2概率论与数理统计试卷及答案

合集下载

《概率论与数理统计》期末测试卷(二)(答案解析版)

《概率论与数理统计》期末测试卷(二)(答案解析版)

《概率论与数理统计》期末测试件(二)(答案解析版)一、(12分)一学生接连参加同一课程的两次考试。

第一次及格的概率为P ,若第一次及格则第二次及格的概率也为P ;若第一次不及格则第二次及格的概率为P 2。

(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。

(2)若已知他第二次已经及格,求他第一次及格的概率。

解:A i ={他第i 次及格},i=1,2已知P (A 1)=P (A 2|A 1)=P ,21P P(A /A )2= (1)B ={至少有一次及格}所以21}{A A B ==两次均不及格∴ )|()(1)(1)(1)(12121A A P A P A A P B P B P -=-=-= )]|(1)][(1[1121A A P A P ---=22123)21)(1(1P P P P -=---= (2)由乘法公式,有P (A 1 A 2)= P (A 1) P (A 2| A 1) = P 2 由全概率公式,有)|()()|()()(1211212A A P A P A A P A P A P +=222)1(2P P PP P P +=⋅-+⋅=得1222)|(2221+=+=P PP P P A A P .二、(14分)设随机变量~,22X U ππ⎛⎫- ⎪⎝⎭,求(1)随机变量X 的分布函数()F x ; (2) cos Y X =的密度函数 . 解:X 的密度函数为()1,220,x f x πππ⎧-<<⎪=⎨⎪⎩其他cos Y X= 的可取值范围是()0,1当01y <<时,()()Y F y P Y y =≤arccos 2arccos 2arccos arccos 2211y yP Y y P y Y dx dxππππππ--⎛⎫⎛⎫=-≤≤-+≤≤ ⎪ ⎪⎝⎭⎝⎭=+⎰⎰因此,cos Y X = 的密度函数()(),01Y Y f y F y y '===<<故,,01()0,Y y f y <<=⎩其他三、(16分)设随机向量(X , Y )的联合密度为⎩⎨⎧<<<<=.,0,10,10 ,2),(其他y x x y x f(1) 计算P (Y > X );(2) 求X , Y 的概率密度f X (x ),f Y (y );(3) 判断X 与Y 是否相互独立,说明理由; (4) 求Z = X+Y 的概率密度f Z (z ). 解:(1).312),()(110===>⎰⎰⎰⎰>x xy xdy dx dxdy y x f X Y P(2)dyy x f x f X ⎰∞∞-=),()(.2x 2)(101x dy x f x X ==<<⎰时,当⎩⎨⎧<<=.,0,10,2)(其他x x x f Xdxy x f y f Y ⎰∞∞-=),()(.10,1 2)(10<<==⎰y dx x y f Y⎩⎨⎧<<=.,0,10,1)(其他y y f Y(3)因为,..),()(),(e a y f x f y x f Y X =所以X 与Y 相互独立. (4).),()(dx x z x f z f Z ⎰∞∞--=.22)(21,2)(1021120z z dx x z f z z dx x z f z z Z zZ -==<<==<<⎰⎰-时,当时,当⎪⎩⎪⎨⎧<<-<<=. ,0,2z 1 ,2,10 ,)(22其他z z z z z f Z四、(18分)设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布。

概率论与数理统计(II)期末考试样卷2参考答案

概率论与数理统计(II)期末考试样卷2参考答案

命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名:概率论与数理统计(II )期末考试样卷2参考答案注意:所有数据结果保留小数点后两位,本试卷可能用的数据如下:20.9750.9750.02520.9750.9750.95(1.5)0.933, 1.96,(24) 2.064,(2.10)0.98,(24)12.40,(24)39.36,(10) 2.23,(2,21) 3.47,U t t F χχΦ===Φ=====一、填空题( 每小题3分,共24分)1. 在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则样本均值x 落在4与6之间的概率为 0.87 .2. 设1234,,,X X X X 是取自正态总体~(0,4)X N 的简单随机样本且()()221234234Y a X X b X X =-+-,则a = 0.05 ,b = 0.01 时,统计量Y 服从2χ分布。

3.设161,,x x 是来自(8,4)N 的样本,则(1)(5)P x >= 16(0.933) . 4.设1,,n X X 为来自(0,)(0)U θθ>的一个样本,11,ni ni X X ==∑则未知参数θ的矩估计量是 2X ,最大似然估计是 1max(,,)n X X .5.设总体分布为()P λ,则其费希尔信息量为 1λ .6.设1,,n X X 为来自2(,)N μσ的一个样本,欲使1ˆni i c X X σ==-∑为σ的无偏估计,则常数 c 7.由来自正态总体2~(,0.9),X N μ容量为9的简单随机样本,若得到样本均值0.5X =,则未知参数μ的置信度为0.95的置信区间为 [-0.088,1.088] 。

8.设1,,n X X 为来自2(,)N μσ的一个样本,22111()ni n i S X X -==-∑,其中参数2,μσ未知,要检验假设2200:H σσ=应用 2χ 检验法,检验的统计量是2201n S σ-() 。

全国自考概率论与数理统计(二)试题和答案

全国自考概率论与数理统计(二)试题和答案

B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。

概率论与数理统计试题2 (有答案)

概率论与数理统计试题2 (有答案)

概率与数理统计试题(满分100分)一、 填空题(每空5分,共6空,30分) (1) 随机变量X 和Y 相互独立,且)5.0,1(~),5.0,1(~b Y b X ,则随机变量),max(Y X Z =的分布律为 。

答案: 75.0}1{,25.0}0{====Z P Z P(2) 已知随机变量),(Y X 具有概率密度=),(y x f ⎪⎩⎪⎨⎧≤≤≤≤+其它,040,40),sin(ππy x y x c 则=c ,Y 的边缘密度函数=)(y f Y 。

答案:12+, )4cos()(cos 12(π+-+x x ;(3) 设321,,X X X 相互独立,且)1,3(~)3,1(~),2,0(~321N X N X N X ,则=≤-+≤}6320{321X X X P 。

答案:3413.05.08413.05.0)1(=-=-Φ (4) 一名射手射击,各次射击是相互独立,正中目标的概率为 p ,射击直至击中目标两次为止。

设以 X 表示首次击中目标所进行的射击次数,以 Y 表示总共进行的射击次数,那么 X (X=m )和 Y(Y=n) 的联合分布律是 。

答案:Y =n 代表第n 次射击时二度击中目标,且在第1次、第2次,…,第n –1次射击中恰有一次击中目标。

不管X,Y 是多少,(X, Y )的概率都是22-n q p ,其中q=1-p , m=1,2,…,n-1,n = 2,3,… 。

(5) 设风速V 在(0,a )上服从均匀分布,即具有概率密度⎪⎩⎪⎨⎧<<=,其它,0a v 0 1)(a v f设飞机机翼受到的正压力W 是V 的函数:2kV W =(V 是风速,k>0 是常数)。

那么,W 的数学期望为E (W )= 。

答案: E (W )=222311)(ka dv a kv dv v f kv ⎰⎰∞∞-∞∞-== 二、 计算题(共5题,合计46分)1. (8分)以往数据分析结果表明,当机器调整良好时,产品合格率为98%,机器发生某种故障时,合格率为55%。

概率论与数理统计试卷及答案 (2)

概率论与数理统计试卷及答案 (2)

一、 本题满分20分,每小题5分⒈某市有30 %住户订日报,有50 %住户订晚报,有65 %的住户至少订这两种报纸中的一种, 求同时订这两种报纸的住户的百分比。

解:设A 表示订日报的住户,B 表示订晚报的住户,则由题意:()0.3()0.5()0.65P A P B P A B ===同时订两种报纸的住户为()()()()0.15P AB P A P B P A B =+-=⒉三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,求三台机器中至少有一台发生故障的概率。

解:令i A 表示第i 份机器有故障,i =1、2、3 且各机器相互独立运转则:112323()1()()()P A A A P A P A P A =-= 10.90.80.710.5040.496-⨯⨯=-=3.设,6/1)|(,3/1)()(===B A P B P A P 求 )|(B A P 。

解:111()()()3618P AB P B P A B ==⨯=11171()()()1()[()()]7331818()121()1()12()133P AB P A P AB P A P B P AB P A B P B P B P B --+----======--- 4.已知,25.0)(,5.0)(==B P A P 分别对事件A , B 相互独立、互不相容两种情形求)(),(A B P B A P - .解:(1)A,B 独立时,则P(AB)=P(A)P(B)故()()()()()()()()0.50.250.50.250.625P A B P A P B P AB P A P B P A P B =+-=+-=+-⨯= ()()()()()()0.250.50.250.125P B A P B P AB P B P A P B -=-=-=-⨯=(2)A,B 互不相容时,P(AB)=0故()()()P A B P A P B =+=0.5+0.25=0.75()()()()P B A P B P AB P B -=-==0.25二、本题30分,每题6分5.一射手对同一目标独立地进行射击,直到射中2次目标为止,已知每次命中率为53,求射击次数的分布率。

概率论与数理统计2含答案

概率论与数理统计2含答案

一.填空题(共10分)已知P(A)=12,P BA c h=34,P(B) =58,则P( A ∣B ) =______ 。

设随机变量X 服从参数为 λ 的泊松分布,且已知P{ X= 7 } =P{ X= 9 },则 λ =___________。

3、样本(,,,)X X X n 12 来自总体2~(, )X N μσ,则22(1)~n n S σ- ______________;()~n X S μ- ____________。

其中X 为样本均值,S n X X n i n 22111=--=∑()。

4、设X X X n 12,, 是来自正态总体N (,)μσ2的样本,记1nn i ii Y a X ==∑,若n Y 为μ的无偏估计,则12,,...n a a a 满足的等式为 。

5、设总体~(1,)X B p ,其中未知参数01<<p , X X X n 12,, 是X 的 样本,则p的矩估计为________,样本的似然函数为_________。

(f x p p p x x(;)()=-1 为 X的 概 率 密 度 函 数 ) 二、选择题(共10分)6、4, 1, 0.6XY DX DY ρ===,则(32)D X Y -=( )。

( A ) 40 ( B ) 34 ( C ) 25.6( D ) 17.67、样本(,,,)X X X n 12 来自总体X ,已知X 服从参数λ=1的指数分布,则Max X X X n {,,,}12 的分布函数为( )。

( A )F z z e z z()=<-≥R S T - 0010 ( B ) F z z e z z n()()=<-≥R S T - 0010 ( C ) F z z e z z ()=<≥R S T - 000 ( D )0 0()n 0nzz F Z e z -<⎧=⎨≥⎩ 8、随机变量~(1,1)X N ,记X 的概率密度为f(x),分布函数为F( x ),则有( )。

最新 年月全国自考概率论与数理统计(二)试题及答案

最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

2021年大二重点课程概率论与数理统计期末考试题及答案(新版)

2021年大二重点课程概率论与数理统计期末考试题及答案(新版)

2021年大二重点课程概率论与数理统计期末考试题及答案(新版)一、单选题1、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A) (,)F m n B) (1,1)F n m -- C) (,)F n m D) (1,1)F m n -- 【答案】C2、设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S ni i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) n S X t /3μ-=(D) nS X t /4μ-=【答案】B3、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C) 方差分析中包含了随机误差外,还包含效应间的差异im 211.()im r e ij i i j S y y ===-∑∑(D) 方差分析中包含了随机误差外,还包含效应间的差异【答案】D4、在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 【答案】C5、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对 【答案】C6、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D7、设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是(A )22111()1n i i S X X n ==--∑(B )22211()n i i S X X n ==-∑(C )221S X + (D )222S X + 【答案】D2.1()rA i i i S m y y ==-∑im 211.()im r e ij i i j S y y ===-∑∑2.1()rA i i i S m y y ==-∑8、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A) (,)F m n B) (1,1)F n m -- C) (,)F n m D) (1,1)F m n -- 【答案】C9、设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 【答案】B10、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 第2页
概率论与数理统计试卷(20170225)
一、单项选择(每小题3分,共30分,答案按左侧学号规则连线成数码数字,不可涂改,否则影响自动评分 ) 1.每次试验的成功概率为)10(<<P P ,则在3次重复试验中至少失败1次的概率为( )
(1) 3
)1(P - (2) 31P - (3) )1(3P - (4))1()1()1(2
23P P P P P -+-+- 2.设A 为随机事件,且A B ⊂,则以下式子成立是( )
(1))()(A P B A P = (2))()(A P AB P = (3))()(B P A B P = (4) )()()(A P B P A B P -=-
3. 设随机变量X 的数学期望为5,方差为2,则对于任意给定的正数0>ε,下列不等式中正确的是( )
(1) 98)91(≥<<X P (2) 7(19)8P X <<≥ (3) 98)91(≤<<X P (4) 7
(19)8P X <<≤
4. 设随机变量X 在区间[3,11]上的均匀分布,则=)](),([X D X E ( ) (1) )38,
7( (2) )316,7( (3) )3
16,4( (4) )38
,4( 5. 如果随机变量21,X X 不相互独立,则=-)(21X X E ( )
(1) )()(21X E X E + (2) )()(21X E X E - (3) )()()(2121X X E X E X E -+ (4) 以上都不对
6.设)2,0(~N X ,)(~2
n Y χ,且X 与Y 独立,则统计量
n
Y X /2服从( )
(1)自由度为n 的t 分布 (2)自由度为1-n 的2
χ分布 (3)自由度为1-n 的t 分布 (4)自由度为n 的2
χ分布
7.设随机变量X 在区间],2[a 上服从均匀的分布,且6.0)4(=>X P ,则=a ( ) (1) 5 (2) 7 (3) 8 (4) 6 8. 设321,,X X X 为取自同一总体X 的简单随机样本,下列统计量中方差最小的是( )
(1)
321535252X X X ++ (2)321213161X X X ++ (3)32114914371X X X ++ (4)3213
13131X X X ++ 9. 设随机变量 n X X X ,,,21相互独立且同分布,它的期望为μ,方差为2
σ,令∑==n
i i n X n Z 1
1,则
对任意正数ε,有{}=
≥-∞
→εμn n Z P lim
( )
(1)0.5 (2) 1 (3) 0 (4) 上述都不对
10. 设随机变量21,X X 独立,{}5.00==i X P ,{}5.01==i X P ,2,1=i ,下列结论正确的是( )
(1)21X X = (2)1}{21==X X P (3)5.0}{21==X X P (4)以上都不对
二、填空(每小题3分,共18分,右侧对应题号处写答案)
1. 设事件A 与B ,7.0)(=A P ,3.0)(=-B A P ,则=)(AB P ① .
2.已知离散型随机变量X 分布律为{},k
P X k C
==
1,2,k N =,则=C ② ______ 3.总体2~(,)X N μσ,其中2σ已知,则均值μ的置信度为1α-置信区间为 ③ ____________________________________________________________________ 4. 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望)(2X E 为④_________________
5. 设(621,,,X X X )是来自正态分布)1,0(N 的样本,26
4
2
3
1
)()(∑∑==+=i i i i X X Y , 若
cY 服从2χ分布,则C=⑤_______
6. 从数1,2,3,4中任取一个数,记为X ,再从X ,,1 中任取一个数,记为Y ,则
==}2{Y P ⑥
(7分)三、 某厂有三条流水线生产同一产品,每条流水线的产品分别占总量的40%,35%,25%,又这三条流水线的次品率分别为0.02, 0.04,0.05。

现从出厂的产品中任取一件,问恰好取到次品的概率是多少?
(7分)四、 设随机变量X 的密度函数为()f x X
,1+=X Y ,求Y 的概率密度函数.
(8分)五.
注意:学号参照范例用铅笔工整书写和填涂,上方写学号,下方填涂,一一对齐;每六点连线确定一个数字,连线不间断,不得涂改;数字1可连左边或右边,请认真完成。

本卷共4页,须在虚线框内完成作答。

选择题通过填涂选项编号数字作答。

右侧为选择题答案填涂区(答案选项用铅笔连成数字)
,其中选第1项涂1, 选第2项涂2, 以此类推;填涂规
则见学号范例,
六点一个数字,数字1可连接左边或右边三点。

注意:框架内只填涂答案,不可书写其他内容,不涂改。

第3页 第4页
(7分)五、设随机变量X
的分布密度为:1()0,1x f x x <=≥⎩
当当
试求:(1)1
1
⎛⎫-<< ⎪p X ; (2)分布函数()F x
(7分)六、 设随机变量X 的概率密度为+∞<<-∞=
-x e x f x
,2
)(.求:(1)X 的数学期望)(X E 和
(8分)七、某电站供应10000户居民用电。

设在高峰时每户用电的概率为0.8,且各户的用电是相互独
(8分)八、 设总体X 的概率密度函数为⎩⎨⎧≥=--其他,0,)()(θ
θx e x f x ,θ为未知参数,n X X X ,,,21 是来自X
的样本,求θ的矩估计量θˆ,并验证θˆ是θ的无偏估计量.
(8分)九、证明题:设t ˆ是参数t 的无偏估计,且0)ˆ2ˆ2
第1页 第2页
概率统计试题(20170225)参考答案
一.2,1,2,2,2,1,2,4,3,3 二.(1)0.6(2)
2)1(+N N (3)
),2
2n U X n U X σσαα+-((4)18.4(5)31(6)4813
三.全概率公式
3
1
255354402
()()()100100100100100100i i i P A P B P A B ===⨯+⨯+⨯
∑ 0.0345=
四.1+=x y 单调可导,,1-=y x 由公式法,)1()(-=y f y f X Y 五. (1)P(-1/2<ξ
<1/2)=1/2
1/2
1/21
2
arcsin 1/30
x
π
π
-=
=⎰
当x<-1时 F(x)=
0-∞
=⎰
x 0dx
当11x -≤<时
F(x)=
1
1
1
arcsin arcsin 12x
x
dx x
x π
π-=
=+-⎰
当x 1≥时
F(x)=
1
1
1
arcsin 11
x
π
-=
=-⎰
故ξ分布函数为 F(x)=011
arcsin 21x π⎧⎪⎪+⎨
⎪⎪⎩
1
-111
≤≥x<-x<x
六. 021)(=⋅=
-∞
+∞-⎰dx e x X E x
,=)(X D dx e x x -∞+∞-⎰⋅-21)0(222
12=⋅=-∞+∞
-⎰dx e x x )()()()(),(X X E X E X E X X E X X Cov =-⋅=02
1=⋅=-∞
+∞-⎰dx e x x x
X 与X
不相关
,00>∀x =≤≤),(00x X x X p >≤)(0x X p )()(00x X p x X p ≤⋅≤
即存在00>x ,使[[)()(),(0000x F x F x x F X X ≠
,故X 与X
不相互独立。

七.X 为用户数)8.0,10000(~B
1600)1(.8000=-=p np np X P (>8100)=0062.0)5.2(1)1600
8000
8100(
1)8100(1=Φ-=-Φ-≈≤-X p
八.由1)()(+==⎰

--θθ
θdx xe X E x 得:1ˆ-=X θ 而θθθ=-+=-=-=∑=1)(11)1(1)()ˆ(1n n n
X n E X E E n i i ,所以1ˆ-=X θ
是θ的无偏估计。

九.由公式 ()
()()[]2
2
x E x D x E += 有 ()
()()[]()222
2
ˆˆˆˆt t t D t E t
D t
E >+=+= 故2ˆt
不是2t 的无偏估计量.。

相关文档
最新文档