大;反 之,数据的离散程 度越小。
2021学年数学人教A版必修3课件:2-2-2 用样本的数字特征估计总体的数字特征

s
2
乙
=
1 6
[(99-100)2+(100-100)2+(102-100)2+(99-100)2
+(100-100)2+(100-100)2]=1.
(2)两台机床所加工零件的直径的平均值相同.
又s2甲>s乙2 ,所以乙机床加工零件的质量更稳定.
用样本估计总体时,样本的平均数、标准差只是总体的平 均数、标准差的近似.实际应用中,当所得数据的平均数不相等 时,需先分析平均水平,再计算标准差方差分析稳定情况.
[难点] 对样本的众数、中位数、平均数、标准差、方差意 义的理解.
要点整合夯基础 课堂达标练经典
典例讲练破题型 课时作业
知识点一 众数、中位数、平均数 [填一填]
[答一答] 1.一组数据的平均数、中位数、众数唯一吗?
提示:一组数据的平均数、中位数都是唯一的,众数不唯 一,可以有一个,也可以有多个,还可以没有.如果有两个数 据出现的次数相同,并且比其他数据出现的次数都多,那么这 两个数据都是这组数据的众数.
s=
30 3.
方法2适用于每个数据都比较接近同一个数的问题,当数据 又大又多时,更能体现方法2的优越性.
[变式训练4] 一组数据:3,4,6,7,10,其标准差是 6 .
解析:∵ x =15×(3+4+6+7+10)=6,
∴s2=
1 5
×[
(3-6)2+(4-6)2+(6-6)2+(7-6)2+(10-6)2]
[变式训练2] 一组数据的频率分布直方图如图所示,请你 在直方图中标出这组数据的众数、中位数和平均数对应的位置 (用虚线标明),并根据直方图读出其相应的估计值.
解:众数、中位数、平均数对应的位置如图中虚线所示(众 数:右端虚线,中位数:左端虚线,平均数:左端虚线).由直 方图观察可得众数为2.25,中位数为2.02,平均数为2.02.
人教a版必修三:《2.2.1用样本的频率分布估计总体分布(2)》ppt课件(33页)

明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
思考3 一般地,画出一组样本数据的茎叶图的步骤如何?
答 第一步,将每个数据分为“茎”(高位)和“叶”(低位)两部分;
第二步,将最小的茎和最大的茎之间的数按大小次序排成一列,写在左(右)侧; 第三步,将各个数据的叶按次序写在茎右(左)侧.
第二章 统 计
§2.2 用样本估计总体
2.2.1 用样本的频率分布估计总体分布(二)
本节知识目录
2.2.1(二)
用样本
明目标、知重点
的频率
分布估
填要点、记疑点 探究点一 探要点、究所然 探究点二 当堂测、查疑缺 频率分布折线图、总体 密度曲线的概念 茎叶图
计总体
分布
(二)
明目标、知重点
填要点、记疑点
中称这条光滑曲线为总体密度曲线.那么下图中阴影部分的面积有何实际意义?
答 图中阴影部分的面积,就是总体在区间(a,b)内的取值的百分比.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点一:频率分布折线图、总体密度曲线的概念
思考 5
对于一个总体,如果存在总体密度曲线,能否通过样本数据准确地画出总
明目标、知重点 填要点、记疑点
主目录
B.x甲>x乙;甲比乙成绩稳定 D.x甲<x乙;甲比乙成绩稳定
探要点、究所然 当堂测、查疑缺
探要点、究所然
2.2.1(二)
探究点二:茎叶图
解析 从茎叶图可知,甲五次成绩中一次茎为8,一次茎为9,而乙五次成绩中,茎 8和茎9各两次,故可知x甲<x乙,乙比甲成绩稳定.
最新北师大版高中数学必修三第一章统计 估计总体的分布

§5 用样本估计总体 5.1 估计总体的分布学习 目标1.理解什么是频率分布表、频率分布直方图、频率折线图.(数学抽象)2.会列频率分布表,会画频率分布直方图和频率折线图,能根据频率分布直方图解决问题.(数据分析、直观想象)3.了解用样本估计总体的意义.(数学抽象)导思 1.频率分布直方图纵轴的含义是什么?2.频率分布直方图的制作步骤是什么?3.如何画频率折线图?1.频率分布表和频率分布直方图 (1)频率分布表编制的方法步骤:(2)频率分布表与频率分布直方图有什么不同?提示:频率分布表能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各个小组数据在样本容量中所占比例大小的角度来表示数据分布的规律.2.频率折线图(1)在频率分布直方图中,按照分组原则,在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.(2)当样本容量不断增大时,样本中落在每个区间内的样本数的频率会越来越稳定于总体在相应区间内取值的概率.也就是说,一般地,样本容量越大,用样本的频率分布去估计总体的分布就越精确.(3)随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.频率分布表、频率分布直方图与频率折线图各有什么优缺点?提示:①频率分布表:优点:频率分布表在数量表示上比较确切;缺点:不够直观、形象,分析数据分布的总体趋势不太方便;②频率分布直方图:优点:频率分布直方图能非常直观地表明数据分布的形状,使我们能够看到在分布表中看不清楚的数据模式;缺点:从直方图本身得不出原始的数据内容,也就是说,把数据表示成直方图后,原有的具体数据信息就被抹掉了;③频率折线图:优点是它反映了数据的变化趋势.缺点:由图本身得不到原始的数据信息.1.辨析记忆(对的打“√”,错的打“×”)(1)频率分布直方图中的纵坐标指的是频率的值.()(2)频率分布直方图的宽度没有实际意义.()(3)频率分布直方图中各小矩形的面积之和可以不为1.()(4)在画频率折线图时,可以画成与横轴相连.()提示:(1)×.纵坐标指的是频率与组距的比值.(2) ×.频率分布直方图的宽度表示组距.(3)×.各小矩形的面积之和一定为1.(4) √.为了方便看图,一般习惯把频率折线图画成与横轴相连,所以横轴上左右两端点没有实际的意义.2.已知一个容量为40的样本,把它分成6组,第一组到第四组的频数分别为5,6,7,10,第五组的频率是0.2,那么第六组的频数是________,频率是________. 【解析】第五组的频数为0.2×40=8.所以第六组的频数为40-5-6-7-10-8=4.频率为440=0.1.答案:40.13.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[50,60)内的汽车有________.【解析】因为小长方形的面积即为对应的频率,时速在[50,60)内的频率为0.3,所以有200×0.3=60(辆).答案:60辆4.(教材例题改编)一个容量为n的样本,分成若干组,已知某组的频数和频率分别为50和0.25,则n=________.【解析】由题意得50n=0.25,所以n=200.答案:200类型一频率分布直方图的绘制(数据分析、直观想象)【典例】1.频率分布直方图中,小矩形的面积等于()A.组距B.频率C.组数D.频数2.调查某校高一年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 168 160 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图.【思路导引】1.根据频率直方图中小矩形的几何意义,即可求解. 2.极差=180-151=29,组距为3,可分为10组.【解析】1.选B.根据小矩形的宽及高的意义,可知小矩形的面积为一组样本数据的频率.2.(1)①求极差:从数据中可看出,最大值是180,最小值是151,故极差为180-151=29.②确定组距与组数:取3为组距,则极差组距 =293 =923 ,故可将样本数据分成10组.③第一组起点定为150.5,组距为3,这样分出10组:[150.5,153.5),[153.5,156.5),[156.5,159.5),[159.5,162.5),[162.5,165.5),[165.5,168.5),[168.5,171.5),[171.5,174.5),[174.5,177.5),[177.5,180.5]. ④列频率分布表174.5~177.510.025177.5~180.510.025(2)画频率分布直方图如图所示:绘制频率分布直方图的注意事项(1)计算极差,需要找出这组数的最大值和最小值,当数据很多时,可选一个数当参照.(2)将一批数据分组,目的是要描述数据分布规律,要根据数据多少来确定分组数目,一般来说,数据越多,分组越多.(3)将数据分组,决定分点时,一般使分点比数据多一位小数,并且把第一组的起点稍微减小一点.(4)列频率分布表时,可通过逐一判断各个数据落在哪个小组内,以“正”字确定各个小组内数据的个数.(5)画频率分布直方图时,纵坐标表示频率与组距的比值,一定不能标成频率.1.有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5],3;(15.5,18.5],8;(18.5,21.5],9;(21.5,24.5],11;(24.5,27.5],10;(27.5,30.5],4.由此估计,不大于27.5的数据约为总体的()A.91% B.92% C.95% D.30%【解析】选A.不大于27.5的样本数为:3+8+9+11+10=41,所以约占总体百分比为4145×100%≈91%.2.某中学同年级40名男生的体重数据如下(单位:千克):616059595958585757575756 565656565656555555555454 54545353525252525251515150504948列出样本的频率分布表,画出频率分布直方图. 【解析】①计算极差:61-48=13(千克); ②决定组距与组数,取组距为2,因为132 =612 ,所以共分7组;③决定分点,使分点比数据多一位小数.并把第1小组的分点减小0.5,即分成如下7组:47.5~49.5,49.5~51.5,51.5~53.5,53.5~55.5,55.5~57.5,57.5~59.5,59.5~61.5.④列出频率分布表如下:分组(Δx i ) 频数(n i ) 频率(f i ) 47.5~49.5 2 0.05 49.5~51.5 5 0.125 51.5~53.5 7 0.175 53.5~55.5 8 0.20 55.5~57.5 11 0.275 57.5~59.5 5 0.125 59.5~61.5 2 0.05 合计401.00⑤作出频率分布直方图如下:3.某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:107~109,3株;109~111,9株;111~113,13株;113~115,16株;115~117,26株;117~119,20株;119~121,7株;121~123,4株;123~125,2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在109~121范围内的可能性是百分之几.【解析】(1)频率分布表如下:分组频数频率累积频率107~10930.030.03109~11190.090.12111~113130.130.25113~115160.160.41115~117260.260.67117~119200.200.87119~12170.070.94121~12340.040.98123~12520.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在109~121范围内的频率为:0.94-0.03=0.91,即数据落在109~121范围内的可能性是91%.类型二频率折线图的画法及应用【典例】从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):40~50,2;50~60,3;60~70,10;70~80,15;80~90,12;90~100,8.(1)列出样本的频率分布表;(2)画出频率分布直方图及频率折线图; (3)估计成绩在60~90分的学生比例.【思路导引】画频率分布直方图和折线图⇒制作好频率分布表⇒纵坐标表示频率与组距的比值.【解析】(1)样本的频率分布表如下:成绩分组(Δx i ) 频数(n i ) 频率(f i ) f i Δx i 40~50 2 0.04 0.004 50~60 3 0.06 0.006 60~70 10 0.2 0.02 70~80 15 0.3 0.03 80~90 12 0.24 0.024 90~10080.160.016(2)频率分布直方图及频率折线图如图所示:(3)成绩在60~90的频率为1-0.04-0.06-0.16=0.74, 所以可估计成绩在60~90分的学生比例为74%.本例条件不变,估计成绩在50~80分的学生的比例.【解析】成绩在50~60分的学生的频数为3,在60~70的学生的频数为10,在70~80分的学生的频数为15,所以成绩在50~80分的学生的频数为28,占总体的2850 =1425 .频率折线图的作法及应用(1)作法:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)应用:频率折线图也是用一个单位长度表示一定的数量,但是,它是根据数量的多少在图中描出各个点,然后把各个点用线段顺次连接成的折线,因此,它不但可以表现出数量的多少,而且能够以折线的起伏,清楚而直观地表示出数量的增减变化的情况.提醒:画图时,横轴和纵轴的单位可不一致.有一个容量为100的某校毕业生起始月薪的样本,数据的分组及各组的频数如下:起始月薪(百元)[13,14)[14,15)[15,16)[16,17) 频数7112623起始月薪(百元)[17,18)[18,19)[19,20)[20,21]频数1584 6(1)列出样本的频率分布表;(2)画出频率分布直方图和频率折线图;(3)根据频率分布估计该校毕业生起始月薪低于2 000元的频率.【解析】(1)样本的频率分布表为起始月薪(百元)频数频率[13,14)70.07[14,15)110.11[15,16)260.26[16,17)230.23[17,18)150.15[18,19)80.08[19,20)40.04[20,21]60.06总计100 1.00(2)频率分布直方图和频率折线图如图.(3)起始月薪低于2 000元的频率为0.07+0.11+…+0.04=0.94,故起始月薪低于2 000元的频率的估计值是0.94.【补偿训练】某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80), [80,100].(1)求直方图中x的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1 000名新生中有多少名学生可以申请住宿.【解析】(1)由(x+0.012 5+0.006 5+0.003×2)×20=1,解得x=0.025.(2)上学所需时间不少于40分钟的学生的频率为:(0.006 5+0.003×2)×20=0.25,估计学校1 000名新生中有1 000×0.25=250名学生可以申请住宿.答:估计学校1 000名新生中有250名学生可以申请住宿.类型三用样本分布估计总体分布【典例】1.(2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间2.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少;(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.【思路导引】1.利用频率分布直方图,计算出低于60分的人数的频率p,利用频数除以相应的频率p 得总人数.2.利用110次以上(含110次)的矩形面积除以所有的矩形面积之和,即可估计高一学生的达标率.【解析】1.选C. 低于4.5万元的比率估计为0.02×1+0.04×1=0.06=6%,故A 正确;不低于10.5万元的比率估计为(0.04+0.02×3)×1=0.1=10%,故B 正确;平均值为:(3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+13×0.02+14×0.02)×1=7.68万元,故C 不正确;4.5万元到8.5万元的比率为:0.1×1+0.14×1+0.2×1+0.2×1=0.64=64%,故D 正确.2.(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此,第二小组的频率为:42+4+17+15+9+3=0.08. 又因为第二小组频率=第二小组频数样本容量, 所以样本容量=第二小组频数第二小组频率=120.08 =150. (2)由图可估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%. (3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.用样本估计总体的常用方法(1)用频率分布表估计总体分布.根据样本数据可以制作频率分布表,利用频率分布表中的数据,如各小组的频数、频率,可以对总体中的有关量进行估计.(2)用频率分布直方图估计总体分布.根据样本数据绘制出的频率分布直方图具有直观的特点,可以直接判断出样本中数据的分布特点和变化趋势与规律,并由此对总体进行估计.(3)用频率折线图估计总体分布.由样本频率分布直方图可以绘制出频率折线图,且样本容量越大,分组的组距不断缩小,那么折线图就越接近于总体分布,从而由频率折线图对总体估计就越精确.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x 的值;(2)已知样本中身高小于100厘米的人数是36,求出样本容量N 的数值;(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的学生数.【解析】(1)由题意可知:(0.050+0.100+0.150+0.125+x )×2=1,解得:x =0.075.(2)设样本中身高小于100厘米的频率为p 1,所以,p 1=(0.050+0.100)×2=0.30,而p 1=36N ,所以N =36p 1=360.30 =120. (3)样本中身高大于或等于98厘米并且小于104厘米的频率为p 2=(0.100+0.150+0.125)×2=0.75,所以身高大于或等于98厘米并且小于104厘米的学生数n =p 2N =120×0.75=90.。
用样本估计整体的基本步骤

用样本估计整体的基本步骤
用样本估计整体的基本步骤通常包括以下几个部分:
1.确定研究目标和总体:首先确定你想要估计的总体,即你
希望得到关于整体特征的估计值。
2.定义样本和抽样方法:确定你将要使用的样本大小和抽样
方法。
样本应该以代表性的方式从总体中选择,以确保估计的结果具有统计学上的可靠性。
3.收集数据:采用所选择的抽样方法从总体中抽取样本,并
收集样本数据。
确保采样过程是随机的,以避免样本选择上的偏差。
4.数据整理和分析:对收集到的样本数据进行整理和分析。
这包括描述性统计分析、计算样本统计量等。
5.估计总体参数:根据样本数据,计算出所需的总体参数的
估计值。
例如,估计总体均值、总体比例等。
这通常涉及到对样本统计量的计算和推断。
6.确定估计的精度和置信水平:评估估计结果的精度和可靠
性。
这可以通过计算估计值的置信区间来完成,确定估计结果所在的范围。
7.结果解释和推断:将估计结果解释给目标受众。
解释估计
结果的含义、置信水平以及可能的限制。
8.结论和报告:根据估计结果,得出结论并撰写报告。
将报
告中包含所采用的方法、数据分析流程、估计结果和相关
的解释。
在用样本估计整体时,确保使用恰当的统计方法和技术,并遵循相关的统计学原则和假设。
此外,维护数据的质量和准确性也是十分重要的,以确保估计结果的可靠性和有效性。
人教A版高中数学必修三课件:2.2.1 用样本的频率分布估计总体分布2 (2)

• (2)频率分布直方图如图所示.
• 累积频率分布图如图所示.
• (3) 由累积频率分布图可以看出,寿命在 100h~400h的电子元件出现的频率为0.65. • (4)由频率分布表可知,寿命在400h以上的 电子元件出现的频率为0.20+0.15=0.35, 故我们估计电子元件寿命在 400h以上的频 率为 0.35.
• 2.2 用样本估计总体 • 2.2.1 用样本的频率分布 • 估计总体分布
• [例1] 已知一个样本: 25,21,23,25,27,29,25,28,30,29,26,24,25,27,2 6,22,24,25,26,28,以2为组距,列出频率分 布表,绘制频率分布直方图,并由样本值 估计总体出现在22~28之间的频率.
• [解析] 频率分布表: 分组 20.5~22.5 22.5~24.5 24.5~26.5 频数累计 频数 2 3 8 频率 0.1 0.15 0.4
26.5~28.5
28.5~30.5 合计
4
3 20
0.2
0.15 1.00
• 频率分布直方图:
• 由样本频率分布表可知,样本值出现在 22~28之间的频率为0.15+0.40+0.2=0.75, 所以可以估计总体中出现在22~28之间的 数的频率约为0.75.
• [解析] (1)样本的频率分布表为:
起始月薪(百 频数 频率 元) [13,14) 7 0.07 [14,15) 11 0.11
[15,16) [16,17) [17,18) [18,19) [19,20) [20,21) 合计
26 23 15 8 4 6 100
0.26 0.23 0.15 0.08 0.04 0.06 1.00
• [解析] 由茎叶图可知,该班学生父亲的年 龄分布主要集中在40~60岁之间,平均年 龄大约在48岁左右;而母亲的年龄分布大 致对称,平均年龄大约在44岁左右,父亲 的平均年龄比母亲的平均年龄要大.
必修三2.2.用样本估计总体(教案)

必修三2.2.用样本估计总体(教案)必修三2.2.用样本估计总体(教案)导语:本文为必修三2.2.用样本估计总体(教案)的教学指南,旨在引导学生了解和应用样本估计总体的方法。
通过学习本课,学生将能够理解抽样和样本的基本概念,并能够运用点估计和区间估计的方法进行总体参数的估计。
为了达到良好的教学效果,本教案采用了多样的教学方法,例如引导讨论、示例演示和小组合作等。
一、教学目标:1. 理解样本与总体的概念和关系;2. 掌握点估计的方法;3. 了解区间估计的原理和应用;4. 能够进行样本估计总体的实际问题分析。
二、教学过程:1. 导入(5分钟)引导学生思考以下问题:什么是样本?什么是总体?样本和总体之间有什么关系?为什么需要用样本来估计总体?2. 点估计的方法(15分钟)a. 讲解点估计的基本原理,即通过样本数据来估计总体参数的值。
b. 示例演示:设计一个问题,如某班级数学考试成绩的平均分。
用班级中的五位同学的成绩作为样本,通过计算样本的平均分来估计全班的平均分。
c. 引导学生讨论点估计的优点和缺点。
3. 区间估计的方法(15分钟)a. 讲解区间估计的概念和原理,即通过样本数据构造一个置信区间来估计总体参数的范围。
b. 示例演示:使用同样的例子,构造一个置信水平为95%的置信区间,来估计全班的平均分。
c. 引导学生讨论区间估计的优点和缺点。
4. 实际问题分析(25分钟)a. 设计一个实际问题,例如某个城市的人均收入。
要求学生提出估计该城市人均收入的方法和步骤,并结合点估计和区间估计的方法进行分析。
b. 小组合作:分组讨论,每个小组根据实际问题设计一个解决方案,并准备向全班汇报。
c. 汇报与讨论:每个小组轮流汇报他们的解决方案,并进行讨论。
5. 总结与延伸(10分钟)a. 概括本课内容,强调样本估计总体的方法和应用。
b. 提出延伸问题,鼓励学生进一步探索样本估计总体的其他应用领域。
三、教学反思:本节课通过引导讨论、示例演示和小组合作等多种教学方法,促使学生自主思考和应用样本估计总体的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
个人能力当中所蕴藏的潜能,远超过自己想像以外!
用样本估计总体
【知识回顾】随机抽样方法种类:1. 2. 3.
选择合适的抽样方法,写出抽样过程。
(1) 有30个篮球,其中甲厂生产21个,乙厂生产9个,抽取10个入样 (2) 有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个入样
(3) 有甲厂生产的300个篮球,抽取10个入样 (4) 有甲厂生产的300个篮球,抽取30个入样 【要点解析】用样本估计总体:⎩⎨⎧总体的数字特征用样本的数字特征估计
总体分布用样本的频率分布估计
:2:1
1:用样本的频率分布估计总体分布方法:1. 2. 3. 4. 【典型例题】:
例1:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图,图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学生全体高一学生的达标率是多少? (3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由
.
例2:在某电脑杂志的一篇目文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子中所含的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.
(1)将这两组数据用茎叶图表示;
(2)将这两组数据进行比较分析,得到什么结论?
2:用样本的数字特征估计总体的数字特征。
样本中研究的数字:1. 2. 3. 4. 5.
【典型例题】: 例3:甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图. (1)分别求出两人得分的平均数与方差;
(2)根据图和上面算得的结果,对两人的训练成绩作出评价.
【自我反馈】
1. (2010陕西文数)如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为B A x x ,,样本标准差分别为B A S S ,则
A. B A x x >B A S S >
B.B A x x <,B A S S >
C.B A x x >,B A S S <
D.B A x x <,B A S S <
2. (2010山东文数)(6)在某项体育比赛中,七位裁判为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为
(A )92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8 3. (2010浙江文数)(11)在如图所示的茎叶图中,甲、乙 两组数据的中位数分别是。