2018届高考数学二轮不等式选讲专题卷(全国通用)(11)

合集下载

2018届高考数学二轮复习第六章 不等式专题(共4个专题)

2018届高考数学二轮复习第六章 不等式专题(共4个专题)

专题1 不等关系与不等式专题[基础达标](15分钟40分)一、选择题(每小题5分,共30分)1a>b成立的充分不必要条件是()A.|a|>|b|B.1a >1bC.a2>b2D.lg a>lg bD【解析】当a=-1,b=0时,满足|a|>|b|,但不满足a>b,所以|a|>|b|不是a>b的充分条件,排除A;当a=2,b=3时,满足1a >1b,但不满足a>b,所以1a>1b不是a>b的充分条件,排除B;当a=-1,b=0时,满足a2>b2,但不满足a>b,所以a2>b2不是a>b的充分条件,排除C;因为lg a>lg b⇔a>b>0,所以lg a>lg b 是a>b成立的充分不必要条件.2.如果a<b<0,那么下列不等式成立的是()A.-1a <-1bB.ab<b2C.-ab<-a2D.|a|<|b|A【解析】利用作差法逐一判断.因为1b −1a=a-bab<0,所以-1a<-1b,A正确;因为ab-b2=b(a-b)>0,所以ab>b2,B错误;因为ab-a2=a(b-a)<0,所以-ab>-a2,C错误;a<b<0,所以|a|>|b|,D错误.3.若0<m<n,则下列结论正确的是()A.2m>2nB.12m<12nC.lo g1m>lo g1nD.log2m>log2nC【解析】函数y=2x和y=log2x均是增函数,又n>m>0,∴2m<2n,log2m<log2n;函数y=lo g12x,y=12x均是减函数,又n>m>0,∴lo g12m>lo g12n,12m>12n.4.命题“∀x∈[1,2],关于x的不等式x2-a≤0恒成立”为真命题的一个必要不充分条件是() A.a≥4 B.a≤4 C.a≥3 D.a≤3C【解析】不等式x2-a≤0,∀x∈[1,2]恒成立⇔a≥(x2)max=4,x∈[1,2],所以所求的一个必要不充分条件是a≥3.5.设a>b>1,c<0,给出下列四个结论:①a c>1;②a c<b c;③log b(a-c)>log a(b-c);④b b-c>a a-c.其中所有的正确结论的序号是() A.①②B.②③C.①②③D.②③④B【解析】因为a>1,所以指数函数y=a x递增,又c<0,所以a c<1,①错误,排除A和C;而B和D中都有②和③,所以只要判断④是否正确.又b b-c<b a-c<a a-c,所以④错误,排除D.6f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,以a为横坐标,b为纵坐标,则f(-2)的取值范围是() A.[5,8] B.[7,10] C.[5,10] D.[5,12]C【解析】由题意可得1≤a-b≤2,2≤a+b≤4,又f(-2)=4a-2b=3(a-b)+(a+b),由不等式的基本性质可得f(-2)的取值范围是[5,10].二、填空题(每小题5分,共10分)7.已知x∈R,m=(x+1) x2+x2+1,n= x+12(x2+x+1),则m,n的大小关系为.m>n【解析】因为m-n=(x+1) x2+x2+1− x+1 2(x2+x+1)=x3+12x2+x+x2+x2+1- x3+x2+x+12x2+12x+12=12>0,所以m>n.8.设实数x,y满足3≤xy2≤8,4≤x 2y ≤9,则x3y4的最大值是.27【解析】根据不等式的基本性质求解.x 2y 2∈[16,81],1xy2∈18,13,则x3 y =x2y2·1xy∈[2,27],x3y的最大值是27.[高考冲关](15分钟25分)1.(5分p:若a>b,则a2>b2,q:“x≤1”是“x2+2x-3≤0”的必要不充分条件,则下列命题是真命题的是() A.p∧q B.(p)∧qC.(p)∧(q)D.p∧(q)B【解析】取a=-1,b=-2,可知命题p是假命题.x2+2x-3≤0⇔-3≤x≤1,由x≤1不能得知-3≤x≤1;反过来,由-3≤x≤1可得x≤1,因此“x≤1”是“x2+2x-3≤0”的必要不充分条件,命题q是真命题,故(p)∧q是真命题.2.(5分)若a>b>0,则下列不等式中总成立的是()A.a+1b >b+1aB.a+1a>b+1bC.ba >b+1a+1D.2a+ba+2b>abA【解析】a+1b -b-1a=(a-b)+1b-1a=(a-b)+a-bab=(a-b)1+1ab,其中a-b>0,ab>0,故a+1b -b-1a>0,故A正确;令a=2,b=12,则a+1a=b+1b,故B错误;又b a −b+1a+1=b-aa(a+1)<0,所以ba<b+1a+1,故C错误;2a+ba+2b−ab=b2-a2b(a+2b)<0,故D错误.3.(5分y=a x(a>0,a≠1)与y=x b的图象如图,则下列不等式一定成立的是()A.b a>0B.a+b>0C.a b>1D.log a2>bD【解析】由函数图象可知a>1,b<0,所以a b<1,排除C;A,B项中的不等式不一定成立;log a2>0>b,故D项中的不等式一定成立.4.(5分)若a=1816,b=1618,则a,b的大小关系为.a<b【解析】因为ab =181616=9816216=8216,且0<82<1,所以8216<1,又a>0,b>0,则a<b.5.(5分)设a,b为正实数,现有下列命题:①若a2-b2=1,则a-b<1;②若1b −1a=1,则a-b<1;③若|a−|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.其中的真命题有.(写出所有真命题的编号)①④【解析】由a2-b2=1得(a-b)(a+b)=1,又由已知得a+b>a-b,故a-b<1,所以①是真命题;当a=2,b=23时,有1b−1a=1,此时a-b>1,所以②是假命题;当a=9,b=4时,|a−|=1,|a-b|=5>1,所以③是假命题;对于④,假设|a-b|≥1,不妨设a>b,则a≥b+1,因为|a3-b3|=|a-b|·|a2+ab+b2|,则a2+ab+b2>a2+b2≥(b+1)2+b2>1,则|a3-b3|=|a-b||a2+ab+b2|>1,与已知矛盾,则|a-b|<1,所以④是真命题.专题2 二元一次不等式(组)与简单的线性规划问题专题[基础达标](25分钟50分)一、选择题(每小题5分,共25分)1x,y满足约束条件x-y≥0,x+y-4≤0,y≥1,则z=-2x+y的最大值是() A.-1 B.-2 C.-5 D.1A【解析】约束条件对应的区域是一个三角形,当z=-2x+y经过点(1,1)时取得最大值-1.2x,y满足约束条件x-y+2≥0,y+2≥0,x+y+2≤0,则y+1x-1的取值范围为()A.-13,15B.-13,1C.-∞,-13∪15,+∞D.-∞,-13∪[1,+∞)B【解析】约束条件对应的平面区域是以点(-2,0),(-4,-2)和(0,-2)为顶点的三角形,当目标函数y+1x-1经过点(-2,0)时取得最小值-13,经过点(0,-2)时取得最大值1,则y+1x-1的取值范围是-13,1.3x,y满足不等式组x+y-6≤0,2x-y-1≤0,3x-y-2≥0,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围是() A.[-2,1] B.[-1,2] C.[-3,-2] D.[-3,1]A【解析】不等式组对应的平面区域是以点(1,1),(2,4)和73,113为顶点的三角形,且目标函数y=-ax+z经过点(2,4)时z取得最大值,经过点(1,1)时z 取得最小值,则-1≤-a≤2,即-2≤a≤1.4.若x,y满足kx+y≤4,2y-x≤4,x≥0,y≥0,且z=5y-x的最小值为-8,则k的值为()A.-12B.12C.-2D.2B【解析】直线kx+y=4恒过定点(0,4),画图可知k>0,且不等式组对应的平面区域是以点(0,0),(0,2),42k+1,4k+42k+1和4k,0为顶点的四边形(包含边界),z=5y-x在点4k ,0处取得最小值-8,则-4k=-8,解得k=12.5.在平面直角坐标系中,若点P(x,y)满足x-4y+4≤0,2x+y-10≤0,5x-2y+2≥0,则当xy取得最大值时,点P的坐标是()A.(4,2)B.(2,2)C.(2,6)D.52,5D【解析】不等式组对应的平面区域是以点(0,1),(2,6)和(4,2)为顶点的三角形(包含边界),当xy取得最大值时,点(x,y)必在线段2x+y-10=0,x∈[2,4]上,所以xy=x(10-2x)=-2x2+10x,x∈[2,4],当x=52时,xy取得最大值,此时点P52,5.二、填空题(每小题5分,共25分)6y≤x,x+y≤8,y≥a表示的平面区域的面积为25,点P(x,y)在所给平面区域内,则z=2x+y的最大值为.17【解析】不等式组对应的平面区域是以点(a,a),(8-a,a),(4,4)(a<4)为顶点的三角形,则该三角形的面积为12(8-2a)·(4-a)=25,解得a=-1(舍去9).目标函数经过点(9,-1)时,z取得最大值17.7.若实数x,y满足x≤2,y≤2,x+y≥2,则目标函数z=yx+1的最大值是.2【解析】不等式组对应的平面区域是以点(2,0),(0,2)和(2,2)为顶点的三角形(包含边界),当目标函数z=yx+1经过点(0,2)时取得最大值2.8x,y满足约束条件x≤4-2y,x≥0,y≥0,那么x2+y2-10x-6y的最小值为.-1215【解析】约束条件对应的平面区域是以点(0,0),(0,2)和(4,0)为顶点的三角形,目标函数可变形为(x-5)2+(y-3)2-34,其中(x-5)2+(y-3)2的几何意义是可行域上的点(x,y)与点(5,3)的距离的平方,最小值为点(5,3)到直线x+2y-4=0的距离的平方,即为52=495,则x2+y2-10x-6y=(x-5)2+(y-3)2-34的最小值为49 5-34=-1215.9.在平面直角坐标系xOy中,记不等式组y-3≥0,2x+y-7≤0,x-2y+6≥0表示的平面区域为D.若对数函数y=log a x(a>1)的图象与D有公共点,则a的取值范围是.(1, 23] 【解析】作出不等式组对应的平面区域,如图阴影部分所示(包含边界),若a>1,当对数函数图象经过点A 时,满足条件,此时y -3=0,2x +y -7=0,解得 x =2,y =3,即A (2,3),此时log a 2=3,解得a= 23,∴当1<a< 23时,满足条件.∴实数a 的取值范围是(1, 23].10x ,y 满足 x ≥2,x +y ≤4,2x -y -m ≤0,若目标函数z=3x+y的最大值为10,则z 的最小值为 .-1 【解析】不等式组所表示的平面区域是以点(2,2),(2,4-m ), m +43,8-m 3 (m>2)为顶点围成的三角形(包括边界),当目标函数y=-3x+z 经过点 m +43,8-m3时z 取得最大值,则m+4+8-m3=10,解得m=5,则z min =-1.[高考冲关] (15分钟 30分)1.(5分x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则实数a 的取值范围是( )A .a ≥43 B .0<a ≤1 C .1≤a ≤43D .0<a ≤1 或a ≥43D【解析】不等式中前面3个不等式表示的平面区域是以点(0,0),(1,0)和23,23为顶点的三角形,由图可得当0<a≤1或a≥43时,上述三角形位于直线x+y=a 下方的区域仍然是三角形.2.(5分)已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个根为x1,x2,且0<x1<1,x2>1,则ba的取值范围是()A.-1,-12B.-1,-12C.-2,-12D.-2,-12D【解析】令f(x)=x2+(1+a)x+a+b+1,则f(0)=a+b+1>0,f(1)=2a+b+3<0,则点P(a,b)对应的平面区域如图阴影部分所示(不含边界),当(a,b)取点(-2,1)时,ba取得最大值-12,当过原点的直线与2a+b+3=0平行时,不经过可行域上的点,所以-2<ba <-12.3.(5分)若变量x,y满足x+y≤4,2x-y+4≥0,x-2y-4≤0,则xy的取值范围是()A.[-2,16]B.(-∞,-2]∪[16,+∞)C.[16,+∞)D.[-2,0]∪[16,+∞)A【解析】作出不等式组对应的平面区域如图中阴影部分所示(包含边界),当z>0时,y=zx与区域有公共点,且与边界x+y=4相切时,z=4,经过点(-4,-4)时,z=16,此时0<z≤16;当z=0时与区域有公共点;当z<0时,与边界2x-y+4=0,x-2y-4=0相切时,z=-2,此时-2≤z<0.综上可得z=xy的取值范围是[-2,16].4.(5分)已知变量x,y满足约束条件x+y≤1,x-y≤1,x≥a,若yx-2≤12恒成立,则实数a的取值范围为.[0,1]【解析】要使不等式组对应的平面区域存在,则a≤1,此时不等式组对应的区域是以点(a,a-1),(a,1-a),(1,0)为顶点的三角形(包含边界),则1-a a-2≤yx-2≤a-1a-2,由yx-2≤12,得a-1a-2≤12,则a≥0,故实数a的取值范围是[0,1].5.(5分m>1,已知在约束条件y≥x,y≤mx,x+y≤1下,目标函数z=x2+y2的最大值为23,则实数m的值为.2+3【解析】m>1,由题意可知,约束条件对应的平面区域是以点(0,0),1 2,12和11+m,m1+m为顶点的三角形(包含边界),且当目标函数z=x2+y2经过点11+m ,m1+m时取得最大值23,所以11+m2+m1+m2=23,化简得m2-4m+1=0,m>1,解得m=2+3.6.(5分P(x,y)的坐标满足3x-y<0,x-3y+2<0,y≥0,3x22的取值范围为.-3,3【解析】作出不等式组所表示的平面区域,如图,其中B(-2,0),C(1,3),A32,12,设P(x,y)为区域内一个动点,向量OA,OP的夹角为θπ6=∠AOC<θ≤∠AOB=5π6,则cos θ=OA·OP|OA||OP|=32x+12yx2+y2=12×3xx2+y2,又-32≤cosθ<32,则3x22=2cos θ∈[-3,3).专题3 基本不等式及其应用专题[基础达标](20分钟45分)一、选择题(每小题5分,共20分)1.已知a,b∈R*且a+b=1,则ab的最大值等于()A.1B.14C.12D.22B【解析】由于a,b∈R*,则1=a+b≥2ab,得ab≤14,当且仅当a=b=12时等号成立.2.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则() A.a<v<ab B.v=abC.<v<a+b2D.v=a+b2A【解析】设甲、乙两地相距S,则平均速度v=2S S+S =2aba+b,又∵a<b,∴v=2aba+b >2abb+b=a.∵a+b>2ab,∴2aba+b−2ab<0,即v<ab,∴a<v<ab.3mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则1m +3n的最小值为()A. 4B. 12C. 16D. 6D【解析】直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则直线过圆心,即3m+n=2,则1 m +3n=1m+3n3m2+n2=3+n2m+9m2n≥3+2n2m·9m2n=6,当且仅当n2m=9m2n,m=13,n=1时取等号,则1m +3n的最小值为6.4x,y满足x+4y=4,则x+28y+4xy的最小值为()A.852B.24C.20D.18D【解析】由题意可得x=4-4y>0,y>0,则0<y<1.令2+6y=t,t∈(2,8),则y=t-26,所以x+28y+4xy=8+24y(4-4y)y=2+6y(1-y)y=t8-t6×t-26=36t10t-t-16=3610- t+16t≥3610-8=18,当且仅当t=4时取等号,则x+28y+4xy的最小值为18.二、填空题(每小题5分,共25分)5.当x>1时,函数y=x+1x-1的最小值是.3【解析】因为x>1,y=x+1x-1=(x-1)+1x-1+1≥2(x-1)·1x-1+1=3,当且仅当x-1=1x-1,且x>1,即x=2时等号成立,故函数y的最小值为3.6.实数x,y满足x+2y=2,则3x+9y的最小值是.6【解析】利用基本不等式可得3x+9y=3x+32y≥23x·32y=23x+2y,∵x+2y=2,∴3x+9y≥2x+2y=22=6,当且仅当3x=32y,即x=1,y=12时,取等号,即3x+9y 的最小值为6.7P,Q分别是曲线y=x+4x与直线4x+y=0上的动点,则线段PQ长的最小值为.717 17【解析】由y=x+4x可得y=1+4x,若PQ长取最小值,则点P在与直线4x+y=0平行的切线上,且PQ垂直于直线4x+y=0,由y'=-4x=-4,解得x=1或-1.当x=1时,点P(1,5),则点P到直线4x+y=0的距离为17=91717,即此时PQ=91717;当x=-1时,P(-1,-3),则点P到直线4x+y=0的距离为17=71717,即此时PQ=71717<91717,则线段PQ长的最小值为71717.8(a,b)在直线2x+3y-1=0上,则代数式2a +3b的最小值为.25【解析】由题意可得2a+3b=1,a>0,b>0,则2a +3b=2a+3b(2a+3b)=13+6ba+6a b ≥13+26ba·6ab=25,当且仅当a=b=15时取等号,所以代数式2a+3b的最小值为25.9.若不等式1x +41-x≥a对任意的x∈(0,1)恒成立,则a的最大值是.9【解析】由x∈(0,1),得1-x>0,1x +41-x=x+1-xx+4(x+1-x)1-x=5+1-xx+4x 1-x ≥5+21-xx×4x1-x=5+4=9,当且仅当1-xx=4x1-x,即x=13时,取等号,所以1x+41-x的最小值为9,所以a≤9,所以a的最大值为9.[高考冲关](15分钟30分)1.(5分f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的“上确界”,若a,b∈R*且a+b=1,则-12a −2b的“上确界”为()A.-92B.92C.14D.-4A【解析】因为12a +2b=12a+2b(a+b)=52+b2a+2ab≥52+2b2a·2ab=92,当且仅当b=2a=23时取等号,所以-12a−2b≤-92,即-12a−2b的“上确界”为-92.2.(5分S n为正项等比数列{a n}的前n项和,若S12-S6 S6-7·S6-S3S3-8=0,且正整数m,n满足a1a m a2n=2a53,则1m+8n的最小值是()A.75B.53C.95D.157B【解析】设等比数列{a n}的公比为q(q>0),则S12-S6S6=q6,S6-S3S3=q3,q6-7q3-8=0,解得q=2(舍负),则a1a m a2n=a13×2m+ 2n-2=2a53=a13×213,化简得m+2n=15,则1 m +8n=1151m+8n(m+2n)=11517+2nm+8mn≥11517+22nm·8mn=53,当且仅当m=3,n=6时取等号,所以1m +8n的最小值是53.3.(5分)若a>0,b>0,且1a +1b=ab,则a3+b3的最小值为.42【解析】因为a>0,b>0,所以1a +1b=ab≥ab,则ab≥2,所以a3+b3=(a+b)(a2-ab+b2)≥2ab·(2ab-ab)=2(ab)3≥2(2)3=42,当且仅当a=b 时取等号,即a3+b3的最小值为42.4.(5分)已知△ABC的面积S和三边a,b,c满足:S=a2-(b-c)2,b+c=6,则△ABC 面积S的最大值为.36 17【解析】由S=a2-(b-c)2得b2+c2-a2+S=2bc,则2bc cos A+12bc sin A=2bc,所以cos A=1-14sin A,代入cos2A+sin2A=1中解得sin A=817.又b+c=6≥2bc,则bc≤9,当且仅当b=c=3时取等号,所以△ABC面积S的最大值为12bc sin A≤12×9×817=3617.5.(5分x,y均为正数,且方程(x2+xy+y2)·a=x2-xy+y2成立,则a的取值范围是.1 3,1【解析】由(x2+xy+y2)·a=x2-xy+y2可得a=x2-xy+y2x+xy+y=1-2xyx+xy+y=1-2x+1+y,又x,y均为正数,所以xy +yx+1≥2+1=3,0<2xy+yx+1≤23,13≤1-2xy+yx+1<1,则a的取值范围是13,1.6.(5分2ax+by-1=0(a>-1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则1a+1+2b的最小值为.3+222【解析】曲线y=cos πx+1(0<x<1)的对称中心12,1在直线2ax+by-1=0上,则a+b=1,1a+1+2b=121a+1+2b[(a+1)+b]=123+ba+1+2(a+1)b≥1 23+2ba+1·2(a+1)b=3+222,当且仅当ba+1=2(a+1)b时取等号,则1a+1+2b的最小值为3+222.专题4 一元二次不等式及其解法专题[基础达标](25分钟50分)一、选择题(每小题5分,共20分)1.若不等式x2+px+4≤0恰好有一个解,则实数p的值为()A.4B.-4C.±4D.以上都不对C【解析】由已知可得方程x2+px+4=0有两个相等的实数根,所以Δ=p2-16=0,解得p=±4.2.若不等式2kx2+kx-38<0对一切实数x都成立,则k的取值范围为() A.(-3,0) B.[-3,0) C.[-3,0] D.(-3,0]D【解析】当k=0时,显然成立;当k≠0时,即一元二次不等式2kx2+kx-38<0对一切实数x都成立,则k<0,k2-4×2k×-38<0,解得-3<k<0.综上,满足不等式2kx2+kx-38<0对一切实数x都成立的k的取值范围是(-3,0].3x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为()A.-235,+∞B.-235,1C.(1+∞)D.(-∞,-1)A【解析】令f(x)=x2+ax-2,则f(0)=-2.①若顶点横坐标x=-a2≤0,要使关于x的不等式x2+ax-2>0在区间[1,5]上有解,则应满足f(5)>0,解得a>-235,即此时a≥0;②若顶点横坐标x=-a2>0,要使关于x的不等式x2+ax-2>0在区间[1,5]上有解,也应满足f(5)>0,解得a>-235,即此时-235<a<0.综上可知,实数a的取值范围是-235,+∞.4p:∃x∈R,(m+1)(x2+1)≤0,命题q:∀x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m应满足()A.m≥2B.m≤-2或m>-1C.m≤-2或m≥2D.-1<m≤2B【解析】若命题p:∃x∈R,(m+1)(x2+1)≤0是真命题,则m+1≤0,m≤-1;若命题q:∀x∈R,x2+mx+1>0恒成立是真命题,则Δ=m2-4<0,即-2<m<2,所以若p∧q为真命题,则-2<m≤-1,所以p∧q为假命题时实数m应满足m≤-2或m>-1.二、填空题(每小题5分,共20分)5x的不等式x2-ax-4>0在x∈[-2,1]时无解,则实数a 的取值范围是.[-3,0]【解析】不等式x2-ax-4>0,x∈[-2,1]无解,即x2-ax-4≤0,x∈[-2,1]恒成立,则4+2a-4≤0,1-a-4≤0,解得-3≤a≤0.6.已知不等式组x2-4x+3<0,x2-6x+8<0的解集是不等式2x2-9x+a<0的解集的子集,则实数a的取值范围是.(-∞,9]【解析】不等式组x2-4x+3<0,x2-6x+8<0的解集是{x|2<x<3},设f(x)=2x2-9x+a,则由题意得f(2)≤0,f(3)≤0,解得a≤9.7.若关于x的不等式a≤34x2-3x+4≤b的解集恰好是[a,b],则a+b=.4【解析】二次函数y=34x2-3x+4的顶点坐标为(2,1),开口向上.若a>1,则由图象可知原不等式的解集是两个区间的并集,不合题意,故a≤1,此时a≤34x2-3x+4的解集为R,所以原不等式的解集即为34x2-3x+4≤b的解集,所以a,b为方程34x2-3x+4=b的两个不同根,则a+b=4.8.若对任意实数p∈[-1,1],不等式px2+(p-3)x-3>0成立,则实数x的取值范围为.(-3,-1)【解析】不等式可变形为(x2+x)p-3x-3>0,令f(p)=(x2+x)p-3x-3,p∈[-1,1].原不等式成立等价于f(p)>0,p∈[-1,1],即f(-1)>0,f(1)>0,即-x2-x-3x-3>0,x2+x-3x-3>0,解得-3<x<-1.三、解答题(共10分)9.(10分)若不等式ax2+5x-2>0的解集是 x|12<x<2.(1)求实数a的值;(2)求不等式ax2-5x+a2-1>0的解集.【解析】(1)由题意知a<0,且方程ax2+5x-2=0的两个根为12,2,则-5a=12+2,解得a=-2.(2)由(1)知a=-2,则ax2-5x+a2-1>0即为-2x2-5x+3>0,即为2x2+5x-3<0,解得-3<x<12,即不等式ax2-5x+a2-1>0的解集为-3,12.[高考冲关](15分钟30分)1.(5分f(x)=x2+2x(x<0),-x2(x≥0),若f(f(a))≤3,则实数a的取值范围是()A.(-∞,-3]B.[-3,+∞)C.[-3,3]D.(-∞,3]D【解析】令f(a)=t,则f(t)≤3⇔t<0,t2+2t≤3或t≥0,-t2≤3,解得t≥-3,则f(a)≥-3⇔a<0,a2+2a≥-3或a≥0,-a2≥-3,解得a<0或0≤a≤3,则实数a的取值范围是(-∞,3].2.(5分a>0,b>0,函数f(x)=ax2+b满足:对任意实数x,y,有f(xy)+f(x+y)≥f(x)f(y),则实数a的取值范围是() A. (0,1] B. (0,1) C. (0,2) D. (0,2]B【解析】令y=0,得f(0)+f(x)≥f(x)f(0),即a(1-b)x2+2b-b2≥0对任意实数x恒成立,所以有b=1或1-b>0,2b-b2≥0,所以b的范围是(0,1].再令y=-x,得f(-x2)+f(0)≥f(x)f(-x),即为a(a-1)x4+2abx2+b2-2b≤0对任意实数x恒成立,当a=1时,x2≤2-b2不恒成立,所以a(a-1)<0,解得0<a<1.3.(5分x的不等式a cos 2x+cos x≥-1恒成立,则实数a 的取值范围是.0,2+24【解析】原不等式即为a(2cos2x-1)+cos x≥-1,令cos x=t,t∈[-1,1],则2at2+t+1-a≥0,t∈[-1,1]恒成立.令f(t)=2at2+t+1-a,t∈[-1,1],由f(-1)=2a-1+1-a=a≥0,当a=0时,f(t)=t+1≥0,t∈[-1,1]恒成立,则a=0适合.当a>0时,对称轴t=-14a <0,当t=-14a≤-1,即0<a≤14时,f(t)min=f(-1)=a≥0,所以0<a≤14;当-1<-14a<0,即a>14时,f(t)min=f-14a=-18a+1-a≥0,解得2-24≤a≤2+24,所以14<a≤2+24.综上可得实数a的取值范围是0,2+24.4.(5分f(x)=ax2+x-b(a,b均为正数),不等式f(x)>0的解集记为P,集合Q={x|-2-t<x<-2+t}.若对于任意正数t,P∩Q≠⌀,则1a −1b的最大值是.12【解析】因为集合Q实质上是包含-2的一个区间,在该区间上存在实数满足f(x)>0,则f(-2)=4a-2-b≥0,0<b≤4a-2 a>12.所以1a−1b≤1a−14a-2a>12,令g(a)=1a −14a-2a>12,则g'(a)=-4(a-1)(3a-1)a2(4a-2)2,由g'(a)=0得a=1舍去13,且a∈1 2,1时,g'(a)>0,g(a)递增,a∈(1,+∞)时,g'(a)<0,g(a)递减,则g(a)≤g(1)=12,故1a −1b≤12,即1a−1b的最大值是12.5.(10分)若不等式mx2-2x+1-m<0对满足-2≤m≤2的所有m都成立,求实数x的取值范围.【解析】已知不等式可以化为(x2-1)m+1-2x<0.设f(m)=(x2-1)m+1-2x,这是一个关于m的一次函数(或常数函数),要使f(m)<0在-2≤m≤2时恒成立,其等价条件是f(2)=2(x2-1)+1-2x<0,f(-2)=-2(x2-1)+1-2x<0,整理得2x2-2x-1<0,2x2+2x-3>0,解得-1+72<x<1+32,所以实数x的取值范围是-1+72,1+32.。

2018年高考数学(理)二轮复习讲练测专题1.4数列与不等式(测)含解析

2018年高考数学(理)二轮复习讲练测专题1.4数列与不等式(测)含解析

2018年高考数学(理)二轮复习讲练测专题四 数列与不等式总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)一、单选题1.【2018届四川省成都外国语学校高三11月月考】已知全集为R ,集合2{|0.51},{|680}xA xB x x x =≤=-+≤,则C A B ⋂=RA. (],0∞-B. []2,4C. [)()0,24,∞⋃+D. ][()0,24,∞⋃+ 【答案】C2.在等比数列{}n a 中, 151,4a a =-=-,则3a = A. 2± B. 2± C. 2 D. 2- 【答案】D【解析】由等比数列的性质可得23154a a a ==,因为151,4a a =-=-,所以3 2.a =-选D.3.【2018届天津市滨海新区大港油田第一中学高三上期中】若a 、b 、c∈R,则下列命题中正确的是( ) A. 若ac>bc ,则a>b B. 若a 2>b 2,则a>b C. 若11a b<,则a>b D.>a>b【答案】D【解析】若ac>bc ,则c>0时 a>b ;若2a >2b ,则|a|>|b|;若11a b<,则a>b 或a<0<b;>a>b ,所以选D.4.【2018届山东省枣庄市第三中学高三一调】已知均为正实数,且,则的最小值为( )A.B.C.D.【答案】C5.【2018届北京丰台二中高三上期中】若n S 是数列{}2n 的前n 项和,则83S S -=( ). A. 504 B. 500 C. 498 D. 496 【答案】D 【解析】83S S -45678a a a a a =++++458222=+++163264128256=++++ 496=.故选D .6.关于x y 、的不等式组360,{20, 40,x y x y x y +-≥--≤+-≤则2z x y =+的最大值是( )A. 3B. 5C. 7D. 9 【答案】C【解析】作可行域,如图,则直线2z x y =+过点A (1,3)取最大值7,选C.7.【2018届广西壮族自治区贺州市桂梧高中高三上第五次联考】在各项均为正数的等比数列{}n a 中,若5114a a =,6128a a =,则89a a =( )A. 12B. 32C. 2D. 42【答案】D8.已知等比数列{}n a 满足: 23428a a a ++=,且32a +是24,a a 的等差中项.则q =( ) A. 2-或12 B. 12- C. 2或12D. 2- 【答案】C 【解析】由题意得()23432428{22a a a a a a ++=+=+,即()231112311128{ 22a q a q a q a q a q a q ++=+=+,消去1a 整理得22520q q -+=,解得2q =或12q =.选C . 9.在等比数列{}n a 中, 166n a a +=, 2132256n n a a a a --+=,且前n 项和126n S =,则n =( )A. 2B. 4C. 6D. 8 【答案】C【解析】∵2132112256n n n a a a a a a --++==, ∴1128n a a =, 由11128{66n n a a a a =+=,解得12{64n a a ==或164{2n a a ==①当12{64n a a ==时, ()111264126111nnn a q a a q q S q qq---====---,解得2q =,∴6n =.②当164{2n a a ==时, ()111642126111nnn a q a a q q S qq q ---====---,解得12q =,∴6n =.综上6n =.选C .10.已知等差数列{}n a 的前n 项和为n S ,且51050,200S S ==,则1011a a +的值为( ) A. 20 B. 40 C. 60 D. 80 【答案】D11.【2018届安徽省六安市第一中学高三上第五次月考】己知121,,,4a a 成等差数列, 1231,,,,4b b b 成等比数列,122a ab +则的值是( ) A.52或52- B. 52- C. 52 D. 12【答案】C【解析】由题意得21225,4a a b +==,又2b 与第一项的符号相同,故22b =. 所以12252a ab +=.选C . 12.【2018届黑龙江省牡丹江市第一高级中学高三10月月考】已知数列{}n a 为等差数列,若11101a a <-,且其前n 项和n S 有最大值,则使得0n S >的最大值n 为 A. 11 B. 19 C. 20 D. 21 【答案】B二、填空题(4*5=20分)13.【2018届上海市十二校高三联考】 若等差数列{}n a 的前5项和为25,则3a =________ 【答案】5【解析】由等差数列前n 项和公式结合等差数列的性质可得:153533255525,522a a aS a a +=⨯=⨯==∴=. 14.【2018届安徽省淮南市第二中学、宿城第一中学高三第四次考试】若241ab+=,则2a b +的最大值为__________. 【答案】-2【解析】24ab+= 222212212222224aba ba ba b+++=≥⋅=≤ 1422log 2a b ∴+≤=- 当11,2a b =-=- 时取等号 故答案为-2.15.【2018届江苏省兴化市三校高三12月联考】已知实数,x y 满足220{40 10x y x y y --≥+-≤-≥,则yx的最小值为__________.【答案】13【解析】联立220{40x y x y --=+-= 得交点A ()2,2 ,联立220{ 10x y y --=-=得交点B 3,12⎛⎫⎪⎝⎭,联立40{ 10x y y +-=-= 得交点C ()3,1 即可行域是由ABC 三点围成的三角形及其内部,令z yx= 表示点(),x y 与()0,0 连线的斜率,故最小值为13OC k = 故答案为1316.在圆x 2+y 2=5x 内,过点53,22⎛⎫⎪⎝⎭有n 条弦的长度成等差数列,最短弦长为数列的首项a 1,最长弦长为a n ,若公差11,63d ⎛⎤∈⎥⎝⎦,那么n 的取值集合为________. 【答案】{}4,5,6 【解析】由已知52x ⎛⎫-⎪⎝⎭2+y 2=254, 圆心为5,02⎛⎫⎪⎝⎭,半径为52,得a 14,a n =2×52=5, 由a n =a 1+(n -1)d ⇔n =1d+1, 又16<d≤13, 所以4≤n<7,则n 的取值集合为{4,5,6}.三、解答题(共6道小题,共70分)17.【2018届全国名校高三第三次联考】 某市垃圾处理站每月的垃圾处理成本y (元)与月垃圾处理量x (吨)之间的函数关系可近似地表示为21200800002y x x =-+,求该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?最低平均处理成本是多少?【答案】该站垃圾处理量为400吨时,才能使每吨垃圾的平均处理成本最低,最低成本为200元18.已知正项等比数列{}n b (*n N ∈)中,公比1q >,且3540b b +=, 35·256b b =, 2log 2n n a b =+. (1)求证:数列{}n a 是等差数列. (2)若11·n n n c a a -=,求数列{}n c 的前n 项和n S .【答案】(1)见解析;(2)39nn +. 【解析】试题分析:(1)由3540b b +=, 35·256b b =可知3b , 5b 是方程2402560x x -+=的两根,再根据公比1q >,求出3b ,5b ,即可求出数列{}n b 的通项公式,结合2log 2n n a b =+,以及等差数列的定义即可证明数列{}n a 是等差数列;(2)由(1)可求出数列{}n c 的通项公式,结合数列特点,根据裂项法求和,即可求出数列{}n c 的前n 项和n S .试题解析:(1)由353540{·256b b b b +==,,知3b ,5b 是方程2402560x x -+=的两根,注意到1n n b b +>,得38b =, 532b =,因为2534b q b ==,所以2q =或2q =-(不可题意,舍去). 所以312824b b q ===,所以212n n n b b q -==, 22log 2log 222n n n a b n =+=+=+. 因为()][11221n n a a n n -⎡⎤-=++-+=⎣⎦, 所以数列{}n a 是首项为3,公差为1的等差数列.(2)因为()3112n a n n =+-⨯=+,所以()()123n c n n =++,所以()()111344523n S n n =+++⨯⨯++111111344523n n =-+-++-++ 39nn =+. 19.设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 【答案】(1) 13,1{3,1n n n a x -==>;(2) 13631243n nn T +=-⨯. 【解析】试题分析:(1)由递推关系可得a 1=3,利用通项公式与前n 项和的关系可知:当n>1时,2a n =2S n -2S n -1=3n -3n -1=2×3n -1,则a n =3n -1,综上可得: 13,1{3,1n n n a x -==>;(2)结合(1)中求得的通项公式错位相减可得{b n }的前n 项和13631243n nn T +=-⨯. 试题解析:(1)因为2S n =3n +3, 所以2a 1=3+3,故a 1=3, 当n>1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1, 即a n =3n -1,显然a 1不满足a n =3n -1,所以a n =(2)因为a n b n =log 3a n ,所以b 1=, 当n>1时,b n =31-n log 33n -1=(n -1)·31-n , 所以T 1=b 1=.当n>1时,T n =b 1+b 2+b 3+…+b n =+[1×3-1+2×3-2+3×3-3+…+(n -1)×31-n ], 所以3T n =1+[1×30+2×3-1+3×3-2+…+(n -1)×32-n ],两式相减,得2T n =+(30+3-1+3-2+3-3+…+32-n )-(n -1)×31-n =+-(n -1)×31-n =-, 所以T n =-.经检验,n =1时也适合. 综上可得T n =-.20.数列{}n a 的前n 项和记为n S , 11a =,点()1,n n S a +在直线31y x =+上, *N n ∈. (1)求数列{}n a 的通项公式;(2)设41log n n b a +=, n n n c a b =+, n T 是数列{}n c 的前n 项和,求n T .【答案】(1)14n n a -=;(2)2111143223n n n ⋅++-. 【解析】试题分析:(1)由()1,n n S a +在直线31y x =+上可得, 131n n a S +=+,所以()1312n n a S n -=+≥,两式相减得{}n a 为等比数列,从而得出{}n a 的通项公式;(2)求出4log 4nn b n ==,利用分组求和法以及等差数列的求和公式与等比数列的求和公式可得出n T .试题解析:(1)由题知131n n a S +=+,所以()1312n n a S n -=+≥,两式相减得()132n n n a a a n +-=≥,又21314a a =+=,所以{}n a 是以1为首项,4为公比的等比数列.14n n a -=(2)4log 4n n b n ==, 14n n c n -=+,所以()1141142n n n n T +-=⋅+=- 2111143223n n n ⋅++-. 21.【2018届上海市十二校高三联考】设{}n a 是首项为1a ,公比为q 的等比数列, n S 为数列{}n a 的前n 项和. (1)已知22a =,且3a 是13,S S 的等差中项,求数列{}n a 的通项公式;(2)当11,2a q ==时,令()4log 1n n b S =+,求证:数列{}n b 是等差数列.【答案】(1)12n n a -=或()21nn a =⋅-(2)见解析.试题解析: (1)由题意23132{2a a S S ==+,122111112{2a q a q a a a q a q =⇒=+++ 12{ 1q a =⇒=或11{ 2q a =-=-所以12n n a -=或()21nn a =⋅-(2)由题意得21nn S =-()412n n nb log S ⇒=+=2n ≥时,因为111222n n n n b b ---=-=所以数列{}n b 是公差为12的等差数列.22.设数列{}n a 的前n 项和为n S ,且对任意正整数n ,满足2n n S a =-. (1)求数列{}n a 的通项公式;(2)若2n n b na =,数列{}n b 的前n 项和为n T ,是否存在正整数n ,使53n T <? 若存在,求出符合条件的所有n 的值构成的集合A ;若不存在,请说明理由.【答案】(1) 112n n a -⎛⎫= ⎪⎝⎭;(2) {}1,2A =.【解析】试题分析:(1)由和项与通项关系可得项之间递推关系,再根据等比数列定义可得数列{}n a 的通项公式;(2)由错位相减法可得n T ,再化简不等式得1434n n -<+,根据指数函数与一次函数图像可得n 的值(2)由(1)知, 214n n n n b na -==, 记数列{}n b 的前n 项和为n T ,则22123114444n n n n n T ---=+++++,① 3231442444n n n n n T ---=+++++,② ②-①得321111354444n n n n n T ---=++++-, 11634334n n -+=-⨯, 所以,数列{}n b 的前n 项和为11634994n n n T -+=-⨯. 要使53n T <,即1163459943n n -+-<⨯, 所以11134,434994n n n n --+<<+⨯. 当1n =时, 17<,当2n =时, 410<,当3n =时, 1613>,结合函数14x y -=与34y x =+的图象可知,当3n >时都有1434n n ->+, 所以 {}1,2A =.。

2018年全国2卷省份高考模拟文科数学分类---选考不等式

2018年全国2卷省份高考模拟文科数学分类---选考不等式

2018年全国2卷省份高考模拟文科数学分类---选考不等式 1.(2018陕西汉中模拟)已知,不等式的解集是.(Ⅰ)求a 的值; (II )若存在实数解,求实数的取值范围.解:(Ⅰ)由, 得,即.当时,. ………2分因为不等式的解集是 所以解得 当时,. …………4分因为不等式的解集是 所以无解. 所以………5分(II )因为所以要使存在实数解,只需. ……8分解得或.所以实数的取值范围是. ……10分2.(2018呼和浩特模拟)已知函数()1f x x =-.(Ⅰ)解不等式()()246f x f x ++≥;(Ⅱ)若,a b R ∈,1a <,1b <,证明:()()1f ab f a b >-+. (Ⅰ)不等式()()246f x f x ++≥即为2136x x -++≥ 当3x ≤-时,1236x x ---≥解得3x ≤-当132x -<<,1236x x -++≥解得32x -<≤- 当12x ≥时,2136x x -++≥解得43x ≥综上,(]4,2,3x ⎡⎫∈-∞-+∞⎪⎢⎣⎭; (Ⅱ)等价于证明1ab a b ->-因为,1a b < ,所以1,1a b -<<,1ab <,11ab ab -=- 若a b =,命题成立;下面不妨设a b >,则原命题等价于证明1ab a b ->- 事实上,由()()()1110ab a b b a ---=+-> 可得1ab a b ->- 综上,1ab a b ->-3.(2018东北育才中学模拟)定义在R 上的函数x k x x f 22+-=.∙∈N k .存在实数0x 使()20<x f 成立, (Ⅰ)求正整数k 的值: (Ⅱ)若21>m ,21>n 且求证()()10=+n f m f ,求证31619≥+n m ..解: 存在实数0x 使()20<x f 成立,()2min <∴x f=+-x k x 22 x k x 22+-x k x 22--≥k =,则()2min <=k x f解得22<<-k ,*∈N k ,1=∴k …………………5分 (II)证明:由(1)知,()x x x f 212+-=,21>m ,21>n ,()=+-=∴m m m f 212m m 212+-14-=m ,同理,()14-=n n f ()()10==n f m f ,10244=-+∴n m ,即3=+n m=+∴n m 19()n m n m +⎪⎭⎫ ⎝⎛+1931⎪⎭⎫ ⎝⎛++=n m m n 91031316921031=⎪⎪⎭⎫ ⎝⎛⋅+≥n m m n 当且仅当n m m n =9,又3=+n m ,得49=m ,43=n 时取等号.…………………10分 4.(2018黑龙江省模拟)已知函数1()12f x x a x =-++的最小值为2. (1)求实数a 的值;(2)若0a >,求不等式()4f x ≤的解集. 解析:(1)当2a ≥-时,31,21()1,2231,22x a x a f x x a x a x a x ⎧+-≥⎪⎪⎪=-++-≤≤⎨⎪⎪-+-≤-⎪⎩,∴min ()122af x =+=,2a =. 当2a ≤-时,31,221()1,2231,2x a x f x x a a x x a x a ⎧+->-⎪⎪⎪=--≤≤-⎨⎪⎪-+-<⎪⎩,∴min ()122af x =--=,6a =-, 综上可知2a =或6a =-.(2)由(1)知,0a >时2a =.不等式()4f x ≤, 即12242x x -++≤. 5.(2018重庆9校联盟模拟)已知函数f (x )=|2x +1|.(1)解不等式f (x )>x +5; (2)若对于任意x ,y ∈R ,有,,求证:f (x )<1.【解答】(Ⅰ)解:f (x )>x +5⇒|2x +1|>x +5 ⇒2x +1>x +5或2x +1<﹣x ﹣5, ∴解集为{x |x >4或x <﹣2}. (Ⅱ)证明:.由(1)知31,221()3,22231,22x x f x x x x x ⎧->⎪⎪⎪=-+-≤≤⎨⎪⎪-+<-⎪⎩,由3142x -=,得103x =;由1342x -+=,得2x =-. ∴不等式的解集为102,3⎡⎤-⎢⎥⎣⎦. 5.(2018黑龙江省模拟)设函数, (Ⅰ)当时,求不等式的解集; (Ⅱ)若恒成立,求实数的取值范围.(Ⅰ)解:(1)当时,不等式即,等价于①或, ②,或 ③. 解①求得 x 无解,解②求得,解③求得, 综上,不等式的解集为. )0(122)(>++-=a x a x x f 2)(+=x x g 1=a )()(x g x f ≤)()(x g x f ≥a 1=a )()(x g x f ≤21212+≤++-x x x ⎪⎩⎪⎨⎧+≤--≤2421x x x ⎪⎩⎪⎨⎧+≤<<-222121x x ⎪⎩⎪⎨⎧+≤≥2421x x x 210<≤x 3221≤≤x ⎭⎬⎫⎩⎨⎧≤≤320x x(Ⅱ)由题意可得恒成立,转化为恒成立.令, , 易得的最小值为,令,求得. 6.(2018重庆模拟)已知关于x 的不等式|x -3|+|x -m|≥2m 的解集为R .(Ⅰ)求m 的最大值;(Ⅱ)已知a >0,b >0,c >0,且a +b +c =m,求4a 2+9b 2+c 2的最小值及此时a ,b ,c 的值.解:(Ⅰ)因为|x -3|+|x -m|≥|(x -3)-(x -m)|=|m -3|当3≤x ≤m,或m ≤x ≤3时取等号,令|m -3|≥2m ,所以m -3≥2m ,或m -3≤-2m .解得m ≤-3,或m ≤1∴m 的最大值为1 …5分 (Ⅱ)由(Ⅰ)a +b +c =1.由柯西不等式,(14+19+1)( 4a 2+9b 2+c 2)≥(a +b +c)2=1,∴4a 2+9b 2+c 2≥3649,等号当且仅当4a =9b =c ,且a +b +c =1时成立.即当且仅当a =949,b =449,c =3649时,4a 2+9b 2+c 2的最小值为3649.…10分7.(2018甘肃张掖模拟)已知函数f (x )=|x ﹣a |﹣|x +3|,a ∈R . (1)当a=﹣1时,解不等式f (x )≤1;(2)若x ∈[0,3]时,f (x )≤4,求a 的取值范围. 【解答】解:(1)当a=﹣1时,不等式为|x +1|﹣|x +3|≤1;当x ≤﹣3时,不等式转化为﹣(x +1)+(x +3)≤1,不等式解集为空集;2122+≥++-x x a x 02122≥--++-x x a x ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥--<<--+--≤-+-=--++-=2,13221,121,352122)(a x a x a x a x x a x x x a x x h )(0>a )(x h 12-a 012≥-a2≥a当﹣3<x <﹣1时,不等式转化为﹣(x +1)﹣(x +3)≤1,解之得;当x ≥﹣1时,不等式转化为(x +1)﹣(x +3)≤1,恒成立; 综上所求不等式的解集为.(2)若x ∈[0,3]时,f (x )≤4恒成立,即|x ﹣a |≤x +7,亦即﹣7≤a ≤2x +7恒成立,又因为x ∈[0,3],所以﹣7≤a ≤7, 所以a 的取值范围为[﹣7,7].8.(2018兰州模拟) 设函数,其中.(1)当时,求不等式的解集; (2)若时,恒有,求的取值范围. 解:(1)当时,, 所以,所以或, 解集为.(2),因为,∴时,恒成立,又时,当时,,∴只需即可,所以. 9.(2018辽宁大连模拟)已知函数,.当时,求不等式的解集;,都有恒成立,求的取值范围.【答案】(1)(2)【解析】试题分析:(1)对x 分类讨论,得到三个不等式组,分别解之,最后求并集即可;(2)对于,都有恒成立,转化为求函数的最值问题即可..................................... 试题解析:()2f x x a x =-+0a >2a =()21f x x ≥+(2,)x ∈-+∞()0f x >a 2a =2221x x x -+≥+21x -≥3x ≥1x ≤(,1][3,)-∞+∞ 3,(),x a x af x x a x a -≥⎧=⎨+<⎩0a >x a ≥320x a a -≥>x a <2x >-2x a a +>-+20a -+≥2a ≥解:当m=-2时,,当解得当恒成立当解得此不等式的解集为.当时,当时,不等式化为.由当且仅当即时等号成立.,.当时,不等式化为.,令,.,在上是增函数.当时,取到最大值为..综上.10.(2018长春模拟)已知函数.(1)求的解集;(2) 若的最小值为,正数满足,求证:.【答案】(1);(2)见解析.【解析】试题分析:(1)将函数写成分段函数形式,画出函数图象,利用数形结合思想可得的解集;(2)由(1)中的图象可得的最小值为,利用均值不等式可知,进而可得结果.试题解析:(1)由图像可知:的解集为.(2)图像可知的最小值为1,由均值不等式可知,当且仅当时,“”成立,即.11.(2018西安八校模拟)已知函数和的图象关于原点对称,且.(1)解关于的不等式;(2)如果对,不等式成立,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由函数和的图象关于原点对称可得的表达式,再去掉绝对值即可解不等式;(2)对,不等式成立等价于,去绝对值得不等式组,即可求得实数的取值范围.试题解析:(1)∵函数和的图象关于原点对称,∴,∴原不等式可化为,即或,解得不等式的解集为;(2)不等式可化为:,即,即,则只需,解得,的取值范围是.。

专题21 不等式选讲-2018年高考理数二轮复习精品资料(学生版)

专题21 不等式选讲-2018年高考理数二轮复习精品资料(学生版)

1.已知函数f (x )=|2x -1|+|x -2a |.(1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围.2.已知函数f (x )=|2x +1|+|2x -3|.(1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集不是空集,求实数a 的取值范围.3.已知函数f (x )=|x +3|-|x -2|.(1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围.4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.5.设函数f (x )=|x -3|-|x +1|,x ∈R .(1)解不等式f (x )<-1;(2)设函数g (x )=|x +a |-4,且g (x )≤f (x )在x ∈[-2,2]上恒成立,求实数a 的取值范围.6.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9.7.已知关于x 的不等式m -|x -2|≥1,其解集为[0,4].(1)求m 的值;(2)若a ,b 均为正实数,且满足a +b =m ,求a 2+b 2的最小值.8.已知a ,b 均为正数,且a +b =1,证明:(1)(ax +by )2≤ax 2+by 2;(2)⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.9.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M .(1)证明:|1+b |≤M ;(2)证明:M ≥12.10.已知a ,b ,c 为非零实数,且a 2+b 2+c 2+1-m =0,1a 2+4b 2+9c 2+1-2m =0. (1)求证:1a 2+4b 2+9c 2≥36a 2+b 2+c 2; (2)求实数m 的取值范围.11.已知函数f (x )=m -|x -1|-|x -2|,m ∈R ,且f (x +1)≥0的解集为[0,1].(1)求m 的值;(2)若a ,b ,c ,x ,y ,z ∈R ,且x 2+y 2+z 2=a 2+b 2+c 2=m ,求证:ax +by +cz ≤1.12.已知函数f (x )=k -|x -3|,k ∈R ,且f (x +3)≥0的解集为[-1,1].(导学号 55460156)(1)求k 的值;(2)若a ,b ,c 是正实数,且1ka +12kb +13kc =1. 求证:a +2b +3c ≥9.13.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.14.已知正实数a ,b 满足:a 2+b 2=2ab . (1)求1a +1b的最小值m ; (2)设函数f (x )=|x -t |+⎪⎪⎪⎪⎪⎪x +1t (t ≠0),对于(1)中求得的实数m 是否存在实数x ,使得f (x )=m 2成立,说明理由.15.已知函数f (x )=|x |+|x -1|.(1)若f (x )≥|m -1|恒成立,求实数m 的最大值M ;(2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a +b ≥2ab .16.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ;(2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).。

2018届高考理科数学二轮专题复习讲义 不等式选讲

2018届高考理科数学二轮专题复习讲义 不等式选讲

专题八 选修系列第2讲 不等式选讲考情考向分析本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点分类突破热点一 含绝对值不等式的解法含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a .(2)|f (x )|<a (a >0)⇔-a <f (x )<a .(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届四川省成都市三诊)已知f (x )=|x -a |,a ∈R.(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6.当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6, ∴x ∈∅; 当x ≥52时,不等式可化为(x -1)+(2x -5)≥6, ∴x ≥4. 综上所述,原不等式的解集为{x |x ≤0或x ≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|,∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] .∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1≥2⎣⎡⎦⎤a +b +(a +b )22+1 =(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值.(1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4.因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|=|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)|≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]|=|(a -b )4+1|≥1.即f (x )min =1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. 例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求证:2≤at +12+bt ≤4.(1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4, 解得a =-3,b =1.(2)证明 由柯西不等式,有 (-3t +12+t )2=(3·-t +4+1·t )2≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t 1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t≥12-2t ≥4(0≤t ≤4),所以-3t +12+t ≥2,当且仅当t =4时等号成立,综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1].(1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值.解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2, 又f (x )≤0的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1, 解得m =1.(2)由(1) 知a +b +c =1,由柯西不等式,得(3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18, 所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1,即a =b =c =13时等号成立, 所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4,所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3.(1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围.解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于-(x -2)-(x +4)≥x 2+4x +3,即x 2+6x +5≤0,解得-5≤x ≤-1,∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于-(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7,∴-4≤x ≤-2+7;③当x >2时,原不等式等价于(x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}.(2)∵|x -2|+|x +4|≥|x -2-x -4|=6,且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6,∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞).(1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围. 解 (1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0.∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞),∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式 |x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎪⎨⎪⎧ x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3, 即2t 2-3t +1≥0,解得t ≤12或t ≥1. 即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪a +12b <34; (2)比较|4ab -1|与2|b -a |的大小,并说明理由.(1)证明 记f (x )=|x +2|-|1-x |=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12, ∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14. ∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2)=(4a 2-1)(4b 2-1)>0,∴|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1, 即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x=⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1, 当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc +3abc ≥23abc·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc . 7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和. 接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4,即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94. 8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a |≤|x +a -x +1-a |=|a +1-a |=a +1-a ,当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a ,对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a )=1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。

2018届高考数学二轮不等式选讲专题卷文(全国通用)

2018届高考数学二轮不等式选讲专题卷文(全国通用)

(六)不等式选讲1.(2017·唐山月考)已知函数f (x )=|x +1|+|mx -1|.(1)若m =1,求f (x )的最小值,并指出此时x 的取值范围;(2)若f (x )≥2x ,求m 的取值范围.解 (1)当m =1时,f (x )=|x +1|+|x -1|≥|(x +1)-(x -1)|=2,当且仅当(x +1)(x -1)≤0时取等号,故f (x )的最小值为2,此时x 的取值范围是[-1,1].(2)当x ≤0时,f (x )≥2x 显然成立,所以此时m ∈R ;当x >0时,由f (x )=x +1+|mx -1|≥2x ,得|mx -1|≥x -1.由y =|mx -1|及y =x -1的图象,可得|m |≥1且1m≤1, 解得m ≥1或m ≤-1.综上所述,m 的取值范围是(-∞,-1]∪[1,+∞).2.已知函数f (x )=|x -2|-|x +1|.(1)解不等式f (x )>1;(2)当x >0时,函数g (x )=ax 2-x +1x(a >0)的最小值大于函数f (x ),试求实数a 的取值范围. 解 (1)当x >2时,原不等式可化为x -2-x -1>1,此时不成立;当-1≤x ≤2时,原不等式可化为2-x -x -1>1,解得x <0,即-1≤x <0;当x <-1时,原不等式可化为2-x +x +1>1,解得x <-1.综上,原不等式的解集是{x |x <0}.(2)因为g (x )=ax +1x -1≥2a -1, 当且仅当x =a a时等号成立, 所以g (x )min =g ⎝ ⎛⎭⎪⎫a a =2a -1.当x >0时,f (x )=⎩⎪⎨⎪⎧ 1-2x ,0<x ≤2,-3,x >2,所以f (x )∈[-3,1).所以2a -1≥1,解得a ≥1.所以实数a 的取值范围为[1,+∞).3.设f (x )=|ax -1|.(1)若f (x )≤2的解集为[-6,2],求实数a 的值;(2)当a =2时,若存在x ∈R ,使得不等式f (2x +1)-f (x -1)≤7-3m 成立,求实数m 的取值范围.解 (1)显然a ≠0.f (x )≤2可化为-1≤ax ≤3,当a >0时,解集为⎣⎢⎡⎦⎥⎤-1a ,3a ,易知-1a =-6,3a =2,无解; 当a <0时,解集为⎣⎢⎡⎦⎥⎤3a ,-1a ,易知-1a =2,3a =-6,解得a =-12. 综上所述,a =-12. (2)当a =2时,令h (x )=f (2x +1)-f (x -1)=|4x +1|-|2x -3|=⎩⎪⎨⎪⎧ -2x -4,x ≤-14,6x -2,-14<x <32,2x +4,x ≥32,由此可知,h (x )在⎝⎛⎭⎪⎫-∞,-14上单调递减, 在⎝ ⎛⎭⎪⎫-14,32上单调递增,在⎝ ⎛⎭⎪⎫32,+∞上单调递增, 则当x =-14时,h (x )取得最小值-72, 由题意知7-3m ≥-72,解得m ≤72. 所以实数m 的取值范围是⎝⎛⎦⎥⎤-∞,72. 4.设f (x )=|x -1|+|x +1|.(1)求f (x )≤x +2的解集;(2)若不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,求实数x 的取值范围. 解 (1)由f (x )≤x +2,有⎩⎪⎨⎪⎧ x +2≥0,x ≤-1,1-x -x -1≤x +2或⎩⎪⎨⎪⎧x +2≥0,-1<x <1,1-x +x +1≤x +2 或⎩⎪⎨⎪⎧x +2≥0,x ≥1,x -1+x +1≤x +2,解得0≤x ≤2,所以所求的解集为[0,2].(2)⎪⎪⎪⎪⎪⎪|a +1|-|2a -1||a |=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪1+1a -⎪⎪⎪⎪⎪⎪2-1a≤⎪⎪⎪⎪⎪⎪1+1a +2-1a =3,当且仅当⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫2-1a ≤0时取等号.由不等式f (x )≥|a +1|-|2a -1||a |对任意实数a ≠0恒成立,可得|x -1|+|x +1|≥3,即⎩⎪⎨⎪⎧ x ≤-1,1-x -x -1≥3或⎩⎪⎨⎪⎧ -1<x <1,1-x +x +1≥3或⎩⎪⎨⎪⎧x ≥1,x -1+x +1≥3, 解得x ≤-32或x ≥32.所以所求x 的取值范围为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.5.不等式|x 2+3x -18|<6-2x 的解集为{x |a <x <b }.(1)求a ,b 的值;(2)已知p ,q ∈(-1,1),且pq =b a ,求u =a 8(p 2-1)+b4(q 2-1)的最小值.解 (1)由|x 2+3x -18|<6-2x ,可得⎩⎪⎨⎪⎧ 6-2x >0,|x 2+3x -18|2<4(x -3)2,即⎩⎪⎨⎪⎧x <3,(x -3)2(x +8)(x +4)<0, 解得-8<x <-4,从而a =-8,b =-4.(2)由(1)知u =-88(p 2-1)+-44(q 2-1)=11-p 2+11-q 2,pq =b a =12,故p 2+q 2≥2pq =1,当且仅当p =q =±22时取等号.而u =11-p 2+11-q 2≥211-p 2·11-q 2=2154-p 2-q 2≥2154-1=4, 或u =11-p 2+11-q 2=2-p 2-q 254-p 2-q 2=1+3454-(p 2+q 2)≥1+3454-1=4.。

首发专题 不等式选讲高考数学理二轮专项习题练 解析 含解析

首发专题 不等式选讲高考数学理二轮专项习题练 解析 含解析

专题13 不等式选讲解答题1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0≤a ,则当(0,1)x ∈时|1|1-≥ax ; 若0a >,|1|1ax -<的解集为20x a <<,所以21≥a,故02<≤a . 综上,a 的取值范围为(0,2].2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分)设函数()5|||2|=-+--f x x a x . (1)当1a =时,求不等式()0≥f x 的解集; (2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x可得()0≥f x 的解集为{|23}-≤≤x x . (2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a . 由|2|4+≥a 可得6-≤a 或2≥a ,所以a 的取值范围是(,6][2,)-∞-+∞.3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分)设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥ ()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5. 4.(2018江苏)D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值. D .【证明】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.5.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围. 【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而112x -<≤.所以()()f x g x ≥的解集为{|1x x -<. (2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥. 又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一, 所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以a 的取值范围为[1,1]-.6.已知0a >,0b >,332a b +=,证明:(1)55()()4a b a b ++≥; (2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++2224()ab a b =+-4≥(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +++≤33()24a b +=+, 所以3()8a b +≤,因此2a b +≤. 7.已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤ 当>2x 时,由()f x 1≥解得>2x . 所以()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤且当32x =时,2512=4x x x x +---+. 故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.8.已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=所以2()64ac bd +≤,因此8ac bd +≤. 9.已知函数()|1||23|f x x x =+--.(I )在图中画出()y f x =的图像; (II )求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤. 当312x -<<,321x ->,解得1x >或13x <, 113x -<<∴或312x <<,当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >,综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.10.已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.【解析】(I )当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->, 即22221a b a b +>+,则2222212a b ab a ab b +++>++, 则()()221ab a b +>+, 即1a b ab +<+,证毕.11.已知函数()|2|f x x a a =-+(Ⅰ)当a =2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+,得13x-.因此,()6f x ≤的解集为{|13}x x-.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++-|212|x a x a -+-+|1|a a =-+,当12x =时等号成立, 所以当x R ∈时,()()3f x g x +等价于|1|3a a-+. ①当1a时,①等价于13a a -+,无解.当1a >时,①等价于13a a -+,解得2a .所以a 的取值范围是[2,)+∞. 12.函数()223f x x x =-++(1)求不等式()25f x x ≥+的解集;(2)若()f x 的最小值为k ,且实数,,a b c 满足()a b c k +=,求证:22228a b c ++≥【答案】(1)(,0][4,)-∞⋃+∞(2)证明见解析【解析】(1)①当3x <-时,不等式即为3125x x --≥+,解得6,35x x ≤-∴<-②当31x -≤≤时,不等式即为525x x -≥+,030x x ≤∴-≤≤ ③当1x >时,不等式即为3125x x +≥+,44x x ≥∴≥ 综上,()25f x x ≥+的解集为(,0][4,)-∞⋃+∞(2)由51,3()5,3131,1x x f x x x x x --<-⎧⎪=--≤≤⎨⎪+>⎩∴当1x =时,()f x 取最小值4,即4,()4k a b c =∴+=,即4ab ac +=()()22222222228a b c a b a c ab ac ∴++=+++≥+=当且仅当a b c ===时等号成立 13.已知函数()2f x x a x =-+,a R ∈.(1)若不等式()2f x a ≥对x R ∀∈恒成立,求实数a 的取值范围.(2)设实数m 为(1)中a 的最大值,若实数x 、y 、z 满足422x y z m ++=,求()222x y y z +++的最小值.【答案】(1)[]22-,;(2)1621. 【解析】(1)因为()2f x a ≥对x R ∀∈恒成立,则()2min f x a ≥,由绝对值三角不等式可得()2min 22f x x a x a a =--=≥,即2a ≤,解得22a -≤≤.故实数a 的取值范围是[]22-,; (2)由题意2m =,故424x y z ++=, 由柯西不等式知,()()()()()22222222421424216x y y z x y y z x y z ⎡⎤++++-++-+=++=⎡⎤⎣⎦⎣⎦≥,所以()2221621x y y z +++≥,当且仅当421x y y z +==-时等号成立 从而,最小值为1621,当且仅当87x =,821y =-,421z =时等号成立.14.已知3a b c ++=,且a 、b 、c 都是正数. (1)求证:2223a b c ++≥; (2)求证:11132a b b c c a ++>+++. 【答案】(1)证明见解析 (2)证明见解析【解析】(1)证明:由已知得()239a b c a b c ++=⇒++=,2222229a b c ab ac bc ⇒+++++=,又222a b ab +≥,222b c bc +≥,222a c ac +≥,∴()()22222a b c ab bc ac ++≥++,∴()22222229a b c a b c+++++≥,∴2223a b c ++≥.(2)证明:由已知得3a b c ++=, ∴()11116a b b c a c a b b c a c ⎛⎫+++++++⎪+++⎝⎭11116a b a b b c b c a c a c b c a c a b a c c b b c ++++++⎛⎫=++++++++ ⎪++++++⎝⎭(1131119662≥+++=⨯=.。

2018浙江数学高考(理)二轮《不等式》专题能力训练有答案MMUM

2018浙江数学高考(理)二轮《不等式》专题能力训练有答案MMUM

专题能力训练2不等式(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.若<0,则下列结论不正确的是()A.a2<b2B.ab<b2C.a+b<0D.|a|+|b|>|a+b|2.(2017浙江宁波中学调研)若不等式组表示的平面区域是一个三角形,则a的取值范围是()A.a<5B.a≥7C.5≤a<7D.a<5或a≥73.不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)4.已知f(x)=a|x-2|,若f(x)<x恒成立,则a的取值范围为()A.a≤-1B.-2<a<0C.0<a<2D.a≥15.若x,y满足且z=y-x的最小值为-12,则k的值为()A.B.-C.D.-6.若m+2n=20(m,n>0),则lg m(lg n+lg 2)的最大值是()A.1B.C.D.27.(2017浙江嘉兴一中适应性模拟)已知xy=1,且0<y<,则的最小值为()A.4B.C.2D.48.设x,y满足约束条件若0≤ax+by≤2恒成立,则a2+b2的最大值是()A.1B.C. D.4二、填空题(本大题共6小题,每小题5分,共30分)9.已知x,y,z∈R,x2+y2+z2=4,则xz+yz的最大值是;又若x+y+z=0,则z的最大值是.10.已知实数m,n,且点(1,1)在不等式组表示的平面区域内,则m+2n的取值范围为,m2+n2的取值范围为.11.若不等式|x+1|+|x-3|≥a+对任意的实数x恒成立,则实数a的取值范围是.12.已知实数x,y满足则z=2|x|+y的取值范围是.13.(2017浙江温州瑞安七中模拟)若x>0,y>0,则的最小值为.14.已知函数f(x)=(1+ax+x2)e x-x2,若存在正数x0,使得f(x0)≤0,则实数a的取值范围是.三、解答题 (本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)已知函数f(x)=x+(x>3).(1)求函数f(x)的最小值;(2)若不等式f(x)≥+7恒成立,求实数t的取值范围.16.(本小题满分15分)已知二次函数f(x)=ax2+bx+c.(1)若a=2,当x∈[-1,3]时,f(x)的最大值不大于7,求b+c的最大值;(2)若当|f(x)|≤1对任意的x∈[-1,1]恒成立时,都有|ax+b|≤M对任意的x∈[-1,1]恒成立,求M的最小值.参考答案专题能力训练2不等式1.D解析由题意可知b<a<0,因此选项A,B,C正确.而|a|+|b|=-a-b=|a+b|,故D错误,应选D.2.C解析如图,当直线y=a位于直线y=5和y=7之间(不含y=7)时满足条件.故选C.3.A解析①∵当x<1时,原不等式等价于1-x-(5-x)<2,即-4<2,∴x<1.②∵当1≤x≤5时,原不等式等价于x-1-(5-x)<2,即x<4,∴1≤x<4.③当x>5时,原不等式等价于x-1-(x-5)<2,即4<2,无解.综合①②③,可知x<4.故选A.4.A解析依题意,f(x)=易知当a≥0时,f(x)<x不恒成立,故a<0.在同一直角坐标系中作出函数y=f(x)与y=x的图象如图所示,观察可知f(x)<x⇔-a≥1,即a≤-1.故选A.5.D解析依题意,易知k≤-1不符合题意,由可得直线kx-y+3=0与y=0的交点为,在平面直角坐标系中作出各直线(图略),结合图形可知,当直线z=y-x过点时,z有最小值,于是有0+=-12,k=-.故选D.6.A解析因为lg m·(lg n+lg 2)=lg m·lg 2n≤,又m+2n=20≥2,所以mn≤50,从而lg m·(lg n+lg 2)≤1,当且仅当m=10,n=5时等号成立.故选A.7.A解析因为xy=1且0<y<,所以x>,所以x-2y>0.所以=x-2y+≥4,当且仅当x=+1,y=时等号成立.故选A.8.C解析由约束条件作出可行域如图中阴影所示,联立可得A(2,1),联立可得C(0,1),联立可得B(1,2).由0≤ax+by≤2恒成立,可得画出关于a,b的可行域,如下图阴影部分所示:a2+b2的几何意义是可行域内的点到原点的距离的平方,显然点D到原点的距离最大,由可得D.故a2+b2的最大值为.9.2解析xz+yz=+2y·=2,当且仅当x=y=z时取等号;∵x2+y2=4-z2,x+y=-z,则(x+y)2=4-z2+2xy≤4-z2+,即z2≤8-2z2,∴-≤z≤.故z的最大值是,当且仅当x=y 时取等号.10. [1,4]解析由点(1,1)在不等式组表示的平面区域内,故有作出可行域如图中阴影三角形ABC,令z=m+2n,则直线z=m+2n过点B(0,2)时,z max=4,过点C时,z min=,故m+2n的取值范围为.令|OP|2=m2+n2=u,其中P在阴影三角形ABC内(包括边界),由图知当点P的坐标为(0,2)时,u max=4,当点P 的坐标为(0,1)时,u min=1,故m2+n2的取值范围为[1,4].11.(-∞,0)∪{2}解析当a<0时,显然成立;当a>0时,∵|x+1|+|x-3|的最小值为4,∴a+≤4.∴a=2.综上,可知a∈(-∞,0)∪{2}.12.[-1,11]解析根据约束条件画出可行域,画出z=2|x|+y表示的虚线部分.由图得当虚线部分z=2|x|+y过点D(0,-1)时,z最小为-1.当虚线部分z=2|x|+y过点A(6,-1)时,z最大为11.故所求z=2|x|+y的取值范围是[-1,11].13. 解析设=t>0,则+t=(2t+1)-≥2,当且仅当t=时取等号.故答案为.14. 解析由f(x)=(1+ax+x2)e x-x2≤0,得a≤-x-,令g(x)=-x-,则g'(x)=,∴g(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴g(x)的最大值为g(1)=-2,存在正数x0,使得a≤-x-,则a≤-2.15.解 (1)∵x>3,∴x-3>0.∴f(x)=x+=x-3++3≥2+3=9,当且仅当x-3=,即(x-3)2=9时,上式取得等号.又x>3,∴x=6.∴当x=6时,函数f(x)的最小值是9.(2)由(1)知,当x>3时,f(x)的最小值是9,要使不等式f(x)≥+7恒成立,只需9≥+7, ∴-2≤0,即≤0,解得t≤-2或t>-1.∴实数t的取值范围是(-∞,-2]∪(-1,+∞).16.解 (1)由题意知,f(x)=2x2+bx+c,当x∈[-1,3]时,f(x)≤7恒成立,即f(x)max≤7. (ⅰ)当-≤1,即b≥-4时,f(x)max=f(3)=18+3b+c≤7,得3b+c≤-11,故b+c=(3b+c)+2(-b)≤-11+8=-3.(ⅱ)当->1,即b<-4时,f(x)max=f(-1)=2-b+c≤7,得-b+c≤5,故b+c=(-b+c)+2b<5-8=-3.综上,可得(b+c)max=-3.(2)当|x|≤1时,易知≤1,≤1,故由题意知≤1,≤1,所以|ax+b|=≤1+1=2,所以M≥2.故M的最小值为2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵与变换1.定义行列式运算:32414321a a a a a a a a -=,将()xx x f co s 1sin 3----=向左平移()0>m m 个单位,所得图象对应的函数为偶函数,则m 的最小值为( )A 、8π B 、3π C 、32π D 、65π【答案】D【解析】试题分析:由题意知:()sin sin 2cos 61cos x f x x x x x π-⎛⎫==-=+ ⎪--⎝⎭,向左平移()0>m m 个单位,所得图象对应的函数为2cos 6y x m π⎛⎫=++ ⎪⎝⎭,因为它为偶函数,所以,6m k k Z ππ+=∈,所以m 的最小值为65π。

考点:三角函数图像的变换;三角函数的奇偶性。

点评:若函数)s i n ()(φω+=x A x f 为偶函数,则Z k k ∈+=,2ππϕ;若函数)s i n ()(φω+=x A x f 为奇函数,则Z k k ∈=,πϕ。

2.已知a 、b 、c 是ABC ∆的三边长,且满足0222=ac b c b a,则ABC ∆一定是( ).A 、等腰非等边三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形 【答案】B 【解析】试题分析: 方程化为0222222222=---++ca bc ab c b a ,即222()()()0a b b c c a -+-+-=,也即a b c ==,选B .考点:行列式,三角形的形状.3.[选修4-2:矩阵与变换]已知矩阵A=0110⎡⎤⎢⎥⎣⎦ ,B=1002⎡⎤⎢⎥⎣⎦. 求AB;若曲线C 1; 22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.【答案】(1)0210⎡⎤⎢⎥⎣⎦(2)228x y += 【解析】试题分析:(1)直接由矩阵乘法可得;(2)先根据矩阵乘法可得坐标之间关系,代入原曲线方程可得曲线2C 的方程. 试题解析:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 0110⎡⎤⎢⎥⎣⎦ 1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦ 0210⎡⎤⎢⎥⎣⎦. (2)设()00,Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002{ y x x y ==,所以00{ 2x yx y ==.因为()00,Q x y 在曲线1C 上,所以2200188x y +=, 从而22188x y +=,即228x y +=. 因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C : 228x y +=. 点睛:(1)矩阵乘法注意对应相乘: a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换: a b x x c d y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦'表示点(),x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(),x y ''.4.已知矩阵,,求矩阵【答案】【解析】试题分析:先用待定系数法求出,再求出. 试题解析:设矩阵的逆矩阵为,则, 1分即, 4分故,从而的逆矩阵为. 7分所以. 10分考点:矩阵的乘法、逆矩阵. 5.已知矩阵1121A ⎡⎤=⎢⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦,求向量α,使得2A αβ=. 【答案】12α-⎡⎤=⎢⎥⎣⎦【解析】考察矩阵的乘法、待定系数法,容易题。

设xy α⎡⎤=⎣⎦,由2A αβ=得:32432x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,32111,43222x y x x y y α+==--⎧⎧⎡⎤∴∴∴=⎨⎨⎢⎥+==⎩⎩⎣⎦6.(选修4—2:矩阵与变换)已知矩阵⎥⎥⎦⎤⎢⎢⎣⎡=20021M ,矩阵M 对应的变换把曲线x y sin =变为曲线C ,求曲线C 的方程。

【答案】曲线C 的方程为x y 2sin 2=【解析】解:设),(y x P 是所求曲线C 上的任意一点, 它是曲线),(sin 000y x P x y 上点=在矩阵M 变换下的对应点,则有⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧==⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡y y x x y y x x y x y x 212,221,20021000000因此即 ………………5分 又点),(000y x P 在曲线,sin ,sin 00x y x y ==故上 从而x y x y 2sin 2,2sin 21==即, 所以曲线C 的方程为x y 2sin 2= ………………10分7.已知a 、b ∈R,若M =⎣⎡⎦⎤-1b a3所对应的变换T M 把直线l :3x -2y =1变换为自身,试求实数a 、b 的值.【答案】解:在直线l 上任取一点P (x ,y ),设点P 在T M 的变换下变为点P ′(x ′,y ′),则⎣⎡⎦⎤-1b a 3 ⎣⎡⎦⎤x y =⎣⎡⎦⎤x ′y ′,⎩⎪⎨⎪⎧x ′=-x +ay ,y ′=bx +3y ,所以点P ′(-x +ay ,bx +3y ),∵点P ′在直线l 上,∴3(-x +ay )-2(bx +3y )=1,即(-3-2b )x +(3a -6)y =1,∵方程(-3-2b )x +(3a -6)y =1即为直线l 的方程3x -2y =1,∴⎩⎪⎨⎪⎧-3-2b =3,3a -6=-2,解得⎩⎪⎨⎪⎧a =43,b =-3.【解析】略8.已知曲线C :1xy =,若矩阵M -⎥=⎥⎥⎦对应的变换将曲线C 变为曲线C ',求曲线C '的方程. 【答案】222y x -=【解析】 试题分析:解决本题关键有两点,一是熟练掌握二阶矩阵左乘向量的运算,即a b x ax by c d y cx dy +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦,主要注意点是对应;二是利用“相关点法”求轨迹方程.根据原曲线上点与对应点的关系,22.22x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩,及1xy =,平方相减得222y x ''-=,从而解出所求轨迹方程.试题解析:解:设曲线C 一点(,)x y ''对应于曲线C '上一点(,)x y ,∴22x x y y '⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎢⎥⎢⎥⎥=⎢⎥⎢⎥⎥⎢⎥⎢⎥⎥'⎦⎣⎦⎣⎦,∴22x y x ''-=,22x y y ''+=, 5分∴x '=,y '=,∴1x y ''==,∴曲线C '的方程为222y x -=. 10分考点:矩阵与向量乘积.9.二阶矩阵A 有特征值6λ=,其对应的一个特征向量为11e ⎡⎤=⎢⎥⎣⎦,并且矩阵A 对应的变换将点()1,2变换成点()8,4,求2A .【答案】23241620A ⎡⎤=⎢⎥⎣⎦. 【解析】试题分析:利用矩阵的特征值与特征向量的关系及矩阵的运算即可求出;试题解析:设所求二阶矩阵A=a b c d ⎡⎤⎢⎥⎣⎦,则6{ 1824Ae eA =⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦∴66{ 2824a b c d a b c d +⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦+⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦∴66{ 2824a b c d a b c d +=+=+=+=……5分解方程组得A=4282⎡⎤⎢⎥-⎣⎦2424232482821620A ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦10.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵,若直线在矩阵对应的变换作用下得到的直线过点,求实数的值.【答案】【解析】试题分析: 先根据逆矩阵公式得逆矩阵,再根据矩阵运算得直线上一点坐标,代入可得斜率试题解析:矩阵,得,所以,将点 代入直线得.11.已知函数cos ()sin xf x x=, 则方程()021cos =+⋅x x f 的解是________.【答案】()122k x k z ππ=+∈ 【解析】试题分析:由函数cos ()sin xf x x=,可得函数()cos f x x x =-.所以方程()021cos =+⋅x x f可化为21cos cos 02x x x -+=.即求方程sin(2)06x π-=的解. ()122k x k z ππ=+∈. 考点:1.行列式的计算.2.三角函数的化简.3.三角方程的解法. 12.已知)0,2(,53cos πx x -∈=, 则11cos sin x x =_______ 【答案】57- 【解析】试题分析:由于(,0)2x π∈-,所以4s i n s5x ==-,所以 11cos sin x x sin cos x x =-75=-.考点:行列式.13.若关于x ,y 的线性方程组的增广矩阵为 ⎪⎪⎭⎫⎝⎛n m 3060,该方程组的解为⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛43y x ,则mn 的值等于 【答案】24- 【解析】试题分析:由题意方程组63mx y n =⎧⎨=⎩的解为34x y =-⎧⎨=⎩,所以212m n =-⎧⎨=⎩,24mn =-.考点:方程组的增广矩阵.14.三阶行列式45sin 2cos 610sin ---x x x ()R x ∈中元素4的代数余子式的值记为()x f ,则函数()x f 的最小值为【答案】6-【解析】试题分析:在行列式ij a 中,元素ij a 的代数余子式为原行列式去掉第i 行和第j 列元素后构成的行列式乘以(1)i j +-,本题中2sin 1()sin 6cos 6cos sin x f x x x x x--=-=-,可见当cos 1x =时,得()f x 的最小值6-(cos x 最大值为1,此时2sin x 取最小值0,从而()f x 取得最小值,否则要变形为2cos 6cos 1y x x =--+作为cos x 的二次函数来求).考点:代数余子式,三角函数的最值.15.三阶行列式76341253--中,元素1的代数余子式的值是 . 【答案】35- 【解析】试题分析:由题意得元素1的代数余子式是第2行第1列元素的代数余子式2152(1)(1)(5720)3507+--=-⨯+⨯=-.考点:三阶矩阵.16.(2012•闵行区三模)若不等式<6的解集为(﹣1,1),则实数a 等于 .【答案】4 【解析】试题分析:先根据二阶行列式,将原不等式等价转化为一元二次不等式,再对a 分类讨论,求出a 的值即可.解:原不等式可化为:ax 2+2<6,即ax 2<4. 当a≤0时,得x ∈R ,不符合题意; 当a >0时,得x 2<,﹣<x <,由已知不等式<6的解集为(﹣1,1),得=1,∴a=4.故答案为:4. 点评:本小题主要考查二次不等式的解法、二阶行列式等基础知识,考查运算求解能力,属于基础题.。

相关文档
最新文档