2018年云南省曲靖市罗平县中考数学一模试卷含答案解析

合集下载

云南省曲靖市2018年中考数学模拟(一)试卷、参考答案与试题解析(精品)

云南省曲靖市2018年中考数学模拟(一)试卷、参考答案与试题解析(精品)

云南省曲靖市2018年中考数学模拟(一)试卷、参考答案与试题解析(精品)一、填空题(本大题共6小题,每小题3分,共18分)1.的倒数是.2.一个多边形的内角和是720°,那么这个多边形是边形.3.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡的经济损失,灾害牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手.截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款80100万元.科学记数法表示为元.4.一元二次方程6x2﹣12x=0的解是.5.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.6.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现己知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2014= .二、选择题(本大题共8小题,每小题4分,共32分)7.﹣的相反数是()A.2 B.﹣2 C.D.﹣8.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣2ab3)2=﹣4a2b6C.3a2﹣2a3=a6D.a3﹣a=a(a+1)(a﹣1)9.如图,C是⊙O上一点,若圆周角∠ACB=40°,则圆心角∠AOB的度数是()A.50°B.60°C.80°D.90°10.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.11.不等式组的解集是()A.x≥5 B.5≤x<8 C.x>8 D.无解12.下列说法正确的是()A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定13.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④三、解答题(本大题共9小题,共70分)15.计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.16.(6分)化简求值:,其中x=3.17.(7分)为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用2880元钱购买的成语词典,打折后购买的数量比打折前多10本.求打折前每本词典的售价是多少元?18.(7分)如图,在平面直角坐标系中,直线AC与x轴交于C点,与y轴交于A点,直线AB与x轴交于B点,与y轴交于A点,已知A(0,4),B(2,0).(1)求直线AB的解析式.(2)若S△ABC=7,求点C的坐标.19.(7分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.20.(8分)在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在表中的频数分布表中,m= ,n= .(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?21.(9分)东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.22.(9分)如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.(1)求证:AC平分∠BAD;(2)若CD=3,AC=3,求⊙O的半径长.23.(12分)已知一次函数y=﹣x+1与抛物线y=x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.云南省曲靖市2018年中考数学模拟(一)试卷、参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.的倒数是.【考点】17:倒数.【分析】根据倒数的定义求解即可.【解答】解:的倒数是,故答案为:.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.一个多边形的内角和是720°,那么这个多边形是六边形.【考点】L3:多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是六,故答案为:六.【点评】考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.3.云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡的经济损失,灾害牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手.截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款80100万元.科学记数法表示为8.01×108元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:数据80100万用科学记数法可表示:8.01×108,故答案为:8.01×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.一元二次方程6x2﹣12x=0的解是x1=0,x2=2 .【考点】A8:解一元二次方程﹣因式分解法.【分析】利用因式分解法解方程.【解答】解:6x(x﹣2)=0,6x=0或x﹣2=0,所以x1=0,x2=2.故答案为x1=0,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】阴影部分的面积=三角形的面积﹣扇形的面积,根据面积公式计算即可.【解答】解:由旋转可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴阴影部分的面积=2×2÷2﹣=.故答案为:.【点评】本题考查了三角形和扇形的面积公式及三角函数值,关键是得到△BCD是等边三角形.6.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现己知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2014=﹣.【考点】37:规律型:数字的变化类;17:倒数.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2014=3×671+1,所以x2013=x1=﹣.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;∴x5=,…,∵2014=3×671+1,∴x2013=x1=﹣.故答案为:﹣.【点评】考查了规律型:从简单情形考虑,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、选择题(本大题共8小题,每小题4分,共32分)7.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.8.下列运算正确的是()A.(a+b)2=a2+b2B.(﹣2ab3)2=﹣4a2b6C.3a2﹣2a3=a6D.a3﹣a=a(a+1)(a﹣1)【考点】55:提公因式法与公式法的综合运用;35:合并同类项;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】A、原式利用完全平方公式化简得到结果,即可做出判断;B、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、原式提取公因式,再利用平方差公式分解即可.【解答】解:A、原式=a2+b2+2ab,错误;B、原式=4a2b6,错误;C、原式不能合并,错误;D、原式=a(a+1)(a﹣1),正确,故选D【点评】此题考查了提公因式法与公式法的综合运用,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.如图,C是⊙O上一点,若圆周角∠ACB=40°,则圆心角∠AOB的度数是()A.50°B.60°C.80°D.90°【考点】M5:圆周角定理.【分析】根据一条弧所对的圆周角的度数等于它所对的圆心角的度数的一半求解即可.【解答】解:∵∠ACB=40°,∴∠AOB=2∠C=80°.故选C.【点评】此题主要是根据圆周角定理得到圆周角和圆心角之间的关系.10.如图是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据几何体的三视图,即可解答.【解答】解:根据图形可得主视图为:故选:C.【点评】本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.11.不等式组的解集是()A.x≥5 B.5≤x<8 C.x>8 D.无解【考点】CB:解一元一次不等式组.【分析】分别求出每个不等式的解集,根据同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组解集即可.【解答】解:解≥1,得:x≥5,解不等式8﹣x>0,得:x<8,故不等式组的解集为:5≤x<8,故选:B.【点评】本题主要考查解不等式组的基本能力,解每个不等式是求不等式组解集的根本,根据口诀确定解集的公共部分是解不等式组的关键.12.下列说法正确的是()A.了解某班同学的身高情况适合用全面调查B.数据2、3、4、2、3的众数是2C.数据4、5、5、6、0的平均数是5D.甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定【考点】W7:方差;V2:全面调查与抽样调查;W1:算术平均数;W5:众数.【分析】根据调查方式,可判断A;根据众数的意义可判断B;根据平均数的意义,可判断C;根据方差的性质,可判断D.【解答】解:A、了解某班同学的身高情况适合全面调查,故A正确;B、数据2、3、4、2、3的众数是2,3,故B错误;C、数据4、5、5、6、0的平均数是4,故C错误;D、方差越小越稳定,乙的方差小于甲得方差,乙的数据等稳定,故D错误.故选:A.【点评】本题考查了方差,方差越小数据越稳定是解题关键.13.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)【考点】SC:位似变换;D5:坐标与图形性质.【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标.【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④【考点】H4:二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选:B.【点评】本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.三、解答题(本大题共9小题,共70分)15.计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣2×+2+1=+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.化简求值:,其中x=3.【考点】6D:分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•﹣=﹣=,当x=3时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用2880元钱购买的成语词典,打折后购买的数量比打折前多10本.求打折前每本词典的售价是多少元?【考点】B7:分式方程的应用.【分析】设打折前售价为x元,则打折后售价为0.9x元,表示出打折前购买的数量及打折后购买的数量,再由打折后购买的数量比打折前多10本,可得出方程,解出即可.【解答】解:设打折前每本词典的售价是x元,由题意得:,解得:x=32,经检验:x=32是原方程的解.答:打折前每本词典的售价是32元.【点评】本题考查了分式方程的应用,解答此类应用类题目,一定要先仔细审题,有时需要读上几遍,找到解题需要的等量关系.18.如图,在平面直角坐标系中,直线AC与x轴交于C点,与y轴交于A点,直线AB与x轴交于B点,与y轴交于A点,已知A(0,4),B(2,0).(1)求直线AB的解析式.(2)若S△ABC=7,求点C的坐标.【考点】FF:两条直线相交或平行问题.【分析】(1)设直线AB的解析式为y=kx+b,把A(0,4),B(2,0)代入即可得出答案;(2)根据S△ABC=7得出BC的长度,从而得出点C的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b∵直线AB经过A(0,4),B(2,0)∴,解之得,∴直线AB的解析式为y=﹣2x+4;(2)设C(x,0)∵A(0,4),B(2,0)∴OA=4,OB=2∵S△ABC=7,∴BC•OA=7,∴BC=3.5,∴|x﹣2|=3.5,解得:x=5.5或x=﹣1.5,∴C(﹣1.5,0)或C(5.5,0).【点评】本题考查了两条直线相交或平行问题,以及一次函数的性质,熟知用待定系数法求一次函数的解析式是解答此题的关键.19.如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【考点】LA:菱形的判定与性质.【分析】(1)由平行四边形的性质得出AD=BC,由直角三角形斜边上的中线性质得出AE=BC=CE,AF=AD=CF,得出AE=CE=AF=CF,即可得出结论;(2)连接EF交AC于点O,解直角三角形求出AC、AB,由三角形中位线定理求出OE,得出EF,菱形AECF的面积=AC•EF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC ,在Rt △ABC 中,∠BAC=90°,点E 是BC 边的中点,∴AE=BC=CE ,同理,AF=AD=CF ,∴AE=CE=AF=CF ,∴四边形AECF 是菱形;(2)解:连接EF 交AC 于点O ,如图所示:在Rt △ABC 中,∠BAC=90°,∠B=30°,BC=10,∴AC=BC=5,AB=AC=5,∵四边形AECF 是菱形,∴AC ⊥EF ,OA=OC ,∴OE 是△ABC 的中位线,∴OE=AB=, ∴EF=5,∴菱形AECF 的面积=AC•EF=×5×5=.【点评】本题考查了平行四边形的性质、菱形的判定与性质、直角三角形斜边上的中线性质、三角形中位线定理、菱形的面积公式;熟练掌握菱形的判定与性质,并能进行推理论证与计算是解决问题的关键.20.小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【解答】解:(1)设甲种服装购进x件,则乙种服装购进(100﹣x)件,根据题意得:,解得:65≤x≤75,∴甲种服装最多购进75件;(2)设总利润为W元,W=(120﹣80﹣a)x+(90﹣60)(100﹣x)即w=(10﹣a)x+3000.①当0<a<10时,10﹣a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10﹣a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.【点评】本题考查了一元一次方程的应用,不等式组的应用,以及一次函数的性质,正确利用x表示出利润是关键.21.东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)、(2)先利用B的人数和所占的百分比计算出全班人数,再利用C、E的百分比计算出C、E的人数,则用全班人数分别减去B、C、D、E的人数得到A的人数,然后计算A、D所占百分比;(3)根据样本估计总体,用40%表示全校学生对足球感兴趣的百分比,然后用3500乘以40%即可得到选修足球的人数;(4)先利用树状图展示所有20种等可能的结果数,找出选出的2人恰好1人选修篮球,1人选修足球所占结果数,然后根据概率公式求解.【解答】解:(1)∵该班人数为8÷16%=50(人),∴C的人数=24%×50=12(人),E的人数=8%×50=4(人),∴A的人数=50﹣8﹣12﹣4﹣6=20(人),A所占的百分比=×100%=40%,D所占的百分比=×100%=12%,如图,(2)由(1)得该班学生人数为50人;(3)3500×40%=1400(人),估计有1400人选修足球;(4)画树状图:共有20种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占6种,所以选出的2人恰好1人选修篮球,1人选修足球的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了样本估计总体、扇形统计图和条形统计图.22.如图,C 为以AB 为直径的⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为点D .(1)求证:AC 平分∠BAD ;(2)若CD=3,AC=3,求⊙O 的半径长.【考点】MC:切线的性质;M5:圆周角定理;S9:相似三角形的判定与性质.【分析】(1)首先连接OC,由CD切⊙O于C,根据切线的性质,可得OC⊥CD,又由AD⊥CD,可得OC∥AD,又由OA=OC,易证得∠DAC=∠CAO,即AC平分∠BAD;(2)首先过点O作OE⊥AC于E,由CD=3,AC=3,在Rt△ADC中,利用勾股定理即可求得AD的长,由垂径定理,即可得AE的长,然后易证得△AEO∽△ADC,根据相似三角形的对应边成比例,即可求得⊙O的半径长.【解答】(1)证明:连接OC,∵OA=OC,∴∠ACO=∠CAO,∵CD切⊙O于C,∴CO⊥CD.又∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠BAD;(2)解:过点O作OE⊥AC于E,∵CD=3,AC=3,在Rt△ADC中,AD==6,∵OE⊥AC,∴AE=AC=,∵∠CAO=∠DAC,∠AEO=∠ADC=90°,∴△AEO∽△ADC,∴,即,∴AO=,即⊙O的半径为.【点评】此题考查了切线的性质、垂径定理、等腰三角形的性质、平行线的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.(12分)(2017•曲靖模拟)已知一次函数y=﹣x+1与抛物线y= x2+bx+c交于A(0,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点F,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长.【考点】HF:二次函数综合题.【分析】(1)把A坐标代入抛物线解析式可求出c的值,把B的纵坐标代入直线解析式可求出其横坐标,再代入抛物线解析式即可求出b的值;(2)△ABC的形状是直角三角形,分别作BG垂直于y轴,CH垂直于y轴,依次求∠BAG=45°,∠CAH=45°,进而得到∠CAB=90°;(3)首先利用勾股定理易求AB的长,进而得到AC的长,利用三角形中位线的性质即可求出EF的长,再利用勾股定理即可求出AF的长,继而求出平行四边形ADEF的周长.【解答】解:(1)把A(0,1),代入y=x2+bx+c,解得c=1,将y=10代入y=﹣x+1,得x=﹣9,∴B点坐标为(﹣9,10),将B (﹣9,10),代入y=x2+bx+c 得b=2;(2)△ABC是直角三角形,理由如下:∵y=x2+2x+1=(x+3)2﹣2,∴点C的坐标为(﹣3,﹣2),分别作BG垂直于y轴,CH垂直于y轴∵BG=AG=9,∴∠BAG=45°,同理∠CAH=45°,∴∠CAB=90°∴△ABC是直角三角形;(3)∵BG=AG=9,∴AB=9,∵CH=AH=3,∴AC=3,∵四边形ADEF为平行四边形,∴AD∥EF,又∵F为CD中点,∴CE=BE,即EF为△DBC的中位线,EF∴EF=AD=BD,∵AB=9,∴EF=AD=3在Rt△ACD中,AD=3,AC=3,∴CD=6,∴AF=3,∴平行四边形ADEF周长为6+6.【点评】本题主要考查了二次函数解析式的确定、二次函数的性质、勾股定理的运用、直角三角形的判定方法和性质、三角形中位线定理、平行四边形的性质和平行三边的周长计算,题目的综合性较强,难度中等.云南省曲靖市2018年中考数学模拟(二)试卷、参考答案与试题解析(精品)一、填空题(本大题共6小题,每小题3分,共18分)1.2016年某水库蓄水量达5190000m3,蓄水量创5年来新高,5190000m3用科学记数法表示为m3.2.分式方程=的解是.3.如图,AB是⊙O的直径,C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.4.一元二次方程x2+mx+2m=0的两个实根分别为x1,x2,若x1+x2=1,则x1x2= .5.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为.6.观察下列等式:,,,…则= .(直接填结果,用含n的代数式表示,n是正整数,且n≥1)二、选择题(本大题共8小题,每小题4分,共32分)7.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.8.下列运算正确的是()A.a2+a2=a4B.a6÷a3=a2C.a3×a2=a5D.(a3b)2=a5b39.如图是一个几何体的三视图,则这个几何体是()A.正方体B.长方体C.三棱柱D.三棱锥10.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.11.要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. x(x+1)=15 B. x(x﹣1)=15 C.x(x+1)=15 D.x(x ﹣1)=1512.不等式组的最小整数解是()A.﹣1 B.0 C.1 D.213.在如图的四个转盘中,C,D转盘被分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.14.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A.B. C.D.三、解答题(本大题共9小题,共70分)15.计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|16.(6分)先化简,再求值:( +)÷,其中a=﹣1.17.(7分)如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)18.(7分)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.19.(7分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为60°,若AC=6,BD=8,求▱ABCD的面积.(,结果精确到0.1)20.(8分)小明到服装店进行社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元,乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500元,则甲种服装最多购进多少件??(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?。

2018年云南省曲靖市中考数学试卷(含答案解析版)

2018年云南省曲靖市中考数学试卷(含答案解析版)

2018年云南省曲靖市中考数学试卷一、选择题(共8题,每题4分)1.(4分)(2018•曲靖)﹣2的绝对值是()A.2B.﹣2C.12D.−122.(4分)(2018•曲靖)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.3.(4分)(2018•曲靖)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣32a)3=﹣98a4.(4分)(2018•曲靖)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为 3.11×104亿元美元,则 3.11×104亿表示的原数为()A.亿B.31100亿C.3110亿D.311亿5.(4分)(2018•曲靖)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108°D.120°6.(4分)(2018•曲靖)下列二次根式中能与2√3合并的是()A.√8B.√13C.√18D.√97.(4分)(2018•曲靖)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=kx的图象经过点A的对应点A′,则k的值为()A.6B.﹣3C.3D.68.(4分)(2018•曲靖)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E 为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=KBLB,④S△CGE:S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(共6题,每题3分)9.(3分)(2018•曲靖)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.10.(3分)(2018•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=°.11.(3分)(2018•曲靖)如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是 .12.(3分)(2018•曲靖)关于x 的方程ax 2+4x ﹣2=0(a ≠0)有实数根,那么负整数a= (一个即可).13.(3分)(2018•曲靖)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为 元.14.(3分)(2018•曲靖)如图:图象①②③均是以P 0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P 1P 2P 3,第二次移动后图形①②③的圆心依次为P 4P 5P 6…,依次规律,P 0P 2018= 个单位长度.三、解答题15.(5分)(2018•曲靖)计算﹣(﹣2)+(π﹣3.14)0+√273+(﹣13)﹣1 16.(2018•曲靖)先化简,在求值(1a−b ﹣b a 2−b 2)÷a 2−ab a 2−2ab+b 2,其中a ,b满足a +b ﹣12=0. 17.(2018•曲靖)如图:在平行四边形ABCD 的边AB ,CD 上截取AF ,CE ,使得AF=CE,连接EF,点M,N是线段上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.18.(2018•曲靖)甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?19.(2018•曲靖)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答一下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.20.(2018•曲靖)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?21.(2018•曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.22.(2018•曲靖)如图,AB 为⊙O 的直径,点C 为⊙O 上一点,将弧BC 沿直线BC 翻折,使弧BC 的中点D 恰好与圆心O 重合,连接OC ,CD ,BD ,过点C 的切线与线段BA 的延长线交于点P ,连接AD ,在PB 的另一侧作∠MPB=∠ADC .(1)判断PM 与⊙O 的位置关系,并说明理由;(2)若PC=√3,求四边形OCDB 的面积.23.(2018•曲靖)如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x +c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的廷长线,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.2018年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8题,每题4分)1.(4分)(2018•曲靖)﹣2的绝对值是()A.2B.﹣2C.12D.−12【考点】15:绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2018•曲靖)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.(4分)(2018•曲靖)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣32a)3=﹣98a【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;6A:分式的乘除法.【专题】11:计算题;513:分式.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=﹣a2b,符合题意;D、原式=﹣278a3,不符合题意,故选:C.【点评】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.4.(4分)(2018•曲靖)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为 3.11×104亿元美元,则 3.11×104亿表示的原数为()A.亿B.31100亿C.3110亿D.311亿【考点】1I:科学记数法—表示较大的数;1K:科学记数法—原数.【专题】17:推理填空题.【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此求解即可.【解答】解:3.11×104亿=31100亿故选:B.【点评】此题主要考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5.(4分)(2018•曲靖)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108°D.120°【考点】L3:多边形内角与外角.【专题】11:计算题.【分析】根据正多边形的内角和定义(n﹣2)×180°,先求出边数,再用内角和除以边数即可求出这个正多边形的每一个内角.【解答】解:(n﹣2)×180°=720°,∴n﹣2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.【点评】考查了多边形内角与外角.解题的关键是掌握好多边形内角和公式:(n ﹣2)×180°.6.(4分)(2018•曲靖)下列二次根式中能与2√3合并的是()A.√8B.√13C.√18D.√9【考点】77:同类二次根式.【专题】11:计算题.【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【解答】解:A、√8=2√2,不能与2√3合并,错误;B、√13=√33能与2√3合并,正确;C、√18=3√2不能与2√3合并,错误;D、√9=3不能与2√3合并,错误;故选:B.【点评】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.7.(4分)(2018•曲靖)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=kx的图象经过点A的对应点A′,则k的值为()A.6B.﹣3C.3D.6【考点】G6:反比例函数图象上点的坐标特征;R7:坐标与图形变化﹣旋转.【专题】1:常规题型.【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【解答】解:如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=kx的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=k x ,解得:k=3.故选:C.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.8.(4分)(2018•曲靖)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E 为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=KBLB,④S△CGE:S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④【考点】LE:正方形的性质;N2:作图—基本作图;S9:相似三角形的判定与性质;T7:解直角三角形.【专题】55:几何图形.【分析】①在△AOL和△BLK中,根据三角形内角和定理,如图两个角对应相等,则第三个角∠LKB=∠BAC=22.5°;②根据线段中垂线定理证明∠AEG=∠EAG=22.5°=∠BAE,可得EG∥AB;③根据等量代换可得:∠CGF=∠BLK,可作判断;④连接EL ,证明四边形ALEG 是菱形,根据EL >BL ,及相似三角形的性质可作判断.【解答】解:①∵四边形ABCD 是正方形,∴∠BAC=12∠BAD=45°, 由作图可知:AE 平分∠BAC ,∴∠BAE=∠CAE=22.5°,∵PQ 是AE 的中垂线,∴AE ⊥PQ ,∴∠AOL=90°,∵∠AOL=∠LBK=90°,∠ALO=∠KLB ,∴∠LKB=∠BAE=22.5°;故①正确;②∵OG 是AE 的中垂线,∴AG=EG ,∴∠AEG=∠EAG=22.5°=∠BAE ,∴EG ∥AB ,故②正确;③∵∠LAO=∠GAO ,∠AOL=∠AOG=90°,∴∠ALO=∠AGO ,∵∠CGF=∠AGO ,∠BLK=∠ALO ,∴∠CGF=∠BLK ,在Rt △BKL 中,tan ∠CGF=tan ∠BLK=BK BL, 故③正确;④连接EL ,∵AL=AG=EG ,EG ∥AB ,∴四边形ALEG 是菱形,∴AL=EL=EG >BL ,∴EG AB ≠12,∵EG∥AB,∴△CEG∽△CBA,∴S△CEGS△CBA =(EGAB)2≠14,故④不正确;本题正确的是:①②③,故选:A.【点评】本题考查了基本作图:角平分线和线段的垂直平分线,三角形相似的性质和判定,菱形的性质和判定,三角函数,正方形的性质,熟练掌握基本作图是关键,在正方形中由于性质比较多,要熟记各个性质并能运用;是中考常考的选择题的压轴题.二、填空题(共6题,每题3分)9.(3分)(2018•曲靖)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是﹣3m.【考点】11:正数和负数.【专题】511:实数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.(3分)(2018•曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=n°.【考点】M6:圆内接四边形的性质.【专题】1:常规题型.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n【点评】本题考查了圆内接四边形的性质.解决本题的关键是掌握:圆内接四边形的对角互补.11.(3分)(2018•曲靖)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是18.【考点】KX:三角形中位线定理.【专题】17:推理填空题.【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为:18.【点评】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.12.(3分)(2018•曲靖)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=﹣2(一个即可).【考点】AA:根的判别式.【专题】1:常规题型.【分析】先根据判别式的意义得到△=42+8a≥0,解得a≥﹣2,然后在解集中找出负整数即可.【解答】解:∵关于x的方程ax2+4x﹣2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥﹣2,∴负整数a=﹣1或﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.(3分)(2018•曲靖)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为80元.【考点】8A:一元一次方程的应用.【专题】34:方程思想;521:一次方程(组)及应用.【分析】设该书包的进价为x元,根据销售收入﹣成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【解答】解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.(3分)(2018•曲靖)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依次规律,P0P2018=673个单位长度.【考点】38:规律型:图形的变化类;Q3:坐标与图形变化﹣平移.【专题】2A:规律型.【分析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=673.【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P 0P 7=3,P 0P 8=3,P 0P 9=3;∵2018=3×672+2,∴点P 2018在正南方向上,∴P 0P 2018=672+1=673,故答案为:673.【点评】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题15.(5分)(2018•曲靖)计算﹣(﹣2)+(π﹣3.14)0+√273+(﹣13)﹣1 【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【专题】1:常规题型.【分析】直接利用立方根的性质以及零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=2+1+3﹣3=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.(2018•曲靖)先化简,在求值(1a−b ﹣b a 2−b 2)÷a 2−ab a 2−2ab+b 2,其中a ,b满足a +b ﹣12=0. 【考点】6D :分式的化简求值.【专题】11:计算题;513:分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=a+b−b (a+b)(a−b)•(a−b)2a(a−b)=1a+b , 由a +b ﹣12=0,得到a +b=12,则原式=2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(2018•曲靖)如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.【考点】KD:全等三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】(1)利用平行线的性质,根据SAS即可证明;(2)利用全等三角形的性质可知∠NAF=∠ECM,求出∠ECM即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.(2018•曲靖)甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用.【分析】设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设甲每小时做x 个零件,则乙每小时做(x ﹣4)个零件,根据题意得:120x =100x−4, 解得:x=24,经检验,x=24是分式方程的解,∴x ﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(2018•曲靖)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答一下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.【考点】V3:总体、个体、样本、样本容量;V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【专题】1:常规题型;542:统计的应用.【分析】(1)由12岁的人数及其所占百分比可得样本容量;(2)先求出14、16岁的人数,再根据平均数、众数和中位数的定义求解可得;(3)用总人数乘以样本中15、16岁的人数所占比例可得.【解答】解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为12×6+13×10+14×14+15×18+16×250=14(岁), 中位数为14+142=14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为1800×18+250=720人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(2018•曲靖)某公司计划购买A ,B 两种型号的电脑,已知购买一台A 型电脑需0.6万元,购买一台B 型电脑需0.4万元,该公司准备投入资金y 万元,全部用于购进35台这两种型号的电脑,设购进A 型电脑x 台.(1)求y 关于x 的函数解析式;(2)若购进B 型电脑的数量不超过A 型电脑数量的2倍,则该公司至少需要投入资金多少万元?【考点】C9:一元一次不等式的应用;FH :一次函数的应用.【专题】11:计算题.【分析】(1)根据题意列出关于x 、y 的方程,整理得到y 关于x 的函数解析式;(2)解不等式求出x 的范围,根据一次函数的性质计算即可.【解答】解:(1)由题意得,0.6x +0.4×(35﹣x )=y ,整理得,y=0.2x +14(0<x <35);(2)由题意得,35﹣x≤2x,解得,x≥35 3,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.【点评】本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.21.(2018•曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.【考点】K6:三角形三边关系;X6:列表法与树状图法.【专题】1:常规题型;543:概率及其应用.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果;(2)由四张卡片中只有C、D两张卡片能构成三角形,据此利用概率公式求解可得.【解答】解:(1)由题意可得,共有12种等可能的结果;(2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为212=16.【点评】本题考查树状图的运用,注意作图列表时按一定的顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.22.(2018•曲靖)如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=√3,求四边形OCDB的面积.【考点】M5:圆周角定理;MB:直线与圆的位置关系;MC:切线的性质;PB:翻折变换(折叠问题).【专题】11:计算题.【分析】(1)连接DO并延长交PM于E,如图,利用折叠的性质得OC=DC,BO=BD,则可判断四边形OBDC为菱形,所以OD⊥BC,△OCD和△OBD都是等边三角形,从而计算出∠COP=∠EOP=60°,接着证明PM∥BC得到OE⊥PM,所以OE=12 OP,根据切线的性质得到OC ⊥PC ,则OC=12OP ,从而可判定PM 是⊙O 的切线; (2)先在Rt △OPC 中计算出OC=1,然后根据等边三角形的面积公式计算四边形OCDB 的面积.【解答】解:(1)PM 与⊙O 相切.理由如下:连接DO 并延长交PM 于E ,如图,∵弧BC 沿直线BC 翻折,使弧BC 的中点D 恰好与圆心O 重合,∴OC=DC ,BO=BD ,∴OC=DC=BO=BD ,∴四边形OBDC 为菱形,∴OD ⊥BC ,∴△OCD 和△OBD 都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC ,而∠ADC=∠ABC ,∴∠ABC=∠MPB ,∴PM ∥BC ,∴OE ⊥PM ,∴OE=12OP , ∵PC 为⊙O 的切线,∴OC ⊥PC ,∴OC=12OP , ∴OE=OC ,而OE ⊥PC ,∴PM 是⊙O 的切线;(2)在Rt △OPC 中,OC=√33PC=√33×√3=1, ∴四边形OCDB 的面积=2S △OCD =2×√34×12=√32.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了直线与圆的关系、圆周角定理和折叠的性质.23.(2018•曲靖)如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x +c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的廷长线,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【考点】HF :二次函数综合题.【专题】16:压轴题.【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到Q x +P x 2=F X +E x 2,Q y +P y 2=F y +E y 2,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.【解答】解:(1)当y=0时,13x ﹣43=0,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得{16a −12+c =0−−32a =32, 解得{a =1c =−4,抛物线的解析式为y=x 2﹣3x ﹣4; (2)∵平移直线l 经过原点O ,得到直线m ,∴直线m 的解析式为y=13x . ∵点P 是直线1上任意一点,∴设P (3a ,a ),则PC=3a ,PB=a .又∵PE=3PF ,∴PC PF =PB PE. ∴∠FPC=∠EPB .∵∠CPE +∠EPB=90°,∴∠FPC +∠CPE=90°,∴FP ⊥PE .(3)如图所示,点E 在点B 的左侧时,设E (a ,0),则BE=6﹣a .∵CF=3BE=18﹣3a ,∴OF=20﹣3a .∴F (0,20﹣3a ).∵PEQF 为矩形,∴Q x +P x 2=F X +E x 2,Q y +P y 2=F y +E y 2, ∴Q x +6=0+a ,Q y +2=20﹣3a +0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=4或a=8(舍去).∴Q (﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18,∴OF=3a ﹣20.∴F (0,20﹣3a ).∵PEQF 为矩形,∴Q x +P x 2=F X +E x 2,Q y +P y 2=F y +E y 2, ∴Q x +6=0+a ,Q y +2=20﹣3a +0,∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去).∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.。

云南省曲靖市2018年中考数学试题(解析版)

云南省曲靖市2018年中考数学试题(解析版)

2018年云南省曲靖市中考数学试卷含答案【精品】一、选择题(共8题,每题4分)1. ﹣2的绝对值是()A. 2B. ﹣2C.D.【答案】A【解析】分析:根据绝对值的代数意义进行分析解答即可.详解:-2的绝对值是2.故选A.点睛:熟知绝对值的代数意义:“一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0”是正确解答这类题的关键.2. 如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A. B. C. D.【答案】D【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】从左面看去,是两个有公共边的矩形,如图所示:故选D.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3. 下列计算正确的是()A. a2•a=a2B. a6÷a2=a3C. a2b﹣2ba2=﹣a2bD. (﹣)3=﹣【答案】C【解析】【分析】根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.【详解】A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=-a2b,符合题意;D、原式=-,不符合题意,故选C.【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.4. 截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A. 2311000亿B. 31100亿C. 3110亿D. 311亿【答案】B【解析】【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此求解即可.【详解】3.11×104亿=31100亿故选B.【点睛】此题主要考查了科学记数法-原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10-n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5. 若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A. 60°B. 90°C. 108°D. 120°【答案】D【解析】【分析】根据正多边形的内角和定义(n-2)×180°,先求出边数,再用内角和除以边数即可求出这个正多边形的每一个内角.【详解】(n-2)×180°=720°,∴n-2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选D.【点睛】考查了多边形内角与外角.解题的关键是掌握好多边形内角和公式:(n-2)×180°.6. 下列二次根式中能与2合并的是()A. B. C. D.【答案】B【解析】【分析】先化简选项中各二次根式,然后找出被开方数为3的二次根式即可.【详解】A、=2,不能与2合并,故该选项错误;B、能与2合并,故该选项正确;C、=3不能与2合并,故该选项错误;D、=3不能与2合并,错误;故选B.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.7. 如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...A. 6B. ﹣3C. 3D. 6【答案】C【解析】【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=的图象经过点A 的对应点A′,∴A′(3,1),则把A′代入y=,解得:k=3.故选C.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.8. 如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB 于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是()A. ①②③B. ②③④C. ①③④D. ①②④【答案】A【解析】【分析】①在△AOL和△BLK中,根据三角形内角和定理,如图两个角对应相等,则第三个角∠LKB=∠BAC=22.5°;②根据线段中垂线定理证明∠AEG=∠EAG=22.5°=∠BAE,可得EG∥AB;③根据等量代换可得:∠CGF=∠BLK,可作判断;④连接EL,证明四边形ALEG是菱形,根据EL>BL,及相似三角形的性质可作判断.【详解】①∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,由作图可知:AE平分∠BAC,∴∠BAE=∠CAE=22.5°,∵PQ是AE的中垂线,∴AE⊥PQ,∴∠AOL=90°,∵∠AOL=∠LBK=90°,∠ALO=∠KLB,∴∠LKB=∠BAE=22.5°;故①正确;②∵OG是AE的中垂线,∴AG=EG,∴∠AEG=∠EAG=22.5°=∠BAE,∴EG∥AB,故②正确;③∵∠LAO=∠GAO,∠AOL=∠AOG=90°,∴∠ALO=∠AGO,∵∠CGF=∠AGO,∠BLK=∠ALO,∴∠CGF=∠BLK,在Rt△BKL中,tan∠CGF=tan∠BLK=,故③正确;④连接EL,∵AL=AG=EG,EG∥AB,∴四边形ALEG是菱形,∴AL=EL=EG>BL,∴,∵EG∥AB,∴△CEG∽△CBA,∴,故④不正确;本题正确的是:①②③,故选A.【点睛】本题考查了基本作图:角平分线和线段的垂直平分线,三角形相似的性质和判定,菱形的性质和判定,三角函数,正方形的性质,熟练掌握基本作图是关键,在正方形中由于性质比较多,要熟记各个性质并能运用;是中考常考的选择题的压轴题.二、填空题(共6题,每题3分)9. 如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是_____.【答案】﹣3m.【解析】【详解】分析:与上升相反的量是下降,由题意,用正数表示上升,则就应该用负数表示下降,据此得出结论.详解:∵水位升高2m时,水位的变化记为+2m,∴ 水位下降3m,水位的变化记为-3m.故答案是:-3m.点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示,据此得出答案.10. 如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=_____°.【答案】n【解析】【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n【点睛】本题考查了圆内接四边形的性质.解决本题的关键是掌握:圆内接四边形的对角互补.11. 如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.【答案】18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.12. 关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=_____(一个即可).【答案】﹣2【解析】【分析】先根据判别式的意义得到△=42+8a≥0,解得a≥-2,然后在解集中找出负整数即可.【详解】∵关于x的方程ax2+4x-2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥-2,∴负整数a=-1或-2.故答案为-2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13. 一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为_____元.【答案】80【解析】【分析】设该书包的进价为x元,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】设该书包的进价为x元,根据题意得:115×0.8-x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14. 如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.【答案】673【解析】【分析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=673.【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=673,故答案为:673.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题15. 计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1【答案】3.【解析】【分析】直接利用立方根的性质以及零指数幂的性质以及负指数幂的性质分别化简得出答案.【详解】原式=2+1+3-3=3.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.16. 先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【答案】原式==2【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】(﹣)÷==由a+b﹣=0,得到a+b=,则原式==2.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17. 如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.【答案】(1)证明见解析;(2)∠NAF=35°.【解析】【分析】(1)利用平行线的性质,根据SAS即可证明;(2)利用全等三角形的性质可知∠NAF=∠ECM,求出∠ECM即可.【详解】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18. 甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?【答案】甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19. 某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.【答案】(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.【解析】【分析】(1)由12岁的人数除以所占百分比可得样本容量;(2)先求出14、16岁的人数,再根据平均数、众数和中位数的定义求解可得;(3)用总人数乘以样本中15、16岁的人数所占比例可得.【详解】解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为=14(岁),中位数为=14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为1800×=720人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20. 某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?【答案】(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.【解析】【分析】(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;(2)解不等式求出x的范围,根据一次函数的性质计算即可.【详解】解:(1)由题意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由题意得,35﹣x≤2x,解得,x≥,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.【点睛】本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.21. 数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c 表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.【答案】(1)用树状图表示见解析;(2)抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为.【解析】【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果;(2)由四张卡片中只有C、D两张卡片能构成三角形,据此利用概率公式求解可得.【详解】解:(1)由题意可得,共有12种等可能的结果;(2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为.【点睛】本题考查树状图的运用,注意作图列表时按一定的顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.22. 如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.【答案】(1)PM与⊙O相切,理由见解析;(2)四边形OCDB的面积为.【解析】【分析】(1)连接DO并延长交PM于E,如图,利用折叠的性质得OC=DC,BO=BD,则可判断四边形OBDC为菱形,所以OD⊥BC,△OCD和△OBD都是等边三角形,从而计算出∠COP=∠EOP=60°,接着证明PM∥BC 得到OE⊥PM,所以OE=OP,根据切线的性质得到OC⊥PC,则OC=OP,从而可判定PM是⊙O的切线;(2)先在Rt△OPC中计算出OC=1,然后根据等边三角形的面积公式计算四边形OCDB的面积.【详解】(1)PM与⊙O相切.理由如下:连接DO并延长交PM于E,如图,∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,∴OC=DC,BO=BD,∴OC=DC=BO=BD,∴四边形OBDC为菱形,∴OD⊥BC,∴△OCD和△OBD都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC,而∠ADC=∠ABC,∴∠ABC=∠MPB,∴PM∥BC,∴OE⊥PM,∴OE=OP,∵PC为⊙O的切线,∴OC⊥PC,∴OC=OP,∴OE=OC,而OE⊥PC,∴PM是⊙O的切线;(2)在Rt△OPC中,OC=PC=,∴四边形OCDB的面积=2S△OCD=2××12=.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了直线与圆的关系、圆周角定理和折叠的性质.23. 如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).【解析】【分析】(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可;(2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;(3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可.【详解】(1)当y=0时,,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴,,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴,,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a的式子表示点Q的坐标是解题的关键.。

(真题)2018年云南省曲靖市中考数学试题(有答案)

(真题)2018年云南省曲靖市中考数学试题(有答案)

2018年云南省曲靖市中考数学试卷一、选择题(共8题,每题4分)1.(4分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.3.(4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108° D.120°6.(4分)下列二次根式中能与2合并的是()A.B.C. D.7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.68.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC 于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE :S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(共6题,每题3分)9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=°.11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.12.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=(一个即可).13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为元.14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=个单位长度.三、解答题15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣116.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N 是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.18.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?19.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.20.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?21.数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.22.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D 恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.23.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y 轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.2018年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8题,每题4分)1.(4分)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.3.(4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣【解答】解:A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=﹣a2b,符合题意;D、原式=﹣,不符合题意,故选:C.4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿【解答】解:3.11×104亿=31100亿故选:B.5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108° D.120°【解答】解:(n﹣2)×180°=720°,∴n﹣2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.6.(4分)下列二次根式中能与2合并的是()A.B.C. D.【解答】解:A、,不能与2合并,错误;B、能与2合并,正确;C、不能与2合并,错误;D、不能与2合并,错误;故选:B.7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6【解答】解:如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=,解得:k=3.故选:C.8.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC 于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE :S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④【解答】解:①∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,由作图可知:AE平分∠BAC,∴∠BAE=∠CAE=22.5°,∵PQ是AE的中垂线,∴AE⊥PQ,∴∠AOL=90°,∵∠AOL=∠LBK=90°,∠ALO=∠KLB,∴∠LKB=∠BAE=22.5°;故①正确;②∵OG是AE的中垂线,∴AG=EG,∴∠AEG=∠EAG=22.5°=∠BAE,∴EG∥AB,故②正确;③∵∠LAO=∠GAO,∠AOL=∠AOG=90°,∴∠ALO=∠AGO,∵∠CGF=∠AGO,∠BLK=∠ALO,∴∠CGF=∠BLK,在Rt△BKL中,tan∠CGF=tan∠BLK=,故③正确;④连接EL,∵AL=AG=EG,EG∥AB,∴四边形ALEG是菱形,∴AL=EL=EG>BL,∴,∵EG∥AB,∴△CEG∽△CBA,∴=,故④不正确;本题正确的是:①②③,故选:A.二、填空题(共6题,每题3分)9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是﹣3m.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=n°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是18.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为:18.12.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=﹣2(一个即可).【解答】解:∵关于x的方程ax2+4x﹣2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥﹣2,∴负整数a=﹣1或﹣2.故答案为﹣2.13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为80元.【解答】解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=673个单位长度.【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=673,故答案为:673.三、解答题15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1【解答】解:原式=2+1+3﹣3=3.16.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N 是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.18.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:=,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.19.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.【解答】解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为=14(岁),中位数为=14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为1800×=720人.20.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?【解答】解:(1)由题意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由题意得,35﹣x≤2x,解得,x≥,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.21.数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.【解答】解:(1)由题意可得,共有12种等可能的结果;(2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为=.22.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D 恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.【解答】解:(1)PM与⊙O相切.理由如下:连接DO并延长交PM于E,如图,∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,∴OC=DC,BO=BD,∴OC=DC=BO=BD,∴四边形OBDC为菱形,∴OD⊥BC,∴△OCD和△OBD都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC,而∠ADC=∠ABC,∴∠ABC=∠MPB,∴PM∥BC,∴OE⊥PM,∴OE=OP,∵PC为⊙O的切线,∴OC⊥PC,∴OC=OP,∴OE=OC,而OE⊥PC,∴PM是⊙O的切线;(2)在Rt△OPC中,OC=PC=×=1,∴四边形OCDB的面积=2S=2××12=.△OCD23.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y 轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【解答】解:(1)当y=0时,x﹣=0,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).。

云南省曲靖市2018年中考数学模拟试卷

云南省曲靖市2018年中考数学模拟试卷

云南省曲靖市2018年中考数学模拟试卷(二)一、选择题(共8小题,每小题3分,满分24分)1.1.5的倒数是()A.﹣ B.﹣ C.D.2.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.3.下列运算正确的是()A.a3•a3=2a3B.a3+a3=a6C.(﹣2a2)3=﹣8a6D.a6÷a3=a24.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是()A.B.C.D.5.在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y的值是()A.2 B.8 C.﹣2 D.﹣86.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A.30°B.40°C.50°D.60°7.下列四个命题中,正确的是()A.菱形的对角线相等B.矩形的对角线互相垂直C.平行四边形的每条对角线平分一组对角D.正方形的对角线互相平分8.已知m<2,点A(x1,y1)、B(x2,y2)在双曲线上,如果x1<x2,那么y1与y2的大小关系是()A.y1=y2B.y1>y2C.y1<y2D.无法确定二、填空题(本大题共8个小题,每小题3分,满分24分)9.=.10.若代数式6a m b4是六次单项式.则m=.11.如图,AB∥CD,AC⊥BC,垂足为C.若∠A=40°,则∠BCD=度.12.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为.13.如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=.14.一件上衣标价为200元,打八折销售后仍获利40元,这件上衣的进货价是元.15.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=.16.如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P出发s时,△BCP为等腰三角形.三、解答题(本大题含8个小题,满分72分)17.计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|18.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.19.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?20.一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;(2)求出反比例函数的解析式.(3)求直线与双曲线的另一个交点坐标.21.如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B 在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C 在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:,≈1.732)22.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a=人,其中选择“绘画”的学生人数占抽样人数的百分比为b=;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.24.如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式及对称轴;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC ∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标.2018年云南省曲靖市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.1.5的倒数是()A.﹣ B.﹣ C.D.【考点】倒数.【专题】推理填空题.【分析】首先把1.5化成分数,然后根据求一个分数的倒数,就是调换分子和分母的位置,求出1.5的倒数是多少即可.【解答】解:1.5=,∵的倒数是,∴1.5的倒数是.故选:C.【点评】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:①求一个整数的倒数,就是写成这个整数分之一.②求一个分数的倒数,就是调换分子和分母的位置.2.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.【考点】专题:正方体相对两个面上的文字.【专题】常规题型.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,对各选项分析即可作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“预”的对面是“考”,“成”的对面是“祝”,故本选项错误;B、“预”的对面是“功”,“成”的对面是“祝”,故本选项错误;C、“预”的对面是“中”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“成”的对面是“祝”,故本选项错误.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.下列运算正确的是()A.a3•a3=2a3B.a3+a3=a6C.(﹣2a2)3=﹣8a6D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】结合选项分别进行同底数幂的除法、同底数幂的乘法、合并同类项等运算,然后选择正确选项.【解答】解:A、a3•a3=a6,原式错误,故本选项错误;B、a3+a3=2a3,原式错误,故本选项错误;C、(﹣2a2)3=﹣8a6,原式正确,故本选项正确;D、a6÷a3=a3,原式错误,故本选项错误.故选C.【点评】本题考查了同底数幂的除法、同底数幂的乘法、合并同类项等知识,掌握运算法则是解答本题的关键.4.有2名男生和2名女生,王老师要随机地、两两一对地为他们排座位,一男一女排在一起的概率是()A.B.C.D.【考点】概率公式.【分析】列举出所有情况,看一男一女排在一起的情况占总情况的多少即可.【解答】解:排列为男1男2,男1女1,男1女2,男2女1,男2女2,女1女2,一共有6种可能,一男一女排在一起的有4种,所以概率是.故选D.【点评】本题考查了概率公式,情况较少可用列举法求概率,采用列举法解题的关键是找到所有存在的情况.用到的知识点为:概率=所求情况数与总情况数之比.5.在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y的值是()A.2 B.8 C.﹣2 D.﹣8【考点】锐角三角函数的定义;点的坐标.【分析】如图,由于点P(4,y)在第四象限内,所以OA=4,又OP与x轴正半轴的夹角的正切值是2,所以tan∠AOP=2,然后利用三角函数的定义即可求解.【解答】解:如图,∵点P(4,y)在第四象限内,∴OA=4,PA=﹣y又OP与x轴正半轴的夹角的正切值是2,∴tan∠AOP=2,∴=2,∴﹣y=2×4,∴y=﹣8.故选D.【点评】此题主要考查了三角函数的定义,也考查了数形结合的思想,解题时首先利用数形结合的思想利用坐标表示线段的长度,然后利用三角函数的定义列出方程即可解决问题.6.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A.30°B.40°C.50°D.60°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】欲求∠DBC,又已知一圆心角,可利用圆周角与圆心角的关系求解.【解答】解:∵⊙O的直径BD⊥AC,∴;(垂径定理)∴∠DBC=∠AOD=30°;(等弧所对的圆周角是圆心角的一半)故选A.【点评】本题考查垂弦定理、圆心角、圆周角的应用能力.7.下列四个命题中,正确的是()A.菱形的对角线相等B.矩形的对角线互相垂直C.平行四边形的每条对角线平分一组对角D.正方形的对角线互相平分【考点】命题与定理.【分析】分别利用菱形以及矩形和平行四边形以及正方形对角线的关系求出即可.【解答】解:A、菱形的对角线互相垂直,故此选项错误;B、矩形的对角线相等,故此选项错误;C、平行四边形的对角线只互相平分,故此选项错误;D、正方形的对角线互相平分,正确.故选:D.【点评】此题主要考查了命题与定理,正确把握特殊四边形对角线关系是解题关键.8.已知m<2,点A(x1,y1)、B(x2,y2)在双曲线上,如果x1<x2,那么y1与y2的大小关系是()A.y1=y2B.y1>y2C.y1<y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】先根据m<2,得出2﹣m>0,由于点A(x1,y1)、B(x2,y2)不一定在同一象限,所以无法判断出y1、y2的大小.【解答】解:∵m<2,∴2﹣m>0.①当x1<x2<0时,y1>y2;②当0<x1<x2时,y1>y2;③当x1<0<x2时,y1<y2;故选:D.【点评】本题考查了反比例函数图象的性质,分类讨论是解题的关键.二、填空题(本大题共8个小题,每小题3分,满分24分)9.=4.【考点】算术平方根.【分析】根据二次根式的性质,可得答案.【解答】解:原式==4,故答案为:4.【点评】本题好查了算术平方根,=a (a≥0)是解题关键.10.若代数式6a m b4是六次单项式.则m=2.【考点】单项式.【分析】利用单项式次数的定义求解即可.【解答】解:若代数式6a m b4是六次单项式,则m=2.故答案为:2.【点评】本题主要考查了单项式,解题的关键是熟记单项式次数的定义.11.如图,AB∥CD,AC⊥BC,垂足为C.若∠A=40°,则∠BCD=50度.【考点】平行线的性质;直角三角形的性质.【专题】计算题.【分析】先根据直角三角形两锐角互余求出∠B的度数,再根据两直线平行,内错角相等解答.【解答】解:∵∠A=40°,AC⊥BC,∴∠B=90°﹣40°=50°,∵AB∥CD,∴∠BCD=∠B=50°.【点评】本题利用直角三角形两锐角互余和平行线的性质求解.12.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D,且BD:CD=3:2,则点D到线段AB的距离为4.【考点】角平分线的性质.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离=CD.【解答】解:∵BC=10,且BD:CD=3:2,∴CD=4,∵AD平分∠BAC交BC于点D,∴点D到AB的距离=CD=4.【点评】本题主要考查角平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.13.如图,已知矩形OABC的面积为,它的对角线OB与双曲线相交于点D,且OB:OD=5:3,则k=12.【考点】反比例函数系数k的几何意义.【专题】函数思想.【分析】先找到点的坐标,然后再利用矩形面积公式计算,确定k的值.【解答】解:由题意,设点D的坐标为(x D,y D),则点B的坐标为(x D,y D),矩形OABC的面积=|x D×y D|=,∵图象在第一象限,∴k=x D•y D=12.故答案为:12.【点评】本题考查了反比例函数与几何图形的结合,综合性较强,同学们应重点掌握.14.一件上衣标价为200元,打八折销售后仍获利40元,这件上衣的进货价是120元.【考点】一元一次方程的应用.【专题】方程思想.【分析】设进货价为x元,其相等关系为,进货价加上获利40元等于标价的80%,据此列方程求解.【解答】解:设进货价为x元,根据题意得:x+40=200×80%,解得:x=120.故答案为:120.【点评】此题考查的知识点是一元一次方程的应用,关键是找出相等关系列方程求解.15.已知关于x的函数y=(m﹣1)x2+2x+m图象与坐标轴只有2个交点,则m=1或0或.【考点】抛物线与x轴的交点.【专题】计算题;压轴题;分类讨论.【分析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m的值.【解答】解:(1)当m﹣1=0时,m=1,函数为一次函数,解析式为y=2x+1,与x轴交点坐标为(﹣,0);与y轴交点坐标(0,1).符合题意.(2)当m﹣1≠0时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与x轴有两个不同的交点,于是△=4﹣4(m﹣1)m>0,解得,(m﹣)2<,解得m<或m>.将(0,0)代入解析式得,m=0,符合题意.(3)函数为二次函数时,还有一种情况是:与x轴只有一个交点,与Y轴交于交于另一点,这时:△=4﹣4(m﹣1)m=0,解得:m=.故答案为:1或0或.【点评】此题考查了一次函数和二次函数的性质,解题时必须分两种情况讨论,不可盲目求解.16.如图△ABC中,∠ACB=90°,BC=6cm,AC=8cm,动点P从A出发,以2cm/s的速度沿AB移动到B,则点P出发2,2.5,1.4s时,△BCP为等腰三角形.【考点】等腰三角形的判定;勾股定理.【专题】计算题.【分析】根据∠ACB=90°,BC=6cm,AC=8cm,利用勾股定理求出AB的长,再分别求出BC=BP,BP=PC时,AP的长,然后利用P点的运动速度即可求出时间.【解答】解;∵△ABC中,∠ACB=90°,BC=6cm,AC=8cm,∴AB===10,∵当BC=BP时,△BCP为等腰三角形,即BC=BP=6cm,△BCP为等腰三角形,∴AP=AB﹣BP=10﹣6=4,∵动点P从A出发,以2cm/s的速度沿AB移动,∴点P出发=2s时,△BCP为等腰三角形,当点P从A出发,以2cm/s的速度沿AB移动到AB的中点时,此时AP=BP=PC,则△BCP为等腰三角形,点P出发=2.5s时,△BCP为等腰三角形,当BC=PC时,过点C作CD⊥AB于点D,则△BCD∽△BAC,∴,解得:BD=3.6,∴BP=2BD=7.2,∴AP=10﹣7.2=2.8,∴点P出发1.4s时,△BCP为等腰三角形.故答案为:2;2.5;1.4.【点评】此题主要考查勾股定理和等腰三角形的判定,解答此题的关键是首先根据勾股定理求出AB的长,然后再利用等腰三角形的性质去判定.三、解答题(本大题含8个小题,满分72分)17.计算:(﹣2)0+()﹣1+4cos30°﹣|﹣|【分析】原式第一项利用零指数幂法则计算,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+3+4×﹣2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.【分析】由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【分析】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.20.一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;(2)求出反比例函数的解析式.(3)求直线与双曲线的另一个交点坐标.【分析】(1)根据图象结合交点坐标即可求得.(2)先求出m,得出点A的坐标,求出k的值即可;(3)由直线和反比例函数关系式组成方程组,解方程组即可.【解答】解:(1)根据图象得:当x<﹣4时,y1>y2(2)把A(﹣4,m)代入一次函数y1=﹣x﹣1得:m=1,∴A(﹣4,1),把A(﹣4,1)代入反比例函数y2=得:k=﹣4,∴反比例函数的解析式为y=﹣.(3)解方程组得:或,∵A(﹣4,1),∴直线与双曲线的另一个交点坐标为(2,﹣2).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.21.如图,在昆明市轨道交通的修建中,规划在A、B两地修建一段地铁,点B 在点A的正东方向,由于A、B之间建筑物较多,无法直接测量,现测得古树C 在点A的北偏东45°方向上,在点B的北偏西60°方向上,BC=400m,请你求出这段地铁AB的长度.(结果精确到1m,参考数据:,≈1.732)【分析】过点C作CD⊥AB于D,则由已知求出CD和BD,也能求出AD,从而求出这段地铁AB的长度.【解答】解:过点C作CD⊥AB于D,由题意知:∠CAB=45°,∠CBA=30°,∴CD=BC=200(m),BD=CBcos(90°﹣60°)=400×=200(m),AD=CD=200(m),∴AB=AD+BD=200+200≈546(m),答:这段地铁AB的长度为546m.【点评】本题是将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到直角三角形中,有公共直角边的可利用这条边进行求解.22.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a=100人,其中选择“绘画”的学生人数占抽样人数的百分比为b=40%;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?【分析】(1)用音乐的人数除以所占的百分比计算即可求出a,再用绘画的人数除以总人数求出b;(2)求出体育的人数,然后补全统计图即可;(3)用总人数乘以“绘画”所占的百分比计算即可得解.【解答】解:(1)a=20÷20%=100人,b=×100%=40%;故答案为:100;40%;(2)体育的人数:100﹣20﹣40﹣10=30人,补全统计图如图所示;(3)选择“绘画”的学生共有2000×40%=800(人).答:估计全校选择“绘画”的学生大约有800人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.24.如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式及对称轴;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC ∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标.【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式,再由抛物线的对称轴为x=﹣,代入数据即可得出结论;(2)由平行四边形的性质即可得出点C的横坐标,代入抛物线解析式中即可得出点C的坐标.【解答】解:(1)将点A(1,0)、B(4,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线的解析式为y=.抛物线的对称轴为x=﹣=.(2)∵OECF是平行四边形,OE=,∴FC=,∴C点横坐标x=OE+FC=5,令y=中x=5,则y=2,∴点C的坐标为(5,2).【点评】本题考查了待定系数法求函数解析式以及平行四边形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据平行四边形找出点C 的横坐标.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.。

(真题)2018年云南省曲靖市中考数学试题(有答案)

(真题)2018年云南省曲靖市中考数学试题(有答案)

2018年云南省曲靖市中考数学试卷一、选择题(共8题,每题4分)1.(4分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.3.(4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108° D.120°6.(4分)下列二次根式中能与2合并的是()A.B.C. D.7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.68.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC 于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(共6题,每题3分)9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=°.11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是.12.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=(一个即可).13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为元.14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=个单位长度.三、解答题15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣116.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.18.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?19.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.20.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A 型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?21.数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.22.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.23.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y 轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.2018年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8题,每题4分)1.(4分)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(4分)如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为()A.B.C.D.【解答】解:从左面看去,是两个有公共边的矩形,如图所示:故选:D.3.(4分)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣【解答】解:A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=﹣a2b,符合题意;D、原式=﹣,不符合题意,故选:C.4.(4分)截止2018年5月末,中国人民银行公布的数据显示,我国外汇的储备规模约为3.11×104亿元美元,则3.11×104亿表示的原数为()A.2311000亿B.31100亿C.3110亿D.311亿【解答】解:3.11×104亿=31100亿故选:B.5.(4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是()A.60°B.90°C.108° D.120°【解答】解:(n﹣2)×180°=720°,∴n﹣2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选:D.6.(4分)下列二次根式中能与2合并的是()A.B.C. D.【解答】解:A、,不能与2合并,错误;B、能与2合并,正确;C、不能与2合并,错误;D、不能与2合并,错误;故选:B.7.(4分)如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6【解答】解:如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=,解得:k=3.故选:C.8.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC 于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④【解答】解:①∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,由作图可知:AE平分∠BAC,∴∠BAE=∠CAE=22.5°,∵PQ是AE的中垂线,∴AE⊥PQ,∴∠AOL=90°,∵∠AOL=∠LBK=90°,∠ALO=∠KLB,∴∠LKB=∠BAE=22.5°;故①正确;②∵OG是AE的中垂线,∴AG=EG,∴∠AEG=∠EAG=22.5°=∠BAE,∴EG∥AB,故②正确;③∵∠LAO=∠GAO,∠AOL=∠AOG=90°,∴∠ALO=∠AGO,∵∠CGF=∠AGO,∠BLK=∠ALO,∴∠CGF=∠BLK,在Rt△BKL中,tan∠CGF=tan∠BLK=,故③正确;④连接EL,∵AL=AG=EG,EG∥AB,∴四边形ALEG是菱形,∴AL=EL=EG>BL,∴,∵EG∥AB,∴△CEG∽△CBA,∴=,故④不正确;本题正确的是:①②③,故选:A.二、填空题(共6题,每题3分)9.(3分)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是﹣3m.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.10.(3分)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=n°.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案为:n11.(3分)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是18.【解答】解:∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为:18.12.(3分)关于x的方程ax2+4x﹣2=0(a≠0)有实数根,那么负整数a=﹣2(一个即可).【解答】解:∵关于x的方程ax2+4x﹣2=0(a≠0)有实数根,∴△=42+8a≥0,解得a≥﹣2,∴负整数a=﹣1或﹣2.故答案为﹣2.13.(3分)一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为80元.【解答】解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.14.(3分)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=673个单位长度.【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=673,故答案为:673.三、解答题15.(5分)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1【解答】解:原式=2+1+3﹣3=3.16.先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.17.如图:在平行四边形ABCD的边AB,CD上截取AF,CE,使得AF=CE,连接EF,点M,N是线段EF上两点,且EM=FN,连接AN,CM.(1)求证:△AFN≌△CEM;(2)若∠CMF=107°,∠CEM=72°,求∠NAF的度数.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AFN=∠CEM,∵FN=EM,AF=CE,∴△AFN≌△CEM(SAS).(2)解:∵△AFN≌△CEM,∴∠NAF=∠ECM,∵∠CMF=∠CEM+∠ECM,∴107°=72°+∠ECM,∴∠ECM=35°,∴∠NAF=35°.18.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:=,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.19.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.【解答】解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为=14(岁),中位数为=14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为1800×=720人.20.某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A 型电脑x台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?【解答】解:(1)由题意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由题意得,35﹣x≤2x,解得,x≥,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.21.数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.【解答】解:(1)由题意可得,共有12种等可能的结果;(2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为=.22.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.【解答】解:(1)PM与⊙O相切.理由如下:连接DO并延长交PM于E,如图,∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,∴OC=DC,BO=BD,∴OC=DC=BO=BD,∴四边形OBDC为菱形,∴OD⊥BC,∴△OCD和△OBD都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC,而∠ADC=∠ABC,∴∠ABC=∠MPB,∴PM∥BC,∴OE⊥PM,∴OE=OP,∵PC为⊙O的切线,∴OC⊥PC,∴OC=OP,∴OE=OC,而OE⊥PC,∴PM是⊙O的切线;(2)在Rt△OPC中,OC=PC=×=1,∴四边形OCDB的面积=2S=2××12=.△OCD23.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y 轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【解答】解:(1)当y=0时,x﹣=0,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).。

2018年云南省曲靖市罗平县中考数学一模试卷

2018年云南省曲靖市罗平县中考数学一模试卷

2018年云南省曲靖市罗平县中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.3.2010年我国总人口约为1 370 000 000人,该人口数用科学记数法表示为()A.0.137×1011B.1.37×109C.13.7×108D.137×1074.如图,△ACD和△ABC相似需具备的条件是()A.B.C.AC2=AD•AB D.CD2=AD•BD5.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2 C.m>2 D.m<26.,则(﹣xy)2的值为()A.﹣6 B.9 C.6 D.﹣97.下列说法正确的是()A.一组数据0,1,2,1,1的众数和中位数都是1B.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖C.为了了解全国中学生的心理健康状况,应采用普查的方式D.若甲组数据的方差S=0.2,乙组数据的方差S=0.5,则乙组数据比甲组数据稳定8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.9.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°10.正方形ABCD边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图,则图中阴影部分的面积之和等于()A.a2B.0.25a2C.0.5a2D.2二、填空题(本大题共有10小题,每小题3分,共30分)11.分解因式:x3﹣4x=.12.若式子有意义,则实数x的取值范围是.13.口袋内装有大小、质量和材质都相同的红色1号、红色2号、黄色1号、黄色2号、黄色3号的5个小球,从中摸出两球,这两球都是红色的概率是.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD的面积为.15.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为度.16.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.17.已知2a2+2b2=10,a+b=3,则ab=.18.如图,几个边长皆为1的正方形的一边均在同一条直线上,设△A1A2B2周长为C1,△A1A3B3的周长为C2…△A1A n+1B n+1的周长记为C n,则C n=.三、解答题(本大题共有10小题,共96分)19.计算:.20.先化简,再求值(﹣)÷,选一个你喜欢的数代入计算.21.如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.22.在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A1B1C1.如果△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.23.爸爸给双胞胎兄弟小明和小强带回一张篮球比赛门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.小明:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5 的两个小球,且都已各自搅匀,小强蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则小明得到门票;若积为奇数,则小强得到门票.小强:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,小明、小强各蒙上眼睛有放回地摸1次,小明摸到偶数就记2分,摸到奇数记0分;小强摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)小明设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小强设计的游戏方案对双方是否公平?不必说理.24.如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB 是菱形.25.已知直线y=x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°,使点A落在点C,点B落在点D,抛物线y=ax2+bx+c过点A、D、C,其对称轴与直线AB交于点P,(1)求抛物线的表达式;(2)求∠POC的正切值;(3)点M在x轴上,且△ABM与△APD相似,求点M的坐标.2018年云南省曲靖市罗平县中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.右图是由4个相同的小正方体组成的几何体,其俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到从上往下两行正方形的个数依次为2,1,并且在左上方.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.2010年我国总人口约为1 370 000 000人,该人口数用科学记数法表示为()A.0.137×1011B.1.37×109C.13.7×108D.137×107【考点】科学记数法—表示较大的数.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:用科学记数法表示数1370000000为1.37×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,△ACD和△ABC相似需具备的条件是()A.B.C.AC2=AD•AB D.CD2=AD•BD【考点】相似三角形的判定.【分析】题目中隐含条件∠A=∠A,根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件只能是=,根据比例性质即可推出答案.【解答】解:∵在△ACD和△ABC中,∠A=∠A,∴根据有两边对应成比例,且夹角相等的两三角形相似,得出添加的条件是:=,∴AC2=AD•AB.故选C.【点评】本题考查了相似三角形的判定,注意:有两边对应成比例,且夹角相等的两三角形相似.5.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2 C.m>2 D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.【点评】此题考查的是一元一次方程的解法,将x用含m的代数式来表示,根据x的取值范围可求出m的取值范围.6.,则(﹣xy)2的值为()A.﹣6 B.9 C.6 D.﹣9【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,(﹣xy)2=[(﹣1)×(﹣3)]2=9.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.下列说法正确的是()A.一组数据0,1,2,1,1的众数和中位数都是1B.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖C.为了了解全国中学生的心理健康状况,应采用普查的方式D.若甲组数据的方差S=0.2,乙组数据的方差S=0.5,则乙组数据比甲组数据稳定【考点】概率的意义;全面调查与抽样调查;众数;方差.【分析】分别利用方差以及众数和中位数以及全面调查与抽样调查的概念,分别计算得出即可.【解答】解:A、一组数据0,1,2,1,1的众数和中位数都是1,此选项正确;B、一个游戏中奖的概率是,则做100次这样的游戏不一定会中奖,故此选项错误;C、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,故此选项错误;D、若甲组数据的方差S=0.2,乙组数据的方差S=0.5,则甲组数据比乙组数据稳定,故此选项错误.故选:A.【点评】此题主要考查了方差以及众数和中位数以及全面调查与抽样调查等知识,正确区分它们的定义是解题关键.8.下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.D.【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.【解答】解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x 值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.【点评】本题主要考查二次函数、一次函数和反比例函数的性质,解答本题的关键是熟练掌握各个函数在每个象限内的单调性.9.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°【考点】平行线的性质.【专题】计算题.【分析】先根据两直线平行,内错角相等得到∠ADB=∠B=30°,再利用角平分线定义得到∠ADE=2∠B=60°,然后再根据两直线平行,内错角相等即可得到∠DEC的度数.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠B=60°,∵AD∥BC,∴∠DEC=∠ADE=60°.故选B.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.10.正方形ABCD边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图,则图中阴影部分的面积之和等于()A.a2B.0.25a2C.0.5a2D.2【考点】轴对称的性质.【分析】只要证明图中的阴影部分与对应的非阴影部分全等,则图中阴影部分的面积就不难计算了.【解答】解:如图,∵FH∥CD,∴∠BHF=∠C=90°(同位角相等);在△BFH和△BDC中,∴△BFH∽△BDC(AA),∴同理,得又∵AD=CD,∴GF=FH,∵∠BGF=∠BHF=90°,BF=BF,∴△BGF≌△BHF,∴S△BGF=S△BHF,同理,求得多边形GFEJ与多边形HFEI的面积相等,多边形JEDA与多边形IEDC的面积相等,∴图中阴影部分的面积是正方形ABCD面积的一半,.故选:C.【点评】考查了轴对称的性质,解答本题时主要运用了正方形的性质,相似三角形的判定以及相似三角形的性质.所以,在以后的解题中合理的利用已学的定理与性质会降低题的难度.二、填空题(本大题共有10小题,每小题3分,共30分)11.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.12.若式子有意义,则实数x的取值范围是x≥3.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的性质(被开方数大于等于0)解答.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案是:x≥3.【点评】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.13.口袋内装有大小、质量和材质都相同的红色1号、红色2号、黄色1号、黄色2号、黄色3号的5个小球,从中摸出两球,这两球都是红色的概率是.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后根据表格求得所有等可能的情况与这两球都是红色的情况,利用概率公式即可求得答案.【解答】解:列表得:∵共有20种等可能的结果,这两球都是红色的有2种情况,∴从中摸出两球,这两球都是红色的概率是:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件,注意概率=所求情况数与总情况数之比.14.如图,已知菱形ABCD的边长为5,对角线AC,BD相交于点O,BD=6,则菱形ABCD的面积为24.【考点】菱形的性质.【专题】数形结合.【分析】根据菱形的对角线互相垂直且互相平分可得出对角线AC的长度,进而根据对角线乘积的一半可得出菱形的面积.【解答】解:由题意得:AO==4,∴AC=8,故可得菱形ABCD的面积为×8×6=24.故答案为:24.【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质.15.如图,将三角板的直角顶点放在⊙O的圆心上,两条直角边分别交⊙O于A、B两点,点P在优弧AB上,且与点A、B不重合,连接PA、PB.则∠APB的大小为45度.【考点】圆周角定理.【专题】计算题.【分析】∠AOB与∠APB为所对的圆心角和圆周角,已知∠AOB=90°,利用圆周角定理求解.【解答】解:∵∠AOB与∠APB为所对的圆心角和圆周角,∴∠APB=∠AOB=×90°=45°.故答案为:45.【点评】本题考查了圆周角定理的运用.关键是确定同弧所对的圆心角和圆周角,利用圆周角定理.16.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为6.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】由ED垂直平分BC,即可得BE=CE,∠EDB=90°,又由直角三角形中30°角所对的直角边是其斜边的一半,即可求得BE的长,则问题得解.【解答】解:∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.故答案为:6.【点评】此题考查了线段垂直平分线的性质与直角三角形的性质.解题的关键是数形结合思想的应用.17.已知2a2+2b2=10,a+b=3,则ab=2.【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:∵2a2+2b2=10,∴a2+b2=5,∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∴5+2ab=9,∴2ab=4,∴ab=2,故答案为:2.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.18.如图,几个边长皆为1的正方形的一边均在同一条直线上,设△A1A2B2周长为C1,△A1A3B3的周长为C2…△A1A n+1B n+1的周长记为C n,则C n=n+1+.【考点】勾股定理;正方形的性质.【专题】规律型.【分析】根据勾股定理分别求出A1B2、A1B3、A1B4的长,列出各三角形周长算式,根据规律可得.【解答】解:根据题意,∵C1==2+,C2==3+,C3==4+,…∴C n==n+1+.故答案为:n+1+.【点评】本题主要考查勾股定理的实际应用和规律的探寻,由勾股定理计算出三角形斜边的长是根本,从已知算式得出规律是关键.三、解答题(本大题共有10小题,共96分)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】第一步:化去绝对值的符号,锐角三角函数转化成特殊值,进行开立方运算,计算0指数;第二步:进行实数运算.【解答】解:原式=2+1+1﹣2=2.【点评】本题考查实数的运算,掌握负整数指数幂、特殊角的三角函数值是解题的关键.20.先化简,再求值(﹣)÷,选一个你喜欢的数代入计算.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=[﹣]•=[﹣]•=•=,当x=2时,原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,平面直角坐标系中,直线与x轴交于点A,与双曲线在第一象限内交于点B,BC丄x轴于点C,OC=2AO.求双曲线的解析式.【考点】反比例函数综合题.【专题】综合题;压轴题.【分析】先利用一次函数与图象的交点,再利用OC=2AO求得C点的坐标,然后代入一次函数求得点B的坐标,进一步求得反比例函数的解析式即可.【解答】解:由题意OC=2AO,∵当y=0时,x+=0,解得x=﹣1,∴点A的坐标为(﹣1,0),∴OA=1.又∵OC=2OA,∴OC=2,∴点B的横坐标为2,代入直线,得y=,∴B(2,).∵点B在双曲线上,∴k=xy=2×=3,∴双曲线的解析式为y=.【点评】本题考查了反比例函数的综合知识,解题的关键是根据一次函数求出反比例函数与直线的交点坐标.22.在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,1),B(3,2),C(1,4).(1)将△ABC先向下平移4个单位,再向右平移1个单位,画出第二次平移后的△A 1B1C1.如果△A1B1C1看成是△ABC经过一次平移得到的,则平移距离是.(2)以原点为对称中心,画出与△ABC成中心对称的△A2B2C2.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可,再利用勾股定理列式计算即可得解;(2)根据网格结构找出点A、B、C以原点为对称中心的对称点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示,平移距离为=;故答案为:.(2)△A2B2C2如图所示.【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.爸爸给双胞胎兄弟小明和小强带回一张篮球比赛门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.小明:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5 的两个小球,且都已各自搅匀,小强蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则小明得到门票;若积为奇数,则小强得到门票.小强:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,小明、小强各蒙上眼睛有放回地摸1次,小明摸到偶数就记2分,摸到奇数记0分;小强摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)小明设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小强设计的游戏方案对双方是否公平?不必说理.【考点】游戏公平性;列表法与树状图法.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)小明的设计游戏方案不公平,可能出现的所有结果列表如下:或列树状图如下:∴P(小明得到门票)=P(积为偶数)=,P(小强得到门票)=P(积为奇数)=,∵≠,∴小强的设计方案不公平;(2)小强的设计方案不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.如图A、B是⊙O上的两点,∠AOB=120°,C是弧的中点,求证四边形OACB 是菱形.【考点】垂径定理;等边三角形的判定与性质;菱形的判定;圆心角、弧、弦的关系.【专题】证明题.【分析】连OC,由C是的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱形的判定方法即可得到结论.【解答】证明:连OC,如图,∵C是的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,相等的弧所对的圆心角相等.也考查了等边三角形的判定与性质以及菱形的判定.25.已知直线y=x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°,使点A落在点C,点B落在点D,抛物线y=ax2+bx+c过点A、D、C,其对称轴与直线AB交于点P,(1)求抛物线的表达式;(2)求∠POC的正切值;(3)点M在x轴上,且△ABM与△APD相似,求点M的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)先求出点A、B的坐标,再根据旋转的性质求出点C、D的坐标,然后利用待定系数法求抛物线解析式即可;(2)根据抛物线解析式求出对称轴解析式,然后求出点P的坐标,过点P作PQ⊥x轴,则PQ∥y轴,根据两直线平行,内错角相等可得∠OPQ=∠POC,然后利用点P的坐标,根据锐角的正切值的定义列式计算即可得解;(3)根据点M在x轴上,且△ABM与△APD相似可知,点M一定在点A的右侧,然后求出AP、AB、AD的长度,因为对应边不明确,所以分①AP和AB是对应边,②AP 和AM是对应边,然后根据相似三角形对应边成比例列式求出AM的长度,再根据点A 的坐标求解即可.【解答】解:(1)当y=0时,x+1=0,解得x=﹣2,当x=0时,y=1,所以A(﹣2,0),B(0,1),∵△AOB顺时针旋转90°得到△COD,∴C(0,2),D(1,0),∵抛物线y=ax2+bx+c过点A、D、C,∴,解得,∴抛物线解析式为y=﹣x2﹣x+2;(2)根据(1),抛物线对称轴为x=﹣=﹣=﹣,×(﹣)+1=,∴点P的坐标为(﹣,),过点P作PQ⊥x轴于Q,则PQ∥y轴,∴∠POC=∠OPQ,∵tan∠OPQ==,∴tan∠POC=;(3)∵点M在x轴上,且△ABM与△APD相似,∴点M必在点A的右侧,AP==,AB==,AD=1﹣(﹣2)=1+2=3,∵∠A=∠A,∴①AP和AB是对应边时,=,即=,解得AM=4,设点M坐标为(x,0),则x﹣(﹣2)=4,解得x=2,所以点M的坐标为(2,0),②AP和AM是对应边时,=,即=,解得AM=,设点M坐标为(x,0),则x﹣(﹣2)=,解得x=﹣,所以点M的坐标为(﹣,0),综上所述,存在点M(2,0)或(﹣,0),使△ABM与△APD相似.【点评】本题是对二次函数的综合考查,有旋转变换的性质,待定系数法求函数解析式,锐角三角形函数,两点间的距离公式,相似三角形对应边成比例,综合性较强,求出二次函数解析式是解题的关键.。

2018年曲靖市罗平县中考数学模拟试卷(一)含答案解析 精品

2018年曲靖市罗平县中考数学模拟试卷(一)含答案解析 精品

2018年云南省曲靖市罗平县腊山一中中考数学模拟试卷(一)一、选择题1.2的相反数是()A.B.﹣C.2 D.﹣22.今年“五一”黄金周,我省实现社会消费的零售总额约为94亿元.若用科学记数法表示,则94亿可写为()元A.0.94×109B.9.4×109C.9.4×107D.9.4×1083.化简(﹣a2)3的结果是()A.﹣a5B.a5C.﹣a6D.a64.下列调查中,适宜采用抽样方式的是()A.调查我市中学生每天体育锻炼的时间B.调查某班学生对“五个重庆”的知晓率C.调查一架“歼20”隐形战机各零部件的质量D.调查广州亚运会100米参赛运动员兴奋剂的使用情况5.若用同一种正多边形瓷砖铺地面,不能密铺地面的正多边形是()A.正八边形B.正六边形C.正四边形D.正三边形6.如图,反比例函数y=(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是()A.B.C.D.7.如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP=()A.B.C.D.8.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形二、填空题(本大题共8个小题,每小题3分,满分24分)9.分解因式:x3﹣4x=.10.若|m﹣3|+(n+2)2=0,则m+2n的值为.11.一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.12.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是.13.如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.14.实数m、n在数轴上的位置如右图所示,化简:|m﹣n|=.15.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为.16.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是.(填图形的名称)▲■★■▲★▲■★■▲★▲…三、解答题(本大题共8个小题,共72分)17.先化简,再求值:(x+3),其中x=.18.已知:如图,▱ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F.(1)求证:△ABE≌△CDF;(2)连接EF、BD,求证:EF与BD互相平分.19.已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.20.△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位.(1)△A1B1C1与△ABC关于纵轴(y轴)对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2.21.如图,AB是⊙O的直径,BC是弦,∠ABC=30°,点D在BA的延长线上,且CD=CB.(1)求证:DC是⊙O的切线;(2)若DC=2,求⊙O半径.22.课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.等级人数/名优秀 a良好 b及格150不及格50解答下列问题:(1)a=,b=;(2)补全条形统计图;(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.23.某体育用品专卖店今年3月初用4000元购进了一批“中考体能测试专用绳”,上市后很快售完.该店于3月中旬又购进了和第一批数量相同的专用绳,由于第二批专用绳的进价每根比第一批提高了10元,结果进第二批专用绳共用了5000元.(1)第一批专用绳每根的进货价是多少元?(2)若第一批专用绳的售价是每根60元,为保证第二批专用绳的利润率不低于第一批的利润率,那么第二批专用绳每根售价至少是多少元?(提示:利润=售价﹣进价,利润率=)24.如图,抛物线y=ax2﹣8ax+12a(a<0)与x轴交于A、B两点(点A在点B的左侧),抛物线上另有一点C在第一象限,满足∠ACB为直角,且恰使△OCA∽△OBC.(1)求线段OC的长;(2)求该抛物线的函数关系式;(3)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.2018年云南省曲靖市罗平县腊山一中中考数学模拟试卷(一)参考答案与试题解析一、选择题1.2的相反数是()A.B.﹣C.2 D.﹣2【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2的相反数是2,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.今年“五一”黄金周,我省实现社会消费的零售总额约为94亿元.若用科学记数法表示,则94亿可写为()元A.0.94×109B.9.4×109C.9.4×107D.9.4×108【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:一亿=108,∴94亿元=9.4×109.故选B.【点评】本题考查学生对科学记数法的掌握,科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动n位.3.化简(﹣a2)3的结果是()A.﹣a5B.a5C.﹣a6D.a6【考点】幂的乘方与积的乘方.【分析】根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘,计算后直接选取答案.【解答】解:(﹣a2)3=(﹣1)3(a2)3=﹣a6.故选C.【点评】本题考查积的乘方的性质和幂的乘方的性质,熟练掌握性质是解题的关键.4.下列调查中,适宜采用抽样方式的是()A.调查我市中学生每天体育锻炼的时间B.调查某班学生对“五个重庆”的知晓率C.调查一架“歼20”隐形战机各零部件的质量D.调查广州亚运会100米参赛运动员兴奋剂的使用情况【考点】全面调查与抽样调查.【专题】应用题.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、调查我市中学生每天体育锻炼的时间,适合抽样调查,B、调查某班学生对“五个重庆”的知晓率,采用全面调查,C、调查一架“歼20”隐形战机各零部件的质量,采用全面调查,D、调查广州亚运会100米参赛运动员兴奋剂的使用情况,采用全面调查,故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查,比较简单.5.若用同一种正多边形瓷砖铺地面,不能密铺地面的正多边形是()A.正八边形B.正六边形C.正四边形D.正三边形【考点】平面镶嵌(密铺).【分析】看哪个正多边形的一个内角的度数不是360°的约数,就不能密铺平面.【解答】解:A、正八边形的一个内角度数为180﹣360÷8=135°,不是360°的约数,不能密铺平面,符合题意;B、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能密铺平面,不符合题意;C、正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能密铺平面,不符合题意;D、正三角形的一个内角为60°,是360°的约数,能密铺平面,不符合题意故选:A.【点评】此题主要考查了平面镶嵌,用到的知识点为:一种正多边形能密铺平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180﹣360÷边数.6.如图,反比例函数y=(k≠0)与一次函数y=kx+k(k≠0)在同一平面直角坐标系内的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】计算题;压轴题.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx+k过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+k过二、三、四象象限;y=过二、四象限.观察图形可知只有D符合②.故选D.【点评】本题考查了反比例函数的图象和一次函数的图象,熟悉两函数的性质是解题的关键.7.如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP=()A.B.C.D.【考点】相似三角形的判定与性质.【分析】根据两角对应相等、两三角形相似,再根据相似三角形的对应边成比例解则可.【解答】解:∵AB∥CD,∴,△APB∽△DPC,∴AB:CD=AP:DP=AP:(AD﹣AP),即4:7=AP:(10﹣AP),∴AP=.故选A.【点评】本题考查了相似三角形的判定和相似三角形的性质,对应边的比不要搞错.8.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【考点】中点四边形.【分析】首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.二、填空题(本大题共8个小题,每小题3分,满分24分)9.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.10.若|m﹣3|+(n+2)2=0,则m+2n的值为﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【专题】计算题.【分析】根据非负数的性质列出方程求出m、n的值,代入所求代数式计算即可.【解答】解:∵|m﹣3|+(n+2)2=0,∴,解得,∴m+2n=3﹣4=﹣1.故答案为﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a 元.【考点】列代数式.【分析】现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答.【解答】解:2500a×80%=2000a(元).故答案为2000a元.【点评】本题考查了列代数式,解题的关键是理解打折问题在实际问题中的应用.12.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是9.【考点】众数.【专题】计算题.【分析】众数是一组数据中出现次数最多的数据,有时众数可以不止一个.【解答】解:在这一组数据中9是出现次数最多的,故众数是9;故答案为9.【点评】本题为统计题,考查众数定义.如果众数的概念掌握得不好,就会出错.13.如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为30°.【考点】圆周角定理;等边三角形的判定与性质.【分析】由OA=AB,OA=OB,可得△OAB是等边三角形,即可得∠AOB=60°,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数.【解答】解:∵OA=AB,OA=OB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°.故答案为30°.【点评】此题考查了圆周角定理与等边三角形的判定与性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.14.实数m、n在数轴上的位置如右图所示,化简:|m﹣n|=n﹣m.【考点】实数与数轴.【分析】首先根据数轴上右边的数总大于左边的数判断m、n之间的大小关系,然后确定m ﹣n的符号,然后根据求绝对值的法则去掉绝对值符号即可.【解答】解:∵在数轴上实数m位于n的左侧,∴m<n∴m﹣n<0∴|m﹣n|=﹣(m﹣n)=n﹣m故答案为:n﹣m.【点评】本题考查了实数与数轴,根据数轴上实数的位置确定绝对值里面的代数式的符号是解决此题的关键.15.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为6.【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】由ED垂直平分BC,即可得BE=CE,∠EDB=90°,又由直角三角形中30°角所对的直角边是其斜边的一半,即可求得BE的长,则问题得解.【解答】解:∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.故答案为:6.【点评】此题考查了线段垂直平分线的性质与直角三角形的性质.解题的关键是数形结合思想的应用.16.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是五角星.(填图形的名称)▲■★■▲★▲■★■▲★▲…【考点】规律型:图形的变化类.【专题】压轴题.【分析】本题是循环类问题,只要找到所求值在第几个循环,便可找出答案.【解答】解:根据题意可知,每6个图形一个循环,第18个图形经过了3个循环,且是第3个循环中的最后1个,即第18个图形是五角星.故答案为:五角星.【点评】此题考查了图形的变化类,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,主要培养学生的观察能力和归纳总结能力.三、解答题(本大题共8个小题,共72分)17.先化简,再求值:(x+3),其中x=.【考点】分式的化简求值.【专题】计算题.【分析】首先把分子分母约分,然后代值计算.【解答】解:原式==(x﹣3)(x+3)=(x2﹣9);当x=时,原式=.【点评】本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键.18.已知:如图,▱ABCD中,∠ABC的平分线交AD于E,∠CDA的平分线交BC于F.(1)求证:△ABE≌△CDF;(2)连接EF、BD,求证:EF与BD互相平分.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)首先由平行四边形的性质可得AB∥CD,AB=CD;∠A=∠C,∠ABC=∠CDA,再由条件∠ABC的平分线交AD于E,∠CDA的平分线交BC于F可得∠ABE=∠ABC,∠CDF=∠CDA,进而得到∠ABE=∠CDF,再利用ASA定理可判定△ABE≌△CDF;(2)首先根据△ABE≌△CDF可得AE=CF,再根据平行四边形的性质可得AD=CB,AD∥BC,进而得到DE=BF且DE∥BF,根据一组对边平行且相等的四边形是平行四边可证出四边形BFDE是平行四边形,再根据平行四边形对角线互相平分可证出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠A=∠C,∠ABC=∠CDA,∵BE平分∠ABC,DF平分∠CDA,∴∠ABE=∠ABC,∠CDF=∠CDA.∴∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)证明:连接EF、DB,∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴DE=BF且DE∥BF.∴四边形BFDE是平行四边形,∴EF与BD互相平分.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定与性质,关键是熟练掌握平行四边形的性质:平行四边形对应边相等,对应角相等,对角线互相平分.19.已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式.【分析】(1)把x=1,y=4代入y=kx+3,求出k的值是多少,即可求出这个一次函数的解析式.(2)首先把(1)中求出的k的值代入kx+3≤6,然后根据一元一次不等式的解法,求出关于x的不等式kx+3≤6的解集即可.【解答】解:(1)∵一次函数y=kx+3的图象经过点(1,4),∴4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.【点评】(1)此题主要考查了待定系数法求一次函数的解析式,要熟练掌握,解答此题的关键是要明确待定系数法求一次函数解析式一般步骤是:①先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;②将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.(2)此题还考查了一元一次不等式的解法,要熟练掌握,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.20.△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位.(1)△A1B1C1与△ABC关于纵轴(y轴)对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2.【考点】作图-轴对称变换;作图-平移变换.【专题】作图题.【分析】(1)对称轴为y轴,利用轴对称性画图;(2)将△ABC向下平移8个单位,即将三角形的三个顶点都向下平移8个单位.【解答】解:画图如图所示.【点评】本题考查了轴对称、平移图形的画图方法.画轴对称的图形时,要明确对称轴,平移时,就是将每一个顶点向同一方向平移相同的单位长度.21.如图,AB是⊙O的直径,BC是弦,∠ABC=30°,点D在BA的延长线上,且CD=CB.(1)求证:DC是⊙O的切线;(2)若DC=2,求⊙O半径.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)连接OC,得到∠AOC=60°,由CD=CB得到∠D=30°,在△DOC中求出∠DCO=90°,证明DC是⊙O的切线.(2)在△DOC中,利用30°角的正切可以求出圆的半径.【解答】(1)证明:如图:连接OC,∵∠ABC=30°,OC=OB,∴∠DOC=60°.∵CD=CB,∴∠D=∠B=30°,∴∠D+∠DOC=30°+60°=90°,∴∠DCO=90°.∴DC是⊙O的切线.(2)解:由(1)得∠DCO=90°,在直角△DCO中,tan∠D=,即:=,OC=2.所以⊙O的半径是2.【点评】本题考查的是切线的判定,(1)根据条件求出∠DCO=90°,证明DC是⊙O的切线.(2)利用(1)的结论,得到直角△DOC,在直角三角形中用正切求出圆的半径.22.课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.等级人数/名优秀 a良好 b及格150不及格50解答下列问题:(1)a=200,b=600;(2)补全条形统计图;(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.【考点】条形统计图;用样本估计总体;统计表.【分析】(1)根据条形统计图,可知a=200;用1000﹣优秀的人数﹣及格的人数﹣不及格的人数=b,即可解答;(2)根据b的值,补全统计图即可;(3)先计算出在样本中50米跑达到良好和优秀等级所占的百分比,再乘以总人数,即可解答.【解答】解:(1)根据条形统计图,可知a=200,b=1000﹣200﹣150﹣50=600,故答案为:200,600.(2)如图所示:(3)=80%,20000×80%=16000(人).∴估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数为16000人.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.某体育用品专卖店今年3月初用4000元购进了一批“中考体能测试专用绳”,上市后很快售完.该店于3月中旬又购进了和第一批数量相同的专用绳,由于第二批专用绳的进价每根比第一批提高了10元,结果进第二批专用绳共用了5000元.(1)第一批专用绳每根的进货价是多少元?(2)若第一批专用绳的售价是每根60元,为保证第二批专用绳的利润率不低于第一批的利润率,那么第二批专用绳每根售价至少是多少元?(提示:利润=售价﹣进价,利润率=)【考点】分式方程的应用;一元一次不等式的应用.【专题】应用题.【分析】(1)设第一批绳进货时的价格为每根x元,根据第一批和第二批的数量相同,可得出方程,解出后可得出答案;(2)设第二批专用绳每根的售价为y元,根据第二批专用绳的利润率不低于第一批的利润率,可得出不等式,解出后可得出答案.【解答】解:(1)设第一批绳进货时的价格为每根x元,由题意得:,解得:x=40,经检验,x=40是所列方程的根,且符合题意.答:第一批专用绳的进货价格是每根40元.(2)设第二批专用绳每根的售价为y元,由题意得:,解得:y≥75.答:第二批专用绳每根的售价至少为75元.【点评】本题考查了分式方程的应用及一元一次不等式的应用,对于此类应用类题目,关键是寻找等量关系或不等关系,如果这样的关系不好寻找,建议同学们多读几遍题目,寻找信息点.24.如图,抛物线y=ax2﹣8ax+12a(a<0)与x轴交于A、B两点(点A在点B的左侧),抛物线上另有一点C在第一象限,满足∠ACB为直角,且恰使△OCA∽△OBC.(1)求线段OC的长;(2)求该抛物线的函数关系式;(3)在x轴上是否存在点P,使△BCP为等腰三角形?若存在,求出所有符合条件的P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;开放型.【分析】(1)令抛物线中y=0,可得出A、B的坐标,即可确定OA,OB的长.根据△OCA∽△OBC,可得出关于OC、OA、OB的比例关系式即可求出OC的长.(2)利用相似三角形的对应边成比例和勾股定理来求C点的坐标.将C点坐标代入抛物线中即可求出抛物线的解析式.(3)应该有四个符合条件的点:①以C为圆心,BC为半径作弧,交x轴于一点,这点符合P点要求,此时CP=BC,已知了B、C的坐标,即可求出P点坐标.②以B为圆心,BC为半径作弧,交x轴于两点,这两点也符合P点要求,此时BC=BP,根据B、C的坐标,不难得出BC的长,将B点坐标向左或向右平移BC个单位即可得出P 点坐标.③作BC的垂直平分线,与x轴的交点也符合P点要求,此时CP=BP,可设出P点坐标,用坐标系两点间距离公式表示出BP和CP的长,即可求出P点坐标.因此共有4个符合条件的P点.【解答】解:(1)由ax2﹣8ax+12a=0(a<0)得x1=2,x2=6.即:OA=2,OB=6.∵△OCA∽△OBC,∴OC2=OAOB=2×6.∴OC=2(﹣2舍去).∴线段OC的长为2.(2)∵△OCA∽△OBC∴设AC=k,则BC=k由AC2+BC2=AB2得k2+(k)2=(6﹣2)2解得k=2(﹣2舍去)∴AC=2,BC=2=OC过点C作CD⊥AB于点D∴OD=OB=3∴CD=∴C的坐标为(3,)将C点的坐标代入抛物线的解析式得=a(3﹣2)(3﹣6)∴a=﹣∴抛物线的函数关系式为:y=﹣x2+x﹣4.(3)①当P1与O重合时,△BCP1为等腰三角形∴P1的坐标为(0,0);②当P2B=BC时(P2在B点的左侧),△BCP2为等腰三角形∴P2的坐标为(6﹣2,0);③当P3为AB的中点时,P3B=P3C,△BCP3为等腰三角形∴P3的坐标为(4,0);④当BP4=BC时(P4在B点的右侧),△BCP4为等腰三角形∴P4的坐标为(6+2,0);∴在x轴上存在点P,使△BCP为等腰三角形,符合条件的点P的坐标为:(0,0),(6﹣2,0),(4,0),(6+2,0).【点评】命题立意:考查数形结合问题,由抛物线求二次函数的解析式,用几何中相似三角形的性质求点的坐标等知识.参与本试卷答题和审题的老师有:2300680618;feng;cook2360;开心;zhangbo;冯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年云南省曲靖市罗平县中考数学一模试卷
一、选择题(每小题4分,共32分)
1.(4分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.
2.(4分)下列代数运算正确的是()
A.x?x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3
3.(4分)若代数式2x a y3z c与是同类项,则()
A.a=4,b=2,c=3 B.a=4,b=4,c=3 C.a=4,b=3,c=2 D.a=4,b=3,c=4 4.(4分)下列四个图形中,不能推出∠2与∠1相等的是()
A. B.C.
D.
5.(4分)若bk<0,则直线y=kx+b一定通过()
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限6.(4分)若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()A.1 B.2 C.﹣ D.﹣
7.(4分)如图,CD是⊙O的直径,已知∠1=30°,则∠2=()
A.30°B.45°C.60°D.70°
8.(4分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:
①abc<0;②>0;③ac﹣b+1=0;④OA?OB=﹣.
其中正确结论的个数是()
A.4 B.3 C.2 D.1
二、填空题(每小题3分,共18分)
9.(3分)的算术平方根是.
10.(3分)钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为.
11.(3分)已知菱形的两条对角线长分别为1和4,则菱形的面积为.12.(3分)x2+kx+9是完全平方式,则k=.
13.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.14.(3分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.
三、解答题(共9小题,共70分)
15.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.
16.(7分)先化简:(﹣a+1)÷,并从0,﹣1,2中选一个合适的
数作为a的值代入求值.
17.(8分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如
下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)
(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;
(2)该班学生体育测试成绩的中位数落在等级内;
(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?
18.(8分)如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.
(1)求证:DE=EC;
(2)若AD=BC,试判断四边形ABED的形状,并说明理由.来源学科网ZXXK]
19.(8分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.
(1)求证:AC是⊙O的切线;
(2)若BF=6,⊙O的半径为5,求CE的长.
20.(6分)某商店从厂家以每件18元购进一批商品出售,若每件售价为a元,则可售出(320﹣10a)件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?
21.(8分)在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.
22.(8分)某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的 1.2倍,数量比第一次少了20个.
(1)求第一次每个书包的进价是多少元?
(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?
23.(12分)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.
(1)求这个抛物线的解析式;
(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?
(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D 的坐标.
2018年云南省曲靖市罗平县中考数学一模试卷
参考答案与试题解析
一、选择题(每小题4分,共32分)
1.(4分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.
【解答】解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图
形,也是中心对称图形,故此选项正确;
B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中
心对称图形,故此选项错误.
C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;
D、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中
心对称图形,故此选项错误.
故选:A.
2.(4分)下列代数运算正确的是()
A.x?x6=x6B.(x2)3=x6C.(x+2)2=x2+4 D.(2x)3=2x3
【解答】解:A、x?x6=x7,原式计算错误,故本选项错误;
B、(x2)3=x6,原式计算正确,故本选项正确;
C、(x+2)2=x2+4x+4,原式计算错误,故本选项错误;
D、(2x)3=8x3,原式计算错误,故本选项错误.
故选B.
3.(4分)若代数式2x a y3z c与是同类项,则()
A.a=4,b=2,c=3 B.a=4,b=4,c=3 C.a=4,b=3,c=2 D.a=4,b=3,c=4
【解答】解:∵代数式2x a y3z c与是同类项,
∴a=4,b=3,c=2,
故选C.
4.(4分)下列四个图形中,不能推出∠2与∠1相等的是()A. B.C.
D.
【解答】解:A、∵∠1和∠2互为对顶角,
∴∠1=∠2,故本选项错误;
B、∵a∥b,
∴∠1+∠2=180°(两直线平行,同旁内角互补),
不能判断∠1=∠2,故本选项正确;
C、∵a∥b,
∴∠1=∠2(两直线平行,内错角相等),故本选项错误;
D、如图,∵a∥b,
∴∠1=∠3(两直线平行,同位角相等),
∵∠2=∠3(对顶角相等),
∴∠1=∠2,故本选项错误;
故选B.
5.(4分)若bk<0,则直线y=kx+b一定通过()
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限【解答】解:由bk<0,知①b>0,k<0;②b<0,k>0,
①当b>0,k<0时,直线经过第一、二、四象限,
②b<0,k>0时,直线经过第一、三、四象限.
综上可得函数一定经过一、四象限.
故选D.
6.(4分)若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是()A.1 B.2 C.﹣ D.﹣
【解答】解:依题意得:x1+x2=3,x1?x2=﹣4,
所以+===﹣.
故选:C.
7.(4分)如图,CD是⊙O的直径,已知∠1=30°,则∠2=()
A.30°B.45°C.60°D.70°
【解答】解:如图,连接AD.
∵CD是⊙O的直径,
∴∠CAD=90°(直径所对的圆周角是90°);
在Rt△ACD中,∠CAD=90°,∠1=30°,
∴∠DAB=60°;。

相关文档
最新文档