2015-2016学年度高二年级期末数学质量检测试题及答案

合集下载

2015--2016度高二数学第二学期期末试题

2015--2016度高二数学第二学期期末试题


10、 4sinα cosα cos 2α =

11、P
为椭圆 x2 +
25
y2 24
= 1 上一点,且
PF1
= 2 ,则
PF2
=

12、双曲线 x2 − y2 = 1 的渐近线方程为
9
13、抛物线 x = 4 y2 的准线方程是
。 。
14、焦点在 x 轴上,焦距为 14,两个顶点间的距离为 12 的双曲线的标准方
36 9
标和离心率。
19、(10 分)求函数 y = sin 3x cos 3x 的最大值、最小值和最小正周期。
20、(8 分)6 个人站成一排照相, (1)、甲乙二人必须站在两端,共有多少种排法?
(2)、甲乙二人不相邻,共有多少种排法?
21、(8 分)求直线 x = − 3 + y 被抛物线 y = 1 x2 所截的弦的中点坐标。
2
2
x2 + y2 = 1
22、(10 分)求以椭圆 25 9 的焦点为顶点,长轴顶点为焦点的双曲线 方程。
2015-2016 学年度第二学期期末考试题(卷) 高二数学
姓名
班级
成绩
说明:本试卷满分 100 分,时间 100 分钟。
一、 选择题:(每小题 3 分,共 10 小题 24 分)
1、 sin 700 cos 250 − cos 700 sin 250 = (

A、 2
2
B、 − 2
2
C、 3
2
2、函数 y = 3sin(ω x + π ) 的最小正周期是 π ,则ω =(
5
3
D、 − 3
2

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016第一学期高二期末考试理科数学试题及答案

2015-2016学年度高二年级期末教学质量检测理科数学试卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =-C .16x =,32y =-D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为A .3B .3C D .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为A. BCD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.下列各数中,最小的数是A .75B .)6(210 C .)2(111111 D .)9(8511.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .512、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15二、填空题:本大题共4小题,每小题5分,满分20分13.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年高二上学期期末考试数学(理)试卷及答案

2015-2016学年度 第一学期期末质量监测高二数学(理科)试卷一、选择题:本大题供8小题,每小题5分,供40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 直线023=+-y x 的倾斜角是A.6π B.3π C.23π D.56π 2. 直线l 过点(2,2)P -,且与直线032=-+y x 垂直,则直线l 的方程为 A. 220x y +-= B. 260x y --=C. 260x y --=D. 250x y -+=3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为π12, 则该几何体的体积是A. π4B. 12πC. 16πD. 48π 4. 在空间中,下列命题正确的是 A. 如果直线m ∥平面α,直线α⊂n 内,那么m ∥n ;B. 如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC. 如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m α⊥D. 如果平面α⊥平面β,任取直线m α⊂,那么必有m β⊥5. 如果直线013=-+y ax 与直线01)21(=++-ay x a 平行.那么a 等于A. -1B.31 C. 3 D. -1或316. 方程)0(0222≠=++a y ax x 表示的圆A. 关于x 轴对称B. 关于y 轴对称C. 关于直线x y =轴对称D. 关于直线x y -=轴对称7. 如图,正方体1111ABCD A BC D -中,点E ,F 分别是1AA ,AD 的中点,则1CD 与EF 所成角为A. 0︒B. 45︒C. 60︒D. 90︒8. 如果过点M (-2,0)的直线l 与椭圆1222=+y x 有公共点,那么直线l 的斜率k 的取值范围是A.]22,(--∞ B.),22[+∞ C.]21,21[-D. ]22,22[-二、填空题:本大题共6小题,每小题5分,共30分.9. 已知双曲线的标准方程为116422=-y x ,则该双曲线的焦点坐标为,_________________渐近线方程为_________________.10. 已知向量)1,3,2(-=a,)2,,5(--=y b 且a b ⊥ ,则y =________.11. 已知点),2,(n m A -,点)24,6,5(-B 和向量(3,4,12)a =-且AB ∥a .则点A 的坐标为________.12. 直线0632=++y x 与坐标轴所围成的三角形的面积为________. 13. 抛物线x y 82-=上到焦点距离等于6的点的坐标是_________________.14. 已知点)0,2(A ,点)3,0(B ,点C 在圆122=+y x 上,当ABC ∆的面积最小时,点C 的坐标为________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15. (本小题共13分)如图,在三棱锥A BCD -中,AB ⊥平面BCD ,BC CD ⊥,E ,F ,G 分别是AC ,AD ,BC 的中点. 求证:(I )AB ∥平面EFG ;(II )平面⊥EFG 平面ABC .16. (本小题共13分)已知斜率为2的直线l 被圆0241422=+++y y x 所截得的弦长为求直线l 的方程.17. (本小题共14分)如图,在四棱锥P ABCD -中,平面⊥PAB 平面ABCD ,AB ∥CD ,AB AD ⊥,2CD AB =,E 为PA 的中点,M 在PD 上(点M 与D P ,两点不重合).(I ) 求证:PB AD ⊥;(II )若λ=PDPM,则当λ为何值时, 平面⊥BEM 平面PAB ?(III )在(II )的条件下,求证:PC ∥平面BEM .18. (本小题共13分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,平面PCD ⊥底面ABCD ,PD CD ⊥,PD CD =,E 为PC 的中点. (I ) 求证:AC ⊥PB ; (II ) 求二面角P --BD --E 的余弦值.19. (本小题共14分)已知斜率为1的直线l 经过抛物线22y px =(0)p >的焦点F ,且与抛物线相交于A ,B 两点,4=AB .(I ) 求p 的值;(II ) 设经过点B 和抛物线对称轴平行的直线交抛物线22y px =的准线于点D ,求证:DO A ,,三点共线(O 为坐标原点).20. (本小题共13分)已知椭圆2222:1(0)x y G a b a b +=>>的左焦点为F ,离心率为33,过点)1,0(M 且与x 轴平行的直线被椭圆G 截得的线段长为6. (I ) 求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于2,求直线OP (O 是坐标原点)的斜率的取值范围.2015-2016学年度第一学期期末质量检测高二数学(理科)试卷参考答案2016.1一、ABB C BA CD二、9.(±52,0),2y x =±10. -411. (1,-2,0)12. 313. (-4,24±)14. (13133,13132) 说明:1.第9题,答对一个空给3分。

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(

厦门市2015—2016学年度第一学期高二年级质量检测数学(文科)参考答案一、选择题:(本大题共12小题,每小题5分,共60分)12.设11(,)A x y 、22(,)B x y ,由2(1)y x y k x ⎧=⎨=-⎩得222(21)0k x k x k -++=,即121x x ⋅=.又211222y x y x ⎧=⎪⎨=⎪⎩,∴21212()1y y x x ⋅=⋅=即121y y ⋅=-,∴12120x x y y ⋅+⋅=, 即OA OB ⊥.设33(,)C x y 、44(,)D x y ,直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21y x y k x ⎧=⎨=⎩得00x y =⎧⎨=⎩或21111x k y k ⎧=⎪⎪⎨⎪=⎪⎩即21111(,)A k k ,同理22211(,)B k k .由221(2)4x y yk x ⎧-+=⎨=⎩得00x y =⎧⎨=⎩或211214141x k k y k ⎧=⎪+⎪⎨⎪=⎪+⎩即1221144(,)11k D k k ++, 同理2222244(,)11k E k k ++.∴OA =,OB = OD =OE =∴221122221211111(1)(1)2(1)(1)12116161642OABODEk k OA OB S k k k k S OD OE ∆∆++++++====≥. 二、填空题:(本大题共4小题,每小题5分,共20分)13.,x R ∀∈21xx ≠+; 14.815y x =- ; 15.3λ<; 16.20. 三、解答题:(本大题共6小题,共70分.解答应写出文字说明,或演算步骤). 17.本题考查等差、等比数列的通项公式及前n 项和公式等基础知识,考查运算求解能力.考查化归与转化思想、方程思想.满分10分. 【解析】(Ⅰ)设等比数列{}n a 的首项为1a ,公比为q .364,32a a ==,解得12,1q a ==, ··································· 3分 1112n n n a a q --∴==. ······················································· 4分(Ⅱ)设等差数列{}n b 的首项为1b ,公差为d .4145b =+=,21b =,∴4224,d b b =-=即2d =,11=-b , ·········· 6分∴23n b n =-, ··································································· 7分 ∴数列{}+n n a b 的前n 项和为11()(1)12n n n n b b a q T q +-=+-12(123)122n n n --+-=+- ···························································· 9分 2221n n n =+-- . ···································································· 10分18.本题考查正弦、余弦定理和解三角形等基础知识,考查运算能力、思维分析能力,考查化归与转化思想、方程思想、分类讨论思想.本题满分12分.【解析】(Ⅰ) 由正弦定理,结合条件:sin (sin sin c C a A b B ⋅⋅⋅=+(可得,2(a c b a b -⋅=⋅+( ································· 2分22a b =+22b b a =+.222b a c ∴+-, ··········································································· 4分2222a c ab b ==+-,即 cos C =,0C π<<,6C π∴=. ········· 6分(Ⅱ)法一:由余弦定理,结合条件:32=a ,2c =, 又由(Ⅰ)知6C π=,可得 2222cos c a b ab C =+-,∴24122b =+-⋅,即2680b b -+=, ··········· 8分 解得2b =或4b =,经检验,两解均有意义. ··········· 11分综上,ABC ∆周长为4+6+ ··· 12分法二:由正弦定理,结合条件:32=a ,2c =,又由(Ⅰ)知6C π=,可得1sin 2sin 2a C A c === ············································ 7分 a c > A C ∴> 3A π∴=或23π,从而2B π=或6π. ······························· 8分当2B π=时,ABC ∆为直角三角形,4b ∴=,ABC ∴∆周长为6+ 当6B π=时,ABC ∆为等腰三角形,2b c ∴==,ABC ∴∆周长为4+ 11分综上,ABC ∆周长为4+6+ ··· 12分 19.本题考查抛物线定义,直线与抛物线关系,考查运算求解能力.考查化归与转化思想、数形结合思想、分类讨论思想.本题满分12分.【解析】(Ⅰ)由题意得,M 到点(3,0)的距离与到直线3x =-的距离都等于半径,由抛物线的定义可知, C 的轨迹是抛物线,设其方程为22y px =,32p=, ∴M 的轨迹方程为212y x =. ··································· 3分 (Ⅱ)法一:显然斜率不为0,设直线l :6x ty =+,11(,)A x y 、22(,)B x y2AP PB =,∴1122(6,)2(6,)x y x y --=-,∴122y y =-, ···················· 6分 由2126y x x ty ⎧=⎨=+⎩得212720y ty --=∴12121272y y t y y +=⎧⎨⋅=-⎩, ································ 8分又122y y =-,∴ 121260.5y y t =⎧⎪=-⎨⎪=⎩或121260.5y y t =-⎧⎪=⎨⎪=-⎩ , ······································ 10分∴ 直线l 的方程是212y x =-或212y x =-+. ·································· 12分法二:①当直线l 的斜率不存在时,直线l :x =6,显然不成立. ················ 4分 ②当直线l 的斜率存在时,设直线l :(6)y k x =-,11(,)A x y 、22(,)B x y ,2AP PB =, ∴1122(6,)2(6,)x y x y --=-,∴12218x x +=, ··············· 7分由212(6)y x y k x ⎧=⎨=-⎩得222212(1)360k x k x k -++=,∴21221212(1)36k x x k x x ⎧++=⎪⎨⎪⋅=⎩, ·· 9分 ∴121232x x k =⎧⎪=⎨⎪=±⎩······················································································ 11分 ∴直线l 的方程是212y x =-或212y x =-+. ·············· 12分20.本题考查等差等比数列的定义、性质,等差等比数列的综合运用,及求数列的前n 项和,考查运算求解能力.考查化归与转化思想、方程思想.本题满分12分. 【解析】(I )13,,n n a a +成等差数列,1123,32(3),n n n n a a a a ++∴=+∴-=- ··· 2分 即11323n n n n b a b a ++-==-,又131a -=,······································· 4分 ∴{}n b 是首项为1,公比为2的等比数列. ··································· 5分(II ){}n b 是首项为1,公比为2的等比数列,∴132n n n b a -=-=,即123n n a -=+. ··················································· 7分 又22log (26)log 2n n n c a n =-==, ··············································· 8分212111111()(21)(21)22121n n c c n n n n -+∴==--+-+, ······································· 9分 13352121111n n n T c c c c c c -+∴=+++111111(1)23352121n n =-+-++--+ ················································· 10分 111(1)2212n =-<+.······························································ 12分 21.本题考查解二次不等式、利用二次函数和基本不等式求最值,考查数学建模能力,信息处理能力和运算能力,考查化归转化思想、数形结合思想、函数方程思想和分类讨论思想.本题满分12分. 【解析】(Ⅰ)设该企业计划在A 国投入的总成本为()Q x (亿元), 则当010x ≤≤时,25()1644x x Q x =++,依题意:25()51644x x Q x =++≤, ············································· 1分 即24600x x +-≤,解得106x -≤≤, ··················· 3分 结合条件010x ≤≤,06x ∴≤≤.················· 4分 (Ⅱ)依题意,该企业计划在A 国投入的总成本为25,010,1644()42,10.5x x x Q x x x x ⎧++≤≤⎪⎪=⎨⎪+->⎪⎩5分 则平均处理成本为251,010,()1644421,10.5x x Q x x x x x x⎧++≤≤⎪⎪=⎨⎪-+>⎪⎩ ·········· 6分(i) 当010x ≤≤时,()51116444Q x x x x =++≥=5164x x =,即x =min()Q x x ⎛⎫= ⎪⎝⎭. ·············· 8分 (ii) 当10x >时, 22()42119914()520100Q x x x x x =-+=-+, ∴当1120x =即x =20时,min ()99100Q x x ⎛⎫=> ⎪⎝⎭. ············· 10分 ∴当x =min()Q x x ⎛⎫= ⎪⎝⎭. ···················· 11分 答:(Ⅰ)该工艺处理量x 的取值范围是06x ≤≤.(Ⅱ)该企业处理量为亿元. ······························································································· 12分 22.本题考查曲线的轨迹方程、直线和椭圆的位置关系、弦长公式、定点定值问题等知识,考查运算求解能力,探究论证能力.考查化归与转化思想、数形结合思想、函数方程思想、分类讨论思想.本题满分12分. 【解析】(I )设M 的坐标为(,)x y ,则1A M k x =≠,2A M k x =≠,12=-(x ≠, ········································· 1分化简得点M的轨迹方程是221(2x y x +=≠. ····································· 3分 (Ⅱ)①当直线l的斜率不存在时,PQ = ···································· 4分②当直线l 的斜率存在时,设11(,)P x y ,22(,)Q x y ,直线l 的方程为:(1)y k x =-,则2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,2222(21)4220k x k x k +-+-=,∴212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, · 6分222)1)2121k PQ k k +===+>++ ·· 7分综上所述,PQ. ··············· 8分(Ⅲ)假设点N 存在,由椭圆的对称性得,则点N 一定在x 轴上,不妨设点(,0)N n ,当直线l 的斜率存在时,由(Ⅱ)得212221224212221k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩, ∴22121212122(1)(1)[()1]21k y y k x k x k x x x x k ⋅=--=⋅-++=-+,11(,)NP x n y =-,22(,)NQ x n y =-,∴21212121212()()()NP NQ x n x n y y x x n x x n y y ⋅=-⋅-+⋅=⋅-+++⋅∴22222222222224(241)221212121k k k n n k n NP NQ n n k k k k --++-⋅=-+-=++++ ·· 10分 对于任意的k ,0NP NQ ⋅=,∴22241020n n n ⎧-+=⎪⎨-=⎪⎩, ······························· 11分方程组无解,∴点N 不存在.综上所述,不存在符合条件的点N . ············································· 12分。

2015─2016学年下学期高二期末考试数学试卷(文科含答案)

2015─2016学年下学期高二期末考试数学试卷(文科含答案)

2015─2016学年高二下学期期末考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集}5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}4,3{=B ,则B A C U )(=( ) A .}3{ B .}4{ C .}4,32{, D .}5,4,31{, 2.若复数z 满足i i z 2)1(=-(i 为虚数单位),则||z =( ) A .1 B .2 C .3 D .2 3.一个球的体积是π36,那么这个球的表面积为( ) A .π8 B .π12 C .π16 D .π36 4.设抛物线的顶点在原点,准线方程为x =2,则抛物线的方程是( ) A .x y 82-= B .x y 42-= C .x y 42= D .x y 82=5.若R y x ∈,,且⎪⎩⎪⎨⎧≥≥+-≥x y y x x 0321,则y x z -=2的最小值等于 ( )A .1-B .0C .1D .36.将两个数5=a ,12=b 交换,使12=a ,5=b ,下面语句正确一组是 ( )7.某三棱锥的三视图如右图示,则该三棱锥的体积是( )A .8B .332C .340D . 328.已知下表是x 与y 之间的一组数据:则y 与x 的线性回归方程为a bx y+=ˆ必过点( ) A .)(3,23 B .)(4,23C .)3,2(D . )(4,29.已知某函数图象的一部分如右图示,则函数的解析式可能是( )A .y =cos(2x -错误!)B .y =sin (2x -错误!)C .y =cos(4x -错误!)D .y =sin (x +错误!)10.已知双曲线)0,0(12222>>=-b a b y a x 的离心率为26,则其渐近线方程为( )A .x y 21±= B .x y 22±= C .x y 2±= D . x y 2±= 11.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了获得最大利润,每个售价应定为( ) A .95元 B .100元 C .105元 D . 110元 12.已知数列}{n a 各项均不为0,其前n 项和为n S ,且对任意*N n ∈都有n n pa p S p -=-)1(的常数)为大于(1p ,则n a = ( )A .1)12(--n p p B .1)12(--n pp p C .1-n p D .n p 第Ⅱ卷二、填空题:(本大题共4小题,每小题5分,共20分)13.圆042422=-+-+y x y x 的圆心和半径分别是____________________;14.在等比数列}{n a 中,若2a ,10a 是方程091132=+-x x 的两根,则6a 的值是______; 15.已知向量),4(m a =,)2,1(-=b ,若b a ⊥,则=-||b a ____________; 16.己知)(x f y =是定义在R 上的奇函数,当0<x 时,2)(+=x x f ,那么不等式01)(2<-x f 的解集是______________.三、解答题:(本大题共6小题, 17~21题每题12分,22题10分,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知a 、b 、c 是△ABC 中A 、B 、C 的对边,S 是△ABC 的面积.若a =4,b =5, S =53,求c 的长度.18.(本小题满分12分)为了了解云南各景点在大众人群中的熟知度,随机对15~65岁的人群抽取了n 人回答问题“云南省有哪几个著名的旅游景点?”统计结果如下图表所示.(1)分别求出表中a ,b ,x ,y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.组号分组回答正确的人数 回答正确的人数 占本组的频率第1组 [15,25) a 0。

20152016学年第二学期期末质量检测高二数学(理科)

20152016学年第二学期期末质量检测高二数学(理科)

理科数学·第 1 页 共 4 页2015-2016学年第二学期期末质量检测高二数学(理科)本试卷共4页,22小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 4.本次考试不允许使用计算器.5.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z 满足(1i)1i z -=+,则z =( )A .12B .1 CD .22.下列求导运算正确的是( ) A .()'11xx e e --= B .()'cos3sin 3x x =-C.'=D .()'ln 1ln x x x =+ 3.设()()221122,,,X N u Y N u s s ::,这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .1212,μμσσ<<B .1212,μμσσ<>C .1212,μμσσ><D .1212,μμσσ>>4.“0>x ”是“0342>++x x ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既非充分也非必要条件理科数学·第 2 页 共 4 页5.已知椭圆的中心在坐标原点,离心率为12,椭圆的右焦点与抛物线28y x =的焦点重合,抛物线的准线与椭圆相交于,A B 两点,则AB =( ) A .3 B .6 C .9 D .126.在四面体OABC 中,点,M N 分别是,OA BC 的中点,记OA a =uu r r ,OB b =uu u r r ,OC c =u u u r r,则MN =uuu r( )A .311222a b c --r r rB .111222a b c --r r rC .111222a b c -++r r rD .111222a b c -+r r r7.先后掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为) A .14 B .13C .12D .238.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,由k n =的假设到证明1+=k n 时,等式左边应添加的式子是( ) A .222)1(k k ++B .22)1(k k ++C .2)1(+kD .]1)1(2)[1(312+++k k9.以下命题正确的个数为( )(1)命题“x R ∀∈,012>+-x x ” 的否定..为真命题; (2)命题“若b a >,则22b a >”的逆命题...为真命题; (3)命题“若A B =,则sin sin A B =”的否命题...为真命题; (4)命题“若0>>b a ,则ba 11<”的逆否命题....为真命题. A .1 B .2 C .3 D .410.过双曲线2222:1(0,0)x y C a b a b-=>>的左焦点F 作一条渐近线的垂线,与C 右支交于点A ,若OF OA =,则C 的离心率为( ) AB .2CD .511.设S =,则S 的值等于理科数学·第 3 页 共 4 页A .120152015-B .120162015-C .120152016-D .120162016-12.若点P 在曲线21y x =+上,点Q在曲线y =PQ 最小值是( )AB.2 C.4 D.8二、填空题:本大题共4小题,每小题5分,满分20分. 13.曲线2y x =与直线y x =围成的图形的面积是________.14.已知()()()21010012103111()x a a x a x a x +++⋯+=++++,则8a = . 15.将4本不同的书送给3名同学,每人至少1本,则不同的送法有________种.(用数字作答) 16.已知直线:l y x a =-经过抛物线2:2(0)C y px p =>的焦点,l 与C 交于A B 、两点.若6AB =,则p 的值为 .三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,34C π=, (Ⅰ)求证:()()1tan 1tan 2A B ++=;(Ⅱ)若b =,求证:3tan 2tan A B =.18.(本小题满分12分)已知函数()ln (,)f x a x bx a b R =+∈的图象过点))1(,1(f P ,且在点P 处的切线的方程为2y x =-. (Ⅰ)求b a ,的值; (Ⅱ)求函数)(x f 的极值.19.(本小题满分12分)已知四棱锥中,PA ⊥平面ABCD ,底面ABCD 是边长为2的菱形,120,2BAD PA ∠== . (Ⅰ)求证:平面PBD ⊥平面PAC ;(Ⅱ)若G 为PC 的中点,求二面角C BG D --的平面角的余弦值.CB理科数学·第 4 页 共 4 页20.(本小题满分12分)甲乙两支篮球队进行总决赛,比赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.因两队实力相当,每场比赛两队获胜的可能性均为二分之一. (Ⅰ)求甲队以4:1战胜乙队获得总决赛冠军的概率;(Ⅱ)据以往资料统计,第一场比赛可获得门票收入50万元,以后每场比赛门票收入比上一场增加10万元.设总决赛中获得的门票总收入为X ,求X 的均值()E X .21.(本小题满分12分)已知圆(22:16M x y +=,动圆P 与圆M内切并且经过定点)N,圆心P的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)设过点()0,2-的直线l 与曲线E 相交于,A B 两点,当OAB ∆的面积最大时,求l 的方程.22.(本小题满分12分)已知a ∈R ,函数()()e 1xf x a x =-+的图象与x 轴相切.(Ⅰ)求()f x 的单调区间; (Ⅱ)若0x >时,2()f x mx >,求实数m 的取值范围.。

广东省汕头市2015-2016学高二下期末质量数学试题(理)含答案

广东省汕头市2015-2016学高二下期末质量数学试题(理)含答案

汕头市2015-2016学年高二下学期期末质量监测数学理试题一、选择题:(本大题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一 项是符合题目要求的。

)1·集合A ={x |ln 0x ≥},B ={x |x 2<16},则A B =() A .(1,4) B .[l ,4) C .[l ,+∞) D .[e ,4)2.复数231i i -⎛⎫⎪+⎝⎭A .一3一4iB .一3+4iC .3一4iD .3+4i3·函数22()sincos 33f x x x =+的图象中相邻的两条称轴间距离为() A 、3π B 、43π C 、32π D 、76π4.下列命题中,是真命题的是() A .00,0x x R e∃∈≤ B .已知a ,b 为实数,则a 十b =0的充要条件是ab=一1 C .2,2xx R x ∀∈> D .已知a ,b 为实数,则a >1,b >1是a b >1的充分条件 5.现有2个男生,3个女生和1个老师共六人站成一排照相,若两端站男生,3个女生中有且仅 有两人相邻,则不同的站法种数是()A.12 B .24 C .36 D .48 6.已知向量a =(1, x),b =(1, x 一1),若(2)a b a -⊥,则|2a b -|=() A.2 B.3 C. 2 D.57.已知双曲线22221(0,0)x y a b a b-=>>的离心率为52,则C 的渐近线方程为()A. y =14x ±B. y =13x ±C. y =12x ± D. y =x ±8.在△ABC 中,,336A AB π==,AC =3,D 在边BC 上,且CD =2DB ,则AD =( )A.19 B.21 C. 5 D. 279.某程序框图如图所示,现将输出(,)x y 值依次记为:11(,)x y ,22(,)x y ,…,33(,)x y ),…若程序运行中输出的一个数组是 (x ,一10),则数组中的x =() A. 32 B. 24 C. 18 D. 1610.如图1,已知正方体ABCD 一A 1B 1C 1D 1的棱长为a ,动点M 、N 、Q 分别在线段AD 1,B 1C ,C 1D 1上,当三棱锥Q-BMN 的俯视图如图2所示时,三棱锥Q-BMN 的正视图面积等于()11.已知函数f(x)=cos (sin 3cos )(0)x x x ωωωω+>,如果存在实数x 0,使得对任意的实数x , 都有f(x 0)0()(2016)f x f x π≤≤+成立,则ω的最小值为( ) A 、14032π B 、14032 C 、12016π D 、1201612.已知函数,设a 为实数,若存在实数m ,使f(m)一2g(a )=0则实数a 的取值范围为()A.[-1,+∞)B.[-1, 3]C.(一∞,-1]U [3,+∞)D.(一∞,3]第II 卷本卷包括必考题和选考题两部分。

2015~2016学年高二第二学期期末调研测试数学(理)试题(含附加题)带答案

2015~2016学年高二第二学期期末调研测试数学(理)试题(含附加题)带答案

2015~2016学年高二期末调研测试数 学(理科) 2016.06参考公式:圆锥侧面积公式:S rl p =,其中r 是圆锥底面半径,l 是圆锥母线长.数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题..卡相应位置.....上..1.命题“∀x ≥1,x 2≥1”的否定是 ▲ .2.已知复数2(34i)5iz +=(i 为虚数单位),则|z|= ▲ .3.四位男生一位女生站成一排,女生站中间的排法共有 ▲ 种.(用数字作答)4.双曲线2221(0)3x y a a -=>的离心率为2,则a = ▲ .5.“a =1”是“直线l 1:ax +y +1=0,l 2:(a +2)x -3y -2=0垂直”的 ▲ 条件. (填“充分不必要”“必要不充分”“充分必要”或“既不充分也不必要”)6.已知函数()e 2xf x x =+(e 是自然对数的底)在点(0,1)处的切线方程为 ▲ .7.设某批产品合格率为23,不合格率为13,现对该批产品进行测试,设第X 次首次测到正品,则P (X=3)= ▲ .8.若圆C 过两点(0,4),(4,6)A B ,且圆心C 在直线x -2y -2=0上,则圆C 的标准方程 为 ▲ . 9.若65()(1)(1)f x x x =+--的展开式为260126()f x a a x a x a x =++++,则125a a a +++的值为 ▲ .(用数字作答) 10.从0,1,2,3组成没有重复数字的三位数中任取一个数,恰好是偶数的概率为 ▲ . 11.已知点A (-3,-2)在抛物线C :x 2=2py 的准线上,过点A 的直线与抛物线C 在第二象限相切于点B ,记抛物线C 的焦点为F ,则直线BF 的斜率为 ▲ .12.假定某篮球运动员每次投篮命中率均为p (0<p <1).现有4次投篮机会,并规定连续两次投篮均不中即终止投篮.已知该运动员不放弃任何一次投篮机会,且恰用完4次投篮机会的概率是58,则p 的值为 ▲ . 13.若函数2()2e 3x f x a x =-+(a 为常数,e 是自然对数的底)恰有两个极值点,则实数a 的取值范围为 ▲ . 14.若实数a ,b满足a =a 的最大值是 ▲ .二、解答题:本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)一个不透明的口袋中装有6个大小和形状都相同的小球,其中2个白球,4个黑球.(1)从中取1个小球,求取到白球的概率;(2)从中取2个小球,记取到白球的个数为X ,求X 的概率分布和数学期望. 16.(本小题满分14分)正方体ABCD -A 1B 1C 1D 1中,点F 为A 1D 的中点.(1)求证:A 1B ∥平面AFC ;(2)求证:平面A 1B 1CD ⊥平面AFC .17.(本小题满分14分)如图,某工厂根据生产需要制作一种下部是圆柱、上部是圆锥的封闭型组合体存储设备,该组合体总高度为8米,圆柱的底面半径为4米,圆柱的高不小于圆柱的底面半径.已第16题图知制作圆柱侧面和底面的造价均为每平米2百元,制作圆锥侧面的造价为每平米4百元,设制作该存储设备的总费用为y 百元.(1)按下列要求写出函数关系式:①设OO 1h =(米),将y 表示成h 的函数关系式; ②设∠SDO 1q =(rad),将y 表示成θ的函数关系式;(2)请你选用其中的一个函数关系式,求制作该存储设备总费用的最小值.18.(本小题满分16分)在直三棱柱111ABC A B C -中,90BAC ∠=︒,12AB AC AA ===,,E F 分别是11,BC A C 的中点.(1)求直线EF 与平面ABC 所成角的正弦值;(2)设D 是边11B C 上的动点,当直线BD 与EF 所成角最小时,求线段BD 的长.19.(本小题满分16分)如图,已知椭圆M :22221(0)x y a b a b+=>>的离心率为2,且过点(2,1)P .第18题图 第17题图(1)求椭圆M 的标准方程;(2)设点1122(,),(,)A x y B x y 是椭圆M 上异于顶点的任意两点,直线OA ,OB 的斜率分别为12,k k ,且1214k k =-. ①求2212x x +的值;②设点B 关于x 轴的对称点为C ,试求直线 AC 的斜率.20.(本小题满分16分)已知函数()e x f x cx c =--(c 为常数,e 是自然对数的底),()f x '是函数()y f x =的导函数.(1)求()f x 的单调区间; (2)当1c >时,试证明:①对任意的0x >,(ln )(ln )f c x f c x +>-恒成立; ②函数()y f x =有两个相异的零点.第19题图2015~2016学年苏州市高二期末调研测试数 学(理科) 2016.06数学Ⅱ试题注意事项:1.答题前务必要将选做题的前面标记框涂黑,以表示选做该题,不涂作无效答题. 2.请在答题卷上答题,在本试卷上答题无效.请从以下4组题中选做2组题,如果多做,则按所做的前两组题记分.每小题10分,共40分. A 组(选修4-1:几何证明选讲)A 1.如图,在△ABC 中,AB AC =,△ABC 的外接圆为⊙O ,D 是劣弧AC 上的一点,弦AD ,BC 的延长线交于点E ,连结BD 并延长到点F ,连结CD . (1)求证:DE 平分CDF Ð; (2)求证:2AB AD AE =?.A 2.设AD ,CF 是△ABC 的两条高,AD ,CF 交于点H , AD 的延长线交△ABC 的外接圆⊙O 于点G ,AE 是 ⊙O 的直径,求证:(1)AB AC AD AE ??; (2)DG DH =.B 组(选修4-2:矩阵与变换)B 1.已知矩阵A =2143⎡⎤⎢⎥⎣⎦,B =1101⎡⎤⎢⎥-⎣⎦.(1)求A 的逆矩阵A -1;(2)求矩阵C ,使得AC =B .B 2.已知矩阵A =111a -⎡⎤⎢⎥⎣⎦,其中a ∈R ,若点P (1,1)在矩阵A 的变换下得到点P ′(0,-3). (1)求实数a 的值;(2)求矩阵A 的特征值及特征向量.C 组(选修4-4:坐标系与参数方程)C 1.在直角坐标系xOy 中,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线1C 的极坐标方程为3)4pr q =-,曲线2C 的参数方程为8cos ,3sin x y q q ì=ïïíï=ïî(θ为参数).(1)将曲线1C 的极坐标方程化为直角坐标方程,将曲线2C 的参数方程化为普通方程;(2)若P 为曲线2C 上的动点,求点P 到直线:l 32,(2x t t y t ì=+ïïíï=-+ïî为参数)的距离的最大值.C 2.在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos ,sin x y αα=+⎧⎨=⎩(α为参数);在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线2C 的极坐标方程为2cos sin ρθθ=.(1)求曲线1C 的极坐标方程和曲线2C 的直角坐标方程;(2)若射线l :y kx =(0)x ≥与曲线1C ,2C 的交点分别为,A B (,A B 异于原点),当斜率k ∈时,求OA OB ⋅的取值范围.D 组(选修4-5:不等式选讲)D 1.已知关于x 的不等式111ax a x ≥-+-(0a >). (1)当1a =时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.D 2.已知a ,b ,c 均为正数,求证:(1)114a b a b ++≥;(2)111111222a b c a b b c c a +++++++≥.2015~2016学年高二期末调研测试理科数学参考答案一、填空题1.∃x ≥1,x 2<1 2.5 3.24 4.1 5.充分不必要 6.310x y -+= 7.2278.22(4)(1)25x y -+-= 9.61 10.59 11.34- 12.1213.1(0,)e14.20 二、解答题15.解:(1)记从中取一个小球,取到白球为事件A ,………………………………2分1216C 1()3C P A ==.………………………………………………………………4分所以中取一个小球,取到白球的概率13.……………………………………5分(2)X 的取值为0,1,2 .…………………………………………………6分2426C 2(0)5C P X ===,112426C C 8(1)15C P X ===,2226C 1(2)15C P X === 所以………………………………………………………………12分数学期望2812()012515153E X =⨯+⨯+⨯=.……………………………………14分16.证明:(1)连接BD 交AC 于点O ,连接FO ,则点O 是BD 的中点.∵点F 为A 1D 的中点,∴A 1B ∥FO . ………………………3分 又1A B ⊄平面AFC ,FO ⊂平面AFC ,A 1B ∥平面AFC . …………………………7分(2)在正方体ABCD -A 1B 1C 1D 1中,∵CD ⊥平面A 1ADD 1,AF ⊂平面A 1ADD 1,∴CD ⊥AF . …………………………10分 又∵AF ⊥A 1D ,∴AF ⊥平面A 1B 1CD . ………………………12分 又AF ⊂面AFC ,∴平面A 1B 1CD ⊥平面AFC . ………………………14分17.解:(1)① S 圆柱侧=2πrh =8πh ,S 圆锥侧=πrl=4 ……………………2分y =2S 底面+ 2S 圆柱侧+4 S 圆锥侧=32π+16πh+16 = 32π+16(h p ,(48h ≤<);………………………4分 (注:定义域不写扣1分) ② 4=cos SD θ,=84tan h θ-. y =2S 底面+ 2S 圆柱侧+4 S 圆锥侧=32π+24(84tan )2θ⨯⨯-⨯p +444cos p θ⨯⨯⨯=32π+64(2tan )p θ-+64cos p θ=160π+64π1sin cos θθ-(04p≤θ<). ………………………6分(注:定义域不写扣1分) (2)选方案①由(1)知y =32π+16(h p ,(48h ≤<).BCOADB 1C 1D 1A 1F设8h t -=,则y = 32π+16(8t p -=32π+16(8p , …………9分y =32π+16(8p 在(04],上单调递减,………………………11分所以,当4t =时,y 取到最小值(96p +.………………………13分选方案②由(1)知y=160π+64π1sin cos θθ-(04p≤θ<), 设1sin ()cos θϕθθ-=,2sin 1'()cos θϕθθ-=,………………………8分因为,04p≤θ<,所以,'()0ϕθ<, 所以,()ϕθ在(0,]4p上单调递减,………………………11分所以,当4pθ=时,y 取到最小值(96p +. ………………………13分答:制作该存储设备总费用的最小值为(96p +百元. ……………………14分18.解:如图所示,以{1,,AB AC AA }为正交基底建立空间直角坐标系A xyz -.则1(2,0,0),(0,2,0),(0,0,2),(1,1,0),(0,1,2)B C A E F ,(1)所以(1,0,2)EF =-,………………………2分平面ABC 的一个法向量为1(0,0,2)AA =,………………………4分设直线EF 与平面ABC 所成角为α,则1sin cos ,|α=|EF AA <>=11||2||||EF AA EF AA ⋅=⋅. ………………………7分(2)法一 因为D 在11B C 上,设(,2,2)D x x -,(2,2,2)BD x x =-- 所以|||1B DBBD⋅<>==, 设6t x =-因为[0,2],x ∈所以[4,6]t ∈, |c o s ,8)B D E F <>==.当129t =即9[4,6]2t =∈时取等号. …………………………12分此时|cos ,|BD EF <>最大,所以BD 与EF 所成角最小. 此时32x =.…………………………14分所以11(,,2)22BD =-,所以232()22BD ==. ………………………16分 法二 设111(2,2,0)B D λB C λλ==-,11(2,2,2)BD BB B D λλ=+=-,其中01λ≤≤,(第18题图)|||c o s ,|||||1B D E F B D E F B D E F ⋅<>==…………………………………9分设2[2,3]λt +=∈ |co s ,BD EF<>==. …………………………12分当9[2,3]4t =∈时取等号,此时|cos ,|BD EF <>最大,所以BD 与EF 所成角最小.所以124λ=t -=,所以11(2,2,2)(,,2)22BD λλ=-=-,BD ==.……………………………………………16分19.解(1)由题意c a =,所以2222222314c a b b a a a -==-=,即224a b =, 所以椭圆M 的方程为22244x y b +=,………………………2分又因为椭圆M 过点(2,1)P ,所以2444b +=,即222,8b a ==.所以所求椭圆M 的标准方程为22182x y +=.………………………4分(2)①设直线OA 的方程为1y k x =,2211,82,x y y k x ⎧+=⎪⎨⎪=⎩ 化简得221(14)8k x +=,解得2121814x k =+,………………………6分 因为1214k k =-,故2114k k =-,同理可得222112222211218163288114164141416k k x k k k k ⨯====++++⨯,………………………8分所以22221112222111328(14)88141414k k x x k k k ++=+==+++.………………………10分②由题意,点B 关于x 轴的对称点为C 的坐标为22(,)x y -, 又点1122(,),(,)A x y B x y 是椭圆M 上异于顶点的任意两点,所以2222112248,48y x y x =-=-,故222212124()16()1688y y x x +=-+=-=,即22122y y +=.………………………12分设直线AC 的斜率为k ,则1212y y k x x +=-, 因为1214k k =-,即121214y y x x =-,故12124x x y y =-,所以222121212122212121212222221282884y y y y y y y y k x x x x x x y y ++++====+--+, ………………………15分 所以直线AC 的斜率为k 为常数,即12k =或12k =-. ………………………16分20.解:(1)()e x f x c '=-,若0c ≤,则()e 0x f x c '=->恒成立,此时函数()f x 的增区间为(,)-??; …………………………2分若0c >,令()0f x '=,得ln x c =,…………………………3分…………………………5分 (2)①令()(ln )(ln )(e e )2x x g x f c x f c x c cx -=+--=--. ………………………6分则()(e e )2220x x g x c c c c ≥-'=+--=,且()0g x '=仅在0x =时成立,所以()g x 在R上单调递增.……………8分所以当0x >时,()(0)0g x g >=,即(l n f c x f c x +>-. …………………9分②因为1c >,所以(ln )f c =ln 0c c -<. ………………………………………11分而1(1)e 0f --=>,所以(ln )(1)0f c f ⋅-<,所以()f x 在(1,ln )c -内存在一个零点,……………………………13分取2(2ln 1)e 2ln 2(e 2ln 2)f c c c c c c c c +=--=--(1c >), 设()e 2ln 2c c c ϕ=--(1c >),2()e 0c cϕ'=->, 所以()c ϕ在(1,)+∞上单调递增,所以()(1)e 20c ϕϕ>=->. 从而(2ln 1)()0f c c c ϕ+=⋅>,所以(l n )(2l n f c f c ⋅+<,所以()f x 在(ln ,2ln 1)c c +内存在一个零点. ……………16分(注:也可以取(2)f c 等.)19题第2问另解:(2)111y k x =, 222y k x =,由1214k k =-得12124x x y y =-①, 1122(,),(,)A x y B x y 在椭圆22182x y +=上,所以有22112(1)8x y =-、22222(1)8x y =-, 222222212121212()4(1)(1)4(1)88864x x x x x x y y +⋅∴=--=-+②,①代入②得22128x x +=.2015~2016学年苏州市高二期末调研测试理科数学(附加题)参考答案A 组(选修4-1:几何证明选讲)A1 证明:(1)因为四边形ABCD 内接于圆O , 所以∠CDE =∠ABC .…………………………2分由AB =AC 得∠ACB =∠ABC . 所以∠CDE =∠ACB .又∠ACB与∠ADB是同弧所以的圆周角;所以∠ACB=∠ADB.所以∠CDE=∠ADB. (4)分又∠ADB=∠FDE,所以∠CDE=∠FDE,即DE平分CDFÐ.…………………………5分(2)由(1)∠ADB=∠ACB=∠ABC,在△ABD和△AEB中,因为∠ADB=∠ABC,∠BAD=∠EAB,所以△ABD∽△AEB,…………………………8分所以AB AEAD AB=,即2AB AD AE=?.…………………………10分A2 证明:(1)连结BE,因为∠E,∠ACB是同弧所对的圆周角,所以∠E=∠ACB,…………………………2分又AE是圆O的直径,所以∠ABE=π2,…………………………3分在Rt△ABE和Rt△ADC中,∠E=∠ACB,∠ABE=∠AD C=π2,所以Rt△ABE∽Rt△ADC,…………………………4分所以AB AEAD AC=,即AB AC AD AE??.…………………………5分(2)连结CG,则∠CGD=∠ABC,…………………………6分在四边形BDHF中,因为∠BDH=∠BFH=π2,∠AHF是四边形BDHF的一个外角,所以∠ABC=∠AHF,又∠AHF=∠CHD,所以∠CHD=∠CGD.…………………………7分所以Rt△CDH≌Rt△CDG,…………………………9分又CD =CD , 所以DH =DG .…………………………10分B 组(选修4-2:矩阵与变换)B1解(1)因为|A |=2×3-1×4=2,…………………………2分所以A -1=31224222⎡⎤-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦=312221⎡⎤-⎢⎥⎢⎥-⎣⎦. (5)分(2)由AC =B 得(A -1A )C =A -1B ,…………………………7分故C =A -1B =312221⎡⎤-⎢⎥⎢⎥-⎣⎦1101⎡⎤⎢⎥-⎣⎦=32223⎡⎤⎢⎥⎢⎥--⎣⎦.…………………………10分B2解:(1)由题意得111a -⎡⎤⎢⎥⎣⎦11⎡⎤⎢⎥⎣⎦=03⎡⎤⎢⎥-⎣⎦,…………………………2分所以a +1=-3,所以a =-4.…………………………5分(2)由(1)知A =1141-⎡⎤⎢⎥-⎣⎦,令f (λ)=⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=(λ-1)2-4=0. (3)分解得A 的特征值为λ=-1或3.…………………………6分当λ=-1时,由20,420x y x y -+=⎧⎨-=⎩得矩阵A 的属于特征值-1的一个特征向量为12⎡⎤⎢⎥⎣⎦,…………………………8分当λ=3时,由20,420x y x y +=⎧⎨+=⎩得矩阵A 的属于特征值3的一个特征向量为12⎡⎤⎢⎥-⎣⎦.…………………………10分C 组(选修4-4:坐标系与参数方程)C1解:(1)由3()4pr q =-,得8c o s 8s i n r q q =-+,………………2分所以28cos 8sin r r q r q =-+,…………………………3分故曲线1C 的直角坐标方程为2288x y x y +=-+,即22(4)(4)32x y ++-=, 由8cos ,3sin x y q qì=ïïíï=ïî消去参数q得2C 的普通方程为221649x y +=. …………………………5分 (2)设(8c o s ,3s i n )P q q ,直线l 的普通方程为270x y --=, ………………………6分故点P 到直线l 的距离为)7d q j =+-(其中43cos ,sin 55j j ==), …………………………8分因此m a x 155d =,故点P 到直线l 的距离的最大值为5.………………………10分C2 (1)由1cos ,sin ,x y αα=+⎧⎨=⎩得22(1)1x y -+=,即2220x y x +-=, …………………1分所以1C 的极坐标方程为2cos ρθ=. …………………………3分由2cos sin ρθθ=得22cos sin ρθρθ=,所以曲线2C 的直角坐标方程为2x y =.…………………………5分(2)设射线l :y kx =(0)x ≥的倾斜角为α,则射线的极坐标方程为θα=,且tan k α=∈,联立2cos ,ρθθα=⎧⎨=⎩得12cos OA ρα==,…………………………7分联立2cos sin ,ρθθθα⎧=⎨=⎩得22sin cos OB αρα==,…………………………9分所以122sin 2cos 2tan 2cos OA OB k αρρααα⋅=⋅=⋅==∈, ………………10分D 组(选修4-5:不等式选讲)D1 解:(1)当1a=时,原不等式为211x ≥-,……………………………2分所以112x -≥或112x --≤, 故不等式解集为13{|}22x x x ≤或≥.……………………………5分(2)因为0a >,所以原不等式可转化为111x x a a≥-+-, 因为1111x x a a-+--≥,……………………………8分所以只需111a a≥-, 解得2a ≥.……………………………10分D2 证明:(1)因为11()224b a a b a b a b 骣琪+?=+++琪桫≥,………………………3分所以114a b a b++≥.……………………………4分当且仅当b aa b=时,取“=”,即a b=时取“=”.……………………………5分(2)由(1)11144a b a b++≥,11144b c b c++≥,11144c a c a++≥,……………………8分三式相加得:111111 222a b c a b b c c a+++++++≥,……………………………9分当且仅当a b c==时取“=”.……………………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年度高二年级期末数学质量检测
理科数学试卷
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.“0x >”是0>”成立的
A .充分非必要条件
B .必要非充分条件
C .非充分非必要条件
D .充要条件 2.抛物线24y x =的焦点坐标是
A .(1,0)
B .(0,1)
C .1(
,0)16 D .1(0,)16
3.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有
A .4条
B .3条
C .2条
D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是
A .若l ∥α,l ∥β,则//αβ
B .若//l α,l ⊥β,则α⊥β
C .若α⊥β,l ⊥α,则l ⊥β
D .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)≥0,则⌝p 是
A .∃x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)≤0
B .∀x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)≤0
C .∃x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)<0
D .∀x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)<0
6.设(2,1,3)a x = ,(1,2,9)b y =-
,若a 与b 为共线向量,则
A .1x =,1y =
B .12x =,1
2
y =-
C .16x =,32y =-
D .16x =-,3
2y =
7.已知椭圆2215x y m +=的离心率5
e =,则m 的值为
A .3
B .3
C D .253或3
8.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是
111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为
A
. B
C
D .
9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===

则OG =
A .122333a b c ++
B .221333a b c ++
C .222333a b c ++
D .111333
a b c ++
10.下列各数中,最小的数是
A .75
B .
)
6(210 C .
)
2(111111 D .
)
9(85
11.已知双曲线
22
214x y
b
-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于 A . B C .3 D .5
12、在如图所示的算法流程图中,输出S 的值为 A 、 11 B 、12 C 、1 D 、15
二、填空题:本大题共4小题,每小题5分,满分20分
13.若直线x+ay+2=0和2x+3y+1=0互相垂直,则a = 14.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

15.设M 是圆01222
2
=+--+y x y x 上的点,则M 到直
线34220x y +-=的最长距离是 ,最短距离是
A 1
C
8题图
16.已知点()()2,1,3,2P Q -,直线l 过点(0,1)M -且与线段..PQ 相交,则直线l 的斜率k 的取值范围是__________;
三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)直线l 经过两条直线210x y +-=和270x y --=的交点,且满足下列条件,求直线l 的方程。

(1)平行于直线50x y ++= (2)垂直于直线320x y -+=
18.(本题满分14分)如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠= ,
2===CA BC PB ,E 为PC 的中点,M 为AB 的中点,点F 在PA 上,且FA PF =2。

(1)求证:BE ⊥平面PAC ; (2)求证://CM 平面BEF ;
(3)求平面ABC 与平面BEF 所成的二面角的平面角
(锐角)的余弦值。

19.(本小题满分14分)已知命题:p |1|2m +≤成立.命题2
:210q x mx -+=方程有实
数根.若p ⌝为假命题,p q ∧为假命题,求实数m 的取值范围。

20.(本小题满分14分)已知圆221:4250C x y x y +---=,圆22
2:690C x y x y +---=。

(1)求两圆公共弦所在直线的方程;
(2)直线l 过点(4,4)-与圆1C 相交于,A B
两点,且||AB =l 的方程。

21.(本题12分)如图,已知在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面
ABCD ,1PA AD ==,2AB =,F 是PD 的中点,E 是线段AB 上的点. (1) 当E 是AB 的中点时,求证://AF 平面PEC ;
(2) 要使二面角P EC D --的大小为45
,试确定E 点的位置.。

相关文档
最新文档