2019-2020学年云南省曲靖市中考数学一模试卷((有标准答案))

合集下载

云南省曲靖市2019-2020学年中考第一次质量检测数学试题含解析

云南省曲靖市2019-2020学年中考第一次质量检测数学试题含解析

云南省曲靖市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE2.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补3.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-4.下列说法中,正确的个数共有()(1)一个三角形只有一个外接圆;(2)圆既是轴对称图形,又是中心对称图形;(3)在同圆中,相等的圆心角所对的弧相等;(4)三角形的内心到该三角形三个顶点距离相等;A.1个B.2个C.3个D.4个5.方程5x+2y=-9与下列方程构成的方程组的解为212xy=-⎧⎪⎨=⎪⎩的是()A.x+2y=1 B.3x+2y=-8 C.5x+4y=-3 D.3x-4y=-86.如图由四个相同的小立方体组成的立体图像,它的主视图是().A.B.C.D.7.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x +c的图象可能是()A. B.C.D.8.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b29.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<210.实数4的倒数是()A.4 B.14C.﹣4 D.﹣1411.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K 的值不可能是( )A .-5B .-2C .3D .512.以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( )A .b≥1.25B .b≥1或b≤﹣1C .b≥2D .1≤b≤2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,⊙P 的圆心在x 轴上,且经过点A (m ,﹣3)和点B (﹣1,n ),点C 是第一象限圆上的任意一点,且∠ACB=45°,则⊙P 的圆心的坐标是_____.14.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.15.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .16.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.17.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.18.因式分解:a 3b ﹣ab 3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上).已知AB =80m ,DE =10m ,求障碍物B ,C 两点间的距离.(结果保留根号)20.(6分)如图,已知AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.21.(6分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a 的值为 ,中位数在第 组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率. 组别成绩x 分 频数(人数) 第1组 50≤x <60 6第2组60≤x <70 8 第3组70≤x <80 14 第4组80≤x <90 a 第5组 90≤x <100 1022.(8分)在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形;(2)求折痕EF 的长.23.(8分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.24.(10分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7米,梯子顶端到地面的距离AC 为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D 为1.5米,求小巷有多宽.25.(10分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). 请画出△ABC 向左平移5个单位长度后得到的△A B C ;请画出△ABC 关于原点对称的△A B C ; 在轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出P 的坐标.26.(12分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.27.(12分)计算:﹣14﹣2×(﹣3)2+327-÷(﹣13)如图,小林将矩形纸片ABCD 沿折痕EF 翻折,使点C 、D 分别落在点M 、N 的位置,发现∠EFM=2∠BFM ,求∠EFC 的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 2.C【解析】【分析】分清截线和被截线,根据平行线的性质进行解答即可.【详解】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.3.A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x =100x,故选A.4.C【解析】【分析】根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.【详解】(1)一个三角形只有一个外接圆,正确;(2)圆既是轴对称图形,又是中心对称图形,正确;(3)在同圆中,相等的圆心角所对的弧相等,正确;(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;故选:C.【点睛】此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.5.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.6.D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选D.7.A【解析】【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,∴x=ax 2+bx+c ,∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点,∴方程ax 2+(b-1)x+c=0有两个正实数根.∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点, 又∵-2b a>0,a >0 ∴-12b a -=-2b a +12a >0 ∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件,故选A .8.B【解析】【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b )1=a 1±1ab+b 1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A 选项:4x 3•1x 1=8x 5,故原题计算正确;B 选项:a 4和a 3不是同类项,不能合并,故原题计算错误;C 选项:(-x 1)5=-x 10,故原题计算正确;D 选项:(a-b )1=a 1-1ab+b 1,故原题计算正确;故选:B .【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.9.D【解析】【分析】【详解】解:∵直线l1与x轴的交点为A(﹣1,0),∴﹣1k+b=0,∴242y xy kx k=-+⎧⎨=+⎩,解得:42282kxkkyk-⎧=⎪⎪+⎨⎪=⎪+⎩.∵直线l1:y=﹣1x+4与直线l1:y=kx+b(k≠0)的交点在第一象限,∴42282kkkk-⎧>⎪⎪+⎨⎪>⎪+⎩,解得0<k<1.故选D.【点睛】两条直线相交或平行问题;一次函数图象上点的坐标特征.10.B【解析】【分析】根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.【详解】解:实数4的倒数是:1÷4=14.故选:B.【点睛】此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.11.B【解析】【分析】当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.【详解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.即k≤-3或k≥1.所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.故选B.【点睛】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y 轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.12.A【解析】∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,解得b≥.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,∴此种情况不存在.∴b≥.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,∵A(m,﹣3)和点B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,设P(a,0),∴a+1=3,a=2,∴P(2,0),故答案为(2,0).【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.14.3.308×1.【解析】【分析】正确用科学计数法表示即可.【详解】解:33080=3.308×1【点睛】科学记数法的表示形式为10na 的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.15.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0x k =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解!16.【解析】【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程组即可.【详解】设大和尚x 人,小和尚y 人,由题意可得. 故答案为.【点睛】本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程组. 17.2m【解析】【分析】本题是已知圆的直径,弦长求油的最大深度其实就是弧AB 的中点到弦AB 的距离,可以转化为求弦心距的问题,利用垂径定理来解决.【详解】解:过点O 作OM ⊥AB 交AB 与M ,交弧AB 于点E .连接OA .在Rt △OAM 中:OA=5m ,AM=AB=4m .根据勾股定理可得OM=3m ,则油的最大深度ME 为5-3=2m .【点睛】圆中的有关半径,弦长,弦心距之间的计算一般是通过垂径定理转化为解直角三角形的问题. 18.ab (a+b )(a ﹣b )【解析】【分析】先提取公因式ab ,然后再利用平方差公式分解即可.【详解】a 3b ﹣ab 3=ab (a 2﹣b 2)=ab (a+b )(a ﹣b ),故答案为ab (a+b )(a ﹣b ).【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.分解因式的步骤一般为:一提(公因式),二套(公式),三彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(70﹣103)m .【解析】【分析】过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.通过解Rt ADF V 得到DF 的长度;通过解Rt CDE△得到CE 的长度,则BC BE CE =-.【详解】如图,过点D 作DF ⊥AB 于点F ,过点C 作CH ⊥DF 于点H.则DE=BF=CH=10m ,在Rt ADF V 中,∵AF=80m−10m=70m,45ADF ∠=o ,∴DF=AF=70m.在Rt CDE △中,∵DE=10m,30DCE ∠=o ,∴)tan30DE CE m ===o ,∴(70.BC BE CE m =-=-答:障碍物B ,C两点间的距离为(70.m -20.证明见解析.【解析】【分析】根据等式的基本性质可得BAC DAE ∠=∠,然后利用SAS 即可证出ABC ADE ∆≅∆,从而证出结论.【详解】证明:BAD CAE ∠=∠Q ,BAD DAC CAE DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC ∆和ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()ABC ADE SAS ∴∆≅∆,BC DE ∴=.【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS 判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.21.(1)①12,3. ②详见解析.(2)13. 【解析】分析:(1)①根据题意和表中的数据可以求得a 的值;②由表格中的数据可以将频数分布表补充完整; (2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率. 详解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为12,3;②如图,(2)121050×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小强分在一起的概率为:13.点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.22.(1)见解析;(2)15 2.【解析】【分析】(1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE=254=DE=BF,AE=8﹣DE=8﹣254=74=BM ,∴FM=254﹣74=92. 在Rt △EMF 中,由勾股定理得:EF=22962()+=152. 故答案为152.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键. 23.(1)一次函数为112y x =-+,反比例函数为12y x =-;(2)△AHO 的周长为12 【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy 为定值,列出方程,求出k 的值,便可求出反比例函数的解析式;根据k 的值求出B 两点的坐标,用待定系数法便可求出一次函数的解析式. (2)由(1)知AH 的长,根据勾股定理,可得AO 的长,根据三角形的周长,可得答案.详解:(1)∵tan ∠AOH=AH OH =43 ∴AH=43OH=4 ∴A (-4,3),代入k y x =,得 k=-4×3=-12∴反比例函数为12y x =-∴122m -=-∴m=6∴B (6,-2)∴4362a b a b -+=⎧⎨+=-⎩ ∴a =12-,b=1 ∴一次函数为112y x =-+ (2)2222345OA AH OH =+=+=△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.24.2.7米.【解析】【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的宽度CD为2.7米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.25.(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】【分析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A 1B 1C 1如图所示;(2)△A 2B 2C 2如图所示;(3)△PAB 如图所示,点P 的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用26.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点. 27.(1)﹣10;(2)∠EFC=72°.【解析】【分析】(1)原式利用乘方的意义,立方根定义,乘除法则及家减法法则计算即可;(2)根据折叠的性质得到一对角相等,再由已知角的关系求出结果即可.【详解】(1)原式=﹣1﹣18+9=﹣10;(2)由折叠得:∠EFM=∠EFC ,∵∠EFM=2∠BFM ,∴设∠EFM=∠EFC=x ,则有∠BFM=12x , ∵∠MFB+∠MFE+∠EFC=180°,∴x+x+12x=180°, 解得:x=72°,则∠EFC=72°.【点睛】本题考查了实数的性质及平行线的性质,解题的关键是熟练掌握实数的运算法则及平行线的性质.。

云南省曲靖市2019-2020学年中考数学考试试题

云南省曲靖市2019-2020学年中考数学考试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7D.4<m≤72.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4 B.23C.12 D.433.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )A.13B.23C.34D.454.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同5.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A .100°B .80°C .50°D .20°6.下列命题中真命题是( )A .若a 2=b 2,则a=bB .4的平方根是±2C .两个锐角之和一定是钝角D .相等的两个角是对顶角7.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C .3D .38.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-= 9.在同一直角坐标系中,函数y=kx-k 与k y x=(k≠0)的图象大致是 ( ) A . B .C .D .10.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是( )A .点A 与点B B .点A 与点DC .点B 与点D D .点B 与点C二、填空题(本题包括8个小题)11.分解因式: 22a b ab b -+=_________.12.分解因式:4ax 2-ay 2=________________.13.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DE AB=_.14.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.15.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.16.12019的相反数是_____. 17.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.18.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.三、解答题(本题包括8个小题)19.(6分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?20.(6分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.21.(6分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:3=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)22.(8分)先化简,再求值:22m35m23m6m m2-⎛⎫÷+-⎪--⎝⎭,其中m是方程2x3x10++=的根.23.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.24.(10分)反比例函数kyx=在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数kyx=的图象于点M,△AOM的面积为2.求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数k y x=的图象上,求t 的值. 25.(10分)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).26.(12分)对x ,y 定义一种新运算T ,规定T (x ,y )=22ax by x y++(其中a ,b 是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T (3,1)=22319314a b a b ⨯+⨯+=+,T (m ,﹣2)=242am b m +-.填空:T (4,﹣1)= (用含a ,b 的代数式表示);若T (﹣2,0)=﹣2且T (5,﹣1)=1.①求a 与b 的值;②若T (3m ﹣10,m )=T (m ,3m ﹣10),求m 的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m 的不等式组,解之即可求得m 的取值范围.【详解】解:解不等式3x ﹣m+1>0,得:x >13m -, ∵不等式有最小整数解2,∴1≤13m -<2, 解得:4≤m <7,故选A .【点睛】 本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键. 2.D 【解析】 分析:由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小=3,这样如图3,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可.详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小=3,如图3,过点P 作PD ⊥AB 于点P ,连接AD ,∵△ABC 是等边三角形,点D 是BC 边上的中点,∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时DP=3,∴BD=332sin 60PD =÷=, ∴BC=2BD=4,∴AB=4,∴AD=AB·sin ∠B=4×sin60°=23,∴S △ABC=12AD·BC=1234432⨯⨯=. 故选D.点睛:“读懂题意,知道当DP ⊥AB 于点P 时,DP 最短3是解答本题的关键.3.C【解析】【分析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD,从而可得EF AB+EF CD =DF DB +BF BD =1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD ,∴EF AB = DF DB ,EF CD =BF BD, ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3,∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.4.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A 、左、右两个几何体的主视图为:,故此选项错误;B 、左、右两个几何体的左视图为:,故此选项正确;C 、左、右两个几何体的俯视图为:,故此选项错误;D 、由以上可得,此选项错误;故选B .【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.5.B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.6.B【解析】【分析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.【详解】A 、若a 2=b 2,则a=±b ,错误,是假命题;B 、4的平方根是±2,正确,是真命题;C 、两个锐角的和不一定是钝角,故错误,是假命题;D 、相等的两个角不一定是对顶角,故错误,是假命题.故选B .【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.7.D【解析】【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.8.A【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x-2)=2x+1.故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.9.D【解析】【分析】根据k值的正负性分别判断一次函数y=kx-k与反比例函数kyx=(k≠0)所经过象限,即可得出答案.【详解】解:有两种情况,当k>0是时,一次函数y=kx-k的图象经过一、三、四象限,反比例函数kyx=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k的图象经过一、二、四象限,反比例函数kyx=(k≠0)的图象经过二、四象限;根据选项可知,D选项满足条件.故选D.【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键. 10.A【解析】【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.二、填空题(本题包括8个小题)11.【解析】先提取公因式b,再利用完全平方公式进行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)12.a(2x+y)(2x-y)【解析】【分析】首先提取公因式a,再利用平方差进行分解即可.【详解】原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为a(2x+y)(2x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.5【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解.设点C的坐标为(1,15),则点B的坐标为5,15),点D的坐标为(1,1),点E的坐标为51),则5,51,则DEAB=55.考点:二次函数的性质14.32- 213- 2【解析】【分析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可.【详解】y1=32 -,y2=−1312-+=2,y3=−112+=13-,y4=−1113-+=32-,…,∴每3次计算为一个循环组依次循环,∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同,∴y2006=2,故答案为32-;2;13-;2.【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律.15.(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB1,B1所在的象限为第一象限;∴OB2=)2,B2在x轴正半轴;∴OB3=)3,B3所在的象限为第四象限;∴OB4=)4,B4在y轴负半轴;∴OB5=)5,B5所在的象限为第三象限;∴OB6=)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).16.1 2019 -【解析】【分析】根据只有符号不同的两个数互为相反数,可得答案.【详解】1 2019的相反数是−12019.故答案为−1 2019.【点睛】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.17.300【解析】【分析】设成本为x元,标价为y元,根据已知条件可列二元一次方程组即可解出定价. 【详解】设成本为x元,标价为y元,依题意得0.75250.920y xy x+=⎧⎨-=⎩,解得250300xy=⎧⎨=⎩故定价为300元.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程再求解. 18.360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.三、解答题(本题包括8个小题)19.规定日期是6天.【解析】【分析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.20.(1)证明见解析;(2)35. 【解析】【分析】(1)由于AG ⊥BC ,AF ⊥DE ,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB ,进而可证明△ADE ∽△ABC ;(2)△ADE ∽△ABC ,AD AE AB AC =,又易证△EAF ∽△CAG ,所以AF AE AG AC=,从而可求解. 【详解】(1)∵AG ⊥BC ,AF ⊥DE ,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC ,∴∠AED=∠ACB ,∵∠EAD=∠BAC ,∴△ADE ∽△ABC ,(2)由(1)可知:△ADE ∽△ABC ,∴35AD AE AB AC == 由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC ,∴△EAF ∽△CAG ,∴AF AE AG AC=, ∴AF AG =35 考点:相似三角形的判定21.(1)10米;(2)11.4米 【解析】【分析】(1)延长DC 交AN 于H .只要证明BC=CD 即可;(2)在Rt △BCH 中,求出BH 、CH ,在 Rt △ADH 中求出AH 即可解决问题.【详解】(1)如图,延长DC 交AN 于H ,∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米);(2)在Rt △BCH 中,CH=12BC=5,3, ∴DH=15,在Rt △ADH 中,AH=tan 37DH ︒≈150.75=20, ∴AB=AH ﹣BH=20﹣8.65=11.4(米).【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 【解析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程2x 3x 10++=的根,那么,可得2m 3m +的值,再把2m 3m +的值整体代入化简后的式子,计算即可.试题解析:原式=()()()()()22m 3m 9m 3m 211 3m m 2m 23m m 2m 3m 33m m 33(m 3m)----÷=⋅==---+-++. ∵m 是方程2x 3x 10++=的根.∴,即2m 3m 1+=-,∴原式=()11=313-⨯-. 考点:分式的化简求值;一元二次方程的解.23.见解析,49. 【解析】【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,所以两次抽取的卡片上的数字都是偶数的概率=49. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.24.(2)6y x =(2)7或2. 【解析】试题分析:(2)根据反比例函数k 的几何意义得到12|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=6x;(2)分类讨论:当以AB 为一边的正方形ABCD 的顶点D 在反比例函数y=6x的图象上,则D 点与M 点重合,即AB=AM ,再利用反比例函数图象上点的坐标特征确定M 点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB 为一边的正方形ABCD 的顶点C 在反比例函数y=6x的图象上,根据正方形的性质得AB=BC=t-2,则C 点坐标为(t ,t-2),然后利用反比例函数图象上点的坐标特征得到t (t-2)=6,再解方程得到满足条件的t 的值.试题解析:(2)∵△AOM 的面积为2, ∴12|k|=2, 而k >0,∴k=6,∴反比例函数解析式为y=6x; (2)当以AB 为一边的正方形ABCD 的顶点D 在反比例函数y=6x 的图象上,则D 点与M 点重合,即AB=AM , 把x=2代入y=6x得y=6, ∴M 点坐标为(2,6),∴AB=AM=6,∴t=2+6=7;当以AB 为一边的正方形ABCD 的顶点C 在反比例函数y=6x 的图象上, 则AB=BC=t-2,∴C 点坐标为(t ,t-2),∴t (t-2)=6,整理为t 2-t-6=0,解得t 2=2,t 2=-2(舍去),∴t=2,∴以AB 为一边的正方形有一个顶点在反比例函数y=k x 的图象上时,t 的值为7或2. 考点:反比例函数综合题.25.(1)135BAD ∠=︒;(2)12ABC ADC ABCD S S S ∆∆=+=四边形 【解析】【分析】(1)连接AC ,由勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACD 的形状,进而可求出∠BAD 的度数;(2)由(1)可知△ABC 和△ADC 是Rt △,再根据S 四边形ABCD =S △ABC +S △ADC 即可得出结论.【详解】解:(1)连接AC,如图所示:∵AB=BC=1,∠B=90°∴AC=22112+=,又∵AD=1,DC=3,∴ AD2+AC2=3 CD2=(3)2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四边形ABCD=S△ABC+S△ADC=1×1×12+1×2×12=122+.【点睛】考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.(1)163a b+;(2)①a=1,b=-1,②m=2.【解析】【分析】(1)根据题目中的新运算法则计算即可;(2)①根据题意列出方程组即可求出a,b的值;②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论. 【详解】解:(1)T(4,﹣1)==;故答案为;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,当T(x,y)=T(y,x)时,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3xB .由,得2x ﹣2﹣x =﹣4C .由,得2y-15=3yD .由,得3(y+1)=2y+62.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 23.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm 和3cm ,大圆的弦AB 与小圆相切,则劣弧AB 的长为( )A .2πcmB .4πcmC .6πcmD .8πcm4.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 5.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( )A .3,2B .3,4C .5,2D .5,46.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A.70︒B.65︒C.60︒D.55︒7.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k D.反比例函数的图象关于直线y=﹣x成轴对称8.关于反比例函数y=2x,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上9.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形10.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.43二、填空题(本题包括8个小题)11.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.12.已知方程x2﹣5x+2=0的两个解分别为x1、x2,则x1+x2﹣x1•x2的值为______.13.如果某数的一个平方根是﹣5,那么这个数是_____.CE=,F为DE的14.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5∆的周长为18,则OF的长为________.中点.若CEF15.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.16.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.17.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.18.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.三、解答题(本题包括8个小题)19.(6分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.20.(6分)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=kx(k≠0)的值时,写出自变量x的取值范围.21.(6分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.22.(8分)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.求证:DE是⊙O的切线;设△CDE的面积为S1,四边形ABED的面积为S1.若S123.(8分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.24.(10分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?25.(10分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.26.(12分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.2.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC 和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCE S △ABC . 3.B【解析】【分析】首先连接OC ,AO ,由切线的性质,可得OC ⊥AB ,根据已知条件可得:OA=2OC ,进而求出∠AOC 的度数,则圆心角∠AOB 可求,根据弧长公式即可求出劣弧AB 的长.【详解】解:如图,连接OC ,AO ,∵大圆的一条弦AB 与小圆相切,∴OC ⊥AB ,∵OA=6,OC=3,∴OA=2OC ,∴∠A=30°,∴∠AOC=60°,∴∠AOB=120°,∴劣弧AB 的长=1206180π⨯⨯ =4π, 故选B .【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.4.C【解析】解:A .22233a a b ab =,故本选项错误;C .22a b a b++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.5.B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.6.B【解析】【分析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.D详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.8.C【解析】【分析】根据反比例函数y=2x的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【详解】A.反比例函数2yx的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【点睛】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.9.D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,解得:x=3 2故选A.二、填空题(本题包括8个小题)11.(32,32)【解析】【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【详解】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=32,∵四边形ODEF是正方形,∴DE=OD=32.∴E点的坐标为:(32,32).故答案为:(32,32).【点睛】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.。

云南省曲靖市2019-2020学年数学中考模拟试卷(含答案)

云南省曲靖市2019-2020学年数学中考模拟试卷(含答案)

云南省曲靖市2019-2020学年数学中考模拟试卷(含答案)一、单选题1.某种品牌的洗面奶,外包装标明净含量为500±10g,表明了这种洗面奶的净含量x的范围是()A. 490<x<510B. 490≤x≤510C. 490<x≤510D. 490≤x<510【答案】B【考点】有理数的加法2.下列各式计算正确的是()A. a+2a=3a2B. (﹣a3)2=a6C. a3a2=a6D. (a+b)2=a2+b2【答案】B【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,幂的乘方3.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A. 主视图B. 俯视图C. 左视图D. 一样大【答案】C【考点】简单组合体的三视图4.把图中阴影部分的小正方形移动一个,使它与其余四个阴影部分的正方形组成一个既是轴对称又是中心对称的新图形,这样的移法,正确的是()A. 6→3B. 7→16C. 7→8D. 6→15【答案】 D【考点】轴对称图形,中心对称及中心对称图形5.2017年底我市有绿化面积300公顷,为响应“退耕还林”的号召,计划到2019年底绿化面积增加到363公顷.设绿化面积平均每年的增长率为x,由题意可列方程为()A. 300(1+x)=363B. 300(1+x)2=363C. 300(1+2x)=363D. 300(1﹣x)2=363【答案】B【考点】一元二次方程的实际应用-百分率问题6.不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【考点】在数轴上表示不等式(组)的解集7.已知△ABC如图1,嘉淇同学进行如下作图(如图2):( 1 )分别以点B,C为圆心,AC,AB长为半径作弧,两弧相交于P点;(2)作直线AP,AP与BC交于D点,则线段AD就是△ABC的()A. 中线B. 角平分线C. 高线D. 中位线【答案】A【考点】三角形的角平分线、中线和高,作图—基本作图8.函数y= 的自变量x的取值范围是________.【答案】x≥﹣且x≠3【考点】分式有意义的条件,二次根式有意义的条件二、填空题9.某种计算机每秒运算次数是4.66亿次,4.66亿次精确到________位,4.66亿次用科学记数法可以表示为________次.【答案】百万;4.66×108【考点】近似数及有效数字,科学记数法—表示绝对值较大的数10.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴交于A,B两点,分别以点A,B为圆心,大于AB长为半径作圆弧,两弧在第一象限交于点C,若点C的坐标为(m+1,7﹣m),则m的值是________.【答案】3【考点】作图—基本作图,一次函数图像与坐标轴交点问题11.同一个圆的内接正方形和正三角形的边心距的比为________.【答案】:1【考点】正多边形和圆,锐角三角函数的定义12.如果关于x的一元二次方程x2+2x﹣a=0没有实数根,那么a的取值范围是________.【答案】a<﹣1【考点】一元二次方程根的判别式及应用13.有一个数值转换器,原理如图所示,若开始输入x的值是3,可发现第1次输出的结果是10,第2次输出的结果是5,第3次输出的结果是16,第4次输出的结果是8,依次继续下去…,第2018次输出的结果是________.【答案】4【考点】代数式求值,探索数与式的规律,有理数的乘法三、解答题14.计算:(1)()2﹣﹣(2)(3)|﹣3|+(π+1)0(4)()× .【答案】(1)解:原式=4+3﹣10=﹣3(2)解:原式= +2 ﹣6 =﹣3(3)解:原式=3+1﹣3+2=3(4)解:原式= + ﹣2 =4 +3 ﹣2 =4 +【考点】实数的运算,二次根式的加减法,二次根式的混合运算15.某校为更好的开展“春季趣味运动会”活动,随机在各年级抽查了部分学生,了解他们最喜爱的趣味运动项目类型(跳绳、实心球、50m、拔河共四类),并将统计结果绘制成如下不完整的频数分布表(如图所示)根据以上信息回答下列问题:最喜爱的趣味运动项目类型频数分布表:(1)直接写出a=________,b=________;(2)将图中的扇形统计图补充完整(注明项目、百分比);(3)若全校共有学生1200名,估计该校最喜爱50m和拔河的学生共约有多少人?【答案】(1)0.25;40(2)解:如图,实心球所占百分比为50m所占百分比为0.4=40%,拔河所占百分比为0.15=15%,补全扇形图如下:(3)解:1200×(0.4+0.15)=660(人),答:全校共有学生1200名,估计该校最喜爱50m和拔河的学生的学生大约有660人.【考点】用样本估计总体,频数(率)分布表,扇形统计图16.列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?【答案】解:设原计划每天铺设多长管道设原计划每天铺设x米管道,根据题意得:.解得x=60,经检验x=60是原分式方程的解.答:原计划每天铺设60米长的管道.【考点】分式方程的实际应用17.如图,已知点A(1,a)是反比例函数y1= 的图象上一点,直线y2=﹣与反比例函数y1= 的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【答案】解:(I)∵B(3,﹣1)在反比例函数的图象上,∴-1= ,∴m=-3,∴反比例函数的解析式为;(II),∴= ,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,当x=-2时,y= ,∴D(-2,);y1>y2时x的取值范围是-2<x<0或x> ;(III)∵A(1,a)是反比例函数的图象上一点,∴a=-3,∴A(1,-3),设直线AB为y=kx+b,,∴,∴直线AB为y=x-4,令y=0,则x=4,∴P(4,0)【考点】待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题,反比例函数的实际应用18.一个不透明的口袋里装有分别标有汉字“书”、“ 香”、“ 历”、“ 城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为________.(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“历城”的概率.【答案】(1)(2)解:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“历城”的结果数为2,所以取出的两个球上的汉字能组成“历城”的概率【考点】列表法与树状图法,简单事件概率的计算19.已知,如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:四边形AGBD为平行四边形;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?证明你的结论.【答案】(1)证明:∵平行四边形ABCD中,AD∥BC,∴AD∥BG,又∵AG∥BD,∴四边形AGBD是平行四边形(2)解:四边形DEBF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E、F分别是AB、CD的中点,∴BE= AB,DF= CD,∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∵四边形AGBD是矩形,E为AB的中点,∴AE=BE=DE,∴平行四边形DEBF是菱形.【考点】三角形中位线定理,平行四边形的判定与性质,菱形的判定20.如图,AB为圆O的直径,C为圆O上一点,D为BC延长线一点,且BC=CD,CE⊥AD于点E.(1)求证:直线EC为圆O的切线;(2)设BE与圆O交于点F,AF的延长线与CE交于点P,已知∠PCF=∠CBF,PC=5,PF=4,求sin∠PEF的值.【答案】(1)证明:∵CE⊥AD于点E∴∠DEC=90°,∵BC=CD,∴C是BD的中点,又∵O是AB的中点,∴OC是△BDA的中位线,∴OC∥AD∴∠OCE=∠CED=90°∴OC⊥CE,又∵点C在圆上,∴CE是圆O的切线.(2)解:连接AC∵AB是直径,点F在圆上∴∠AFB=∠PFE=90°=∠CEA∵∠EPF=∠EPA∴△PEF∽△PEA∴PE2=PF×PA∵∠FBC=∠PCF=∠CAF又∵∠CPF=∠CPA∴△PCF∽△PAC∴PC2=PF×PA∴PE=PC在直角△PEF中,sin∠PEF= .【考点】三角形中位线定理,切线的判定,相似三角形的判定与性质,锐角三角函数的定义21.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【答案】(1)解:∵直线l:y= x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y= x﹣1,∵直线l:y= x﹣1经过点C(4,n),∴n= ×4﹣1=2,∵抛物线y= x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y= x2﹣x﹣1;(2)解:令y=0,则x﹣1=0,解得x= ,∴点A的坐标为(,0),∴OA= ,在Rt△OAB中,OB=1,∴AB= ,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE• ,DF=DE•sin∠DEF=DE• ,∴p=2(DF+EF)=2(,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p= ×(﹣t2+2t)=﹣t2+ t,∵p=﹣(t﹣2)2+ ,且﹣<0,∴当t=2时,p有最大值;(3)解:∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1= (x+1)2﹣(x+1)﹣1,解得x= ,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1= (x+1)2﹣(x+1)﹣1+ ,解得x=﹣,综上所述,点A1的横坐标为或﹣.【考点】待定系数法求二次函数解析式,勾股定理,解直角三角形的应用,二次函数的实际应用-动态几何问题11 / 11。

2019-2020学年云南省曲靖市中考数学模拟试卷(有标准答案)(word版)

2019-2020学年云南省曲靖市中考数学模拟试卷(有标准答案)(word版)

云南省曲靖市中考数学试卷一、选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.4的倒数是()A.4 B.C.﹣ D.﹣42.下列运算正确的是()A.3﹣=3 B.a6÷a3=a2C.a2+a3=a5D.(3a3)2=9a63.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.94.实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b| B.a>b C.a<﹣b D.|a|>|b|5.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.极差是6 B.众数是10 C.平均数是9.5 D.方差是166.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=447.数如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个8.如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB二、填空题(共6个小题,每小题3分,共18分)9.计算: = .10.如果整数x>﹣3,那么使函数y=有意义的x的值是(只填一个)11.已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m= .12.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是.13.如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM= .14.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是.三、解答题(共9个小题,共70分)15. +(2﹣)0﹣(﹣)﹣2+|﹣1|16.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.17.先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.18.如图,已知直线y 1=﹣x+1与x 轴交于点A ,与直线y 2=﹣x 交于点B .(1)求△AOB 的面积;(2)求y 1>y 2时x 的取值范围.19.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.20.根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A ,B ,C ,D 四组,得到如下统计图:(1)求A 组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.21.在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A 1,A 2,A 3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22.如图,在Rt △ABC 中,∠BAC=90°,O 是AB 边上的一点,以OA 为半径的⊙O 与边BC 相切于点E .(1)若AC=5,BC=13,求⊙O 的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.23.如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.4的倒数是()A.4 B.C.﹣ D.﹣4【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:4的倒数是,故选:B.2.下列运算正确的是()A.3﹣=3 B.a6÷a3=a2C.a2+a3=a5D.(3a3)2=9a6【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据二次根式的加减法、同底数幂的除法、合并同类项法则、积的乘方与幂的乘方的运算法则解答.【解答】解:A、由于3﹣=(3﹣1)=2≠3,故本选项错误;B、由于a6÷a3=a6﹣3=a3≠a2,故本选项错误;C、由于a2与a3不是同类项,不能进行合并同类项计算,故本选项错误;D、由于(3a3)2=9a6,符合积的乘方与幂的乘方的运算法则,故本选项正确.故选D.3.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3 B.6 C.8 D.9【考点】合并同类项;单项式.【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.【解答】解:∵x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选D.4.实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b| B.a>b C.a<﹣b D.|a|>|b|【考点】实数与数轴.【分析】据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得0>a>﹣1,1<b<2.A、|a|<|b|,故本选项正确;B、a<b,故本选项错误;C、a>﹣b,故本选项错误;D、|a|<|b|,故本选项错误;故选:A.5.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.极差是6 B.众数是10 C.平均数是9.5 D.方差是16【考点】方差;算术平均数;众数;极差.【分析】极差是指一组数据中最大数据与最小数据的差;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:(A)极差为11﹣6=5,故(A)错误;(B)根据出现次数最多的数据是10可得,众数是10,故(B)正确;(C)平均数为(10+6+9+11+8+10)÷6=9,故(C)错误;(D)方差为 [(10﹣9)2+(6﹣9)2+(9﹣9)2+(11﹣9)2+(8﹣9)2+(10﹣9)2]=,故(D)错误.故选(B)6.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5x+(9﹣5)×(x+2)=44,化简,得5x+4(x+2)=44,故选A.7.数如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个【考点】正多边形和圆;平行四边形的判定.【分析】根据正六边形的性质,直接判断即可;【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形FABOD都是平行四边形,共6个,故选C8.如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是()A.CD⊥l B.点A,B关于直线CD对称C.点C,D关于直线l对称D.CD平分∠ACB【考点】作图—基本作图;线段垂直平分线的性质;轴对称的性质.【分析】利用基本作图可对A进行判断;利用CD垂直平分AB可对B、D进行判断;利用AC与AD不一定相等可对C进行判断.【解答】解:由作法得CD垂直平分AB,所以A、B选项正确;因为CD垂直平分AB,所以CA=CB,所以CD平分∠ACB,所以D选项正确;因为AD不一定等于AD,所以C选项错误.故选C.二、填空题(共6个小题,每小题3分,共18分)9.计算: = 2 .【考点】立方根.【分析】根据立方根的定义即可求解.【解答】解:∵23=8∴=2故答案为:2.10.如果整数x>﹣3,那么使函数y=有意义的x的值是0 (只填一个)【考点】二次根式有意义的条件.【分析】根据题意可以求得使得二次根式有意义的x满足的条件,又因为整数x>﹣3,从而可以写出一个符号要求的x值.【解答】解:∵y=,∴π﹣2x≥0,即x≤,∵整数x>﹣3,∴当x=0时符号要求,故答案为:0.11.已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m= 2 .【考点】根的判别式.【分析】首先根据原方程根的情况,利用根的判别式求出m的值即可.【解答】解:∵关于x的一元二次方程x2﹣mx+m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=m2﹣4×1×(m﹣1)=m2﹣4m+4=(m﹣2)2=0,∴m=2,故答案为:2.12.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么它的左视图的高是2.【考点】圆锥的计算;由三视图判断几何体.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高==2.故答案为2.13.如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM= .【考点】翻折变换(折叠问题);矩形的性质;解直角三角形.【分析】直接利用翻折变换的性质得出AF的长,再利用勾股定理得出BF的长,再利用锐角三角函数关系得出答案.【解答】解:∵在矩形ABCD中,AD=10,CD=6,沿AE折叠△ADE,使点D恰好落在BC边上的F处,∴AD=AF=10,∴BF==8,则sin∠ABM===.故答案为:.14.等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是77 .【考点】坐标与图形变化-旋转;等腰三角形的性质.【分析】根据题意可知每翻折三次与初始位置的形状相同,第15次于开始时形状相同,故以点B为参照点,第15次的坐标减去3即可的此时点C的横坐标.【解答】解:由题意可得,每翻转三次与初始位置的形状相同,15÷3=5,故第15次翻转后点C的横坐标是:(5+5+6)×5﹣3=77,故答案为:77.三、解答题(共9个小题,共70分)15. +(2﹣)0﹣(﹣)﹣2+|﹣1|【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解: +(2﹣)0﹣(﹣)﹣2+|﹣1|=4+1﹣4+1=2.16.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)首先证明△ABC≌△DFE可得∠ACE=∠DEF,进而可得AC∥DE;(2)根据△ABC≌△DFE可得BC=EF,利用等式的性质可得EB=CF,再由BF=13,EC=5进而可得EB的长,然后可得答案.【解答】(1)证明:在△ABC和△DFE中,∴△ABC≌△DFE(SAS),∴∠ACE=∠DEF,∴AC∥DE;(2)解:∵△ABC≌△DFE,∴BC=EF,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB==4,∴CB=4+5=9.17.先化简:÷+,再求当x+1与x+6互为相反数时代数式的值.【考点】分式的化简求值;解一元一次方程.【分析】先把分子分母因式分解和除法运算化为乘法运算,再约分得到原式=,然后利用x+1与x+6互为相反数可得到原式的值.【解答】解:原式=•+ =+ =, ∵x+1与x+6互为相反数,∴原式=﹣1.18.如图,已知直线y 1=﹣x+1与x 轴交于点A ,与直线y 2=﹣x 交于点B .(1)求△AOB 的面积;(2)求y 1>y 2时x 的取值范围.【考点】一次函数与一元一次不等式.【分析】(1)由函数的解析式可求出点A和点B的坐标,进而可求出△AOB的面积;(2)结合函数图象即可求出y1>y2时x的取值范围.【解答】解:(1)由y1=﹣x+1,可知当y=0时,x=2,∴点A的坐标是(2,0),∴AO=2,∵y1=﹣x+1与x与直线y2=﹣x交于点B,∴B点的坐标是(﹣1,1.5),∴△AOB的面积=×2×1.5=1.5;(2)由(1)可知交点B的坐标是(﹣1,1.5),由函数图象可知y1>y2时x>﹣1.19.甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.【考点】分式方程的应用.【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.【解答】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.20.根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)利用360°乘以A组所占比例即可;(2)首先计算出各组的组中值,然后再利用加权平均数公式计算平均数;(3)利用平均每班的载客量×天数×次数可得一个月的总载客量.【解答】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A: =10,B: =30;C: =50;D: =70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.21.在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y=图象上的所有“整点”A1,A2,A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.【考点】反比例函数图象上点的坐标特征;列表法与树状图法.【分析】(1)根据题意,可以直接写出函数y=图象上的所有“整点”;(2)根据题意可以用树状图写出所有的可能性,从而可以求得两点关于原点对称的概率.【解答】解:(1)由题意可得函数y=图象上的所有“整点”的坐标为:A1(﹣3,﹣1),A2(﹣1,﹣3),A3(1,3),A4(3,1);(2)所有的可能性如下图所示,由图可知,共有12种结果,关于原点对称的有4种,∴P(关于原点对称)=.22.如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.【考点】切线的性质;菱形的判定;垂径定理.【分析】(1)连接OE,设圆的半径为r,在之间三角形ABC中,利用勾股定理求出AB的长,根据BC与圆相切,得到OE垂直于BC,进而得到一对直角相等,再由一对公共角,利用两角相等的三角形相似得到三角形BOE与三角形ABC相似,由相似得比例求出r的值即可;(2)利用同弧所对的圆周角相等,得到∠AOE=4∠B,进而求出∠B与∠F的度数,根据EF与AD垂直,得到一对直角相等,确定出∠MEB=∠F=60°,CA与EF平行,进而得到CB与AF平行,确定出四边形ACEF为平行四边形,再由∠CAB为直角,得到CA为圆的切线,利用切线长定理得到CA=CE,利用邻边相等的平行四边形为菱形即可得证.【解答】(1)解:连接OE,设圆O半径为人,在Rt△ABC中,BC=13,AC=5,根据勾股定理得:AB==12,∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,∵∠B=∠B,∴△BOE∽△BCA,∴=,即=,解得:r=;(2)∵=,∠F=2∠B,∴∠AOE=2∠F=4∠B,∵∠AOE=∠OEB+∠B,∴∠B=30°,∠F=60°,∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,∴四边形ACEF为平行四边形,∵∠CAB=90°,OA为半径,∴CA为圆O的切线,∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.23.如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C(0,3),tan∠OAC=.(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由点C的坐标以及tan∠OAC=可得出点A的坐标,结合点A、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设直线AC的解析式为y=kx+b,由点A、C的解析式利用待定系数法即可求出直线AC的解析式,设N (x,0)(﹣4<x<0),可找出H、P的坐标,由此即可得出PH关于x的解析式,利用配方法即二次函数的性质即可解决最值问题;(3)过点M作MK⊥y轴于点K,交对称轴于点G,根据角的计算依据正方形的性质即可得出△MCK≌△MEG (AAS),进而得出MG=CK.设出点M的坐标利用正方形的性质即可得出点G、K的坐标,由正方形的性质即可得出关于x的含绝对值符号的一元二次方程,解方程即可求出x值,将其代入抛物线解析式中即可求出点M的坐标.【解答】解:(1)∵C(0,3),∴OC=3,∵tan∠OAC=,∴OA=4,∴A(﹣4,0).把A(﹣4,0)、C(0,3)代入y=ax2+2ax+c中,得,解得:,∴抛物线的解析式为y=﹣x2﹣x+3.(2)设直线AC的解析式为y=kx+b,把A(﹣4,0)、C(0,3)代入y=kx+b中,得:,解得:,∴直线AC的解析式为y=x+3.设N(x,0)(﹣4<x<0),则H(x, x+3),P(x,﹣x2﹣x+3),∴PH=﹣x2﹣x+3﹣(x+3)=﹣x2﹣x=﹣(x﹣2)2+,∵﹣<0,∴PH有最大值,当x=2时,PH取最大值,最大值为.(3)过点M作MK⊥y轴于点K,交对称轴于点G,则∠MGE=∠MKC=90°,∴∠MEG+∠EMG=90°,∵四边形CMEF是正方形,∴EM=MC,∠MEC=90°,∴∠EMG+∠CMK=90°,∴∠MEG=∠CMK.在△MCK和△MEG中,,∴△MCK≌△MEG(AAS),∴MG=CK.由抛物线的对称轴为x=﹣1,设M(x,﹣x2﹣x+3),则G(﹣1,﹣x2﹣x+3),K(0,﹣x2﹣x+3),∴MG=|x+1|,CK=|﹣x2﹣x+3﹣3|=|﹣x2﹣x|=|x2+x|,∴|x+1|=|x2+x|,∴x2+x=±(x+1),解得:x1=﹣4,x2=﹣,x3=﹣,x4=2,代入抛物线解析式得:y1=0,y2=,y3=,y4=0,∴点M的坐标是(﹣4,0),(﹣,),(﹣,)或(2,0).。

曲靖市2019-2020学年中考数学模拟试卷

曲靖市2019-2020学年中考数学模拟试卷

曲靖市2019-2020学年中考数学模拟试卷一、选择题1.某鞋店对上一周某品牌女鞋的销量统计如下:A.平均数B.中位数C.方差D.众数2.函数kyx与y=﹣kx2﹣k(k≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.3.在同一平面内,⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定4.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为( )A.4 B.-4 C.6 D.-65.A、B、C、D四名同学随机分为两组,两个人一组去參加辩论赛,问A、B两人恰好分到一组的概率()A.14B.13C.16D.126.“五一”长假期间,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动,顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:A .当n 很大时,估计指针落子在”铅笔“区域的概率大约是0.70B .假如你去转动转盘一次,获得“铅笔”概率大约是0.70C .如果转动转盘3000次,指针落在“文具盒”区域的次数大约有900次D .转动转盘20次,一定有6次获得“文具盒” 7.下列计算正确的是( ) A.a 2⋅a 3=a 6B.a 6÷a 3=a 2C.(ab )2=ab 2D.(﹣a 2)3=﹣a 68.如图,一段抛物线293y x x =-+(-3≤≤)为1C ,与x 轴交于0A ,1A 两点,顶点为12D D ;将1C 绕点1A 旋转180°得到2C ,顶点为2D ;1C 与2C 组成一个新的图象.垂直于y 轴的直线l 与新图象交于点111()P x y ,,222()P x y ,,与线段12D D 交于点333()Px y ,,且1x ,2x ,3x 均为正数,设123t x x x =++,则t 的最大值是( )A .15B .18C .21D .249.计算:()232a a -÷=( ) A .3a -B .3aC .4aD .7a10.一个几何体的三视图如左图所示,则该几何体是( )A .B .C .D .11.不等式12x-≥1的解集在数轴上表示正确的是( )A .B .C .D .12.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BC 的值最小( )A .2B .53C .114D .3二、填空题13.如图a 是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是____________°.14.如图,半径为4且坐标原点为圆心的圆交x 轴、y 轴于点B 、D 、A 、C ,过圆上的一动点P (不与A 重合)作PE PA ⊥,且PE PA =(E 在A P 右侧) (1)连结PC ,当PC 6=时,则点P 的横坐标是______. (2)连结OE ,设线段OE 的长为x ,则x 的取值范围是____.15.因式分解:222m mn n -+=___________;16.如图,在梯形ABCD 中,AD ∥BC ,EF 是梯形的中位线,点E 在AB 上,若AD :BC =1:3,AD =a ,则用a 表示FE 是:FE =_____.17.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.18.如图:在四边形纸片ABCD 中,AB =12,CD =2,AD =BC =6,∠A =∠B .现将纸片沿EF 折叠,使点A 的对应点A'落在AB 边上,连接A'C .若△A'BC 恰好是以A'C 为腰的等腰三角形,则AE 的长为_____.三、解答题19.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠CAB 的平分线交⊙O 于点D ,过点D 作ED ⊥AE ,垂足为E ,交AB 的延长线于F . (1)求证:ED 是⊙O 的切线;(2)若AD =,AB =6,求FD 的长.20.如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2.求证:∠EDC =∠C .21.(1)计算:()112cos3020192π-⎛⎫---- ⎪⎝⎭(2)解方程:4501x x -=- 22.如图,在ABC ∆中,AB AC =,90BAC ︒∠=,以AB 为直径的O 交BC 于点F ,连结OC ,过点B 作BDOC 交O 点D .连接AD 交OC 于点E .(1)求证:BD AE =. (2)若1OE =,求DF 的值. 23.先化简:2222111211x x x x x x +-⎛⎫-÷⎪--++⎝⎭然后解答下列问题: (1)当x =2时,求代数式的值(2)原代数式的值能等于0吗?为什么?24.如图,直线l:y=x+1与y轴交于点A,与双曲线kyx(x>0)交于点B(2,a).(1)求a,k的值.(2)点P是直线l上方的双曲线上一点,过点P作平行于y轴的直线,交直线l于点C,过点A作平行于x轴的直线,交直线PC于点D,设点P的横坐标为m.①若m=32,试判断线段CP与CD的数量关系,并说明理由;②若CP>CD,请结合函数图象,直接写出m的取值范围.25.如图,在正方形网格纸中,每一个小正方形的边长为一线段AB的两个端点都在小正方形的顶点上,请按下面的要求画图.(1)在图1中画钝角三角形ABC,点C落在小正方形顶点上,其中△ABC有一个内角为135°,△ABC的面积为4,并直接写出∠ABC的正切值;(2)在图1中沿小正方形网格线画一条裁剪线,沿此裁剪线将钝角三角形ABC分隔成两部分图形,按所裁剪图形的实际大小,将这两部分图形在图2中拼成一个平行四边形DEFG,要求裁成的两部分图形在拼成平行四边形时互不重叠且不留空隙,其中所拼成的平行四边形的周长为,各顶点必须与小正方形的顶点重合.【参考答案】***一、选择题13.105°14;-+4.15.2()m n - 16.﹣2a 17.4 18.1或. 三、解答题19.(1)证明见解析;(2)7. 【解析】 【分析】(1)连接OD ,根据等腰三角形的性质和角平分线的性质可求得∠1=∠3,再由“内错角相等,两直线平行”可得AE ∥OD ,然后再由垂线的定义和切线的判定即可证明;(2)连接BD ,由切线的性质及勾股定理可求出BD 的长,然后再根据三角形相似的判定和性质求得BF =DF ,然后再在Rt △ODF 中,求DF 即可. 【详解】(1)证明:连接OD ,如图, ∵OA =OD , ∴∠2=∠3, ∵AD 平分∠EAB , ∴∠1=∠2, ∴∠1=∠3, ∴AE ∥OD , ∵ED ⊥CA , ∴OD ⊥ED , ∵OD 是⊙O 的半径, ∴ED 是⊙O 的切线; (2)连接BD ,如图, ∵AB 是直径, ∴∠ADB =90°.∴BD =2,∵EF 是⊙O 的切线, ∴OD ⊥EF , ∴∠4+∠5=90°, ∵∠3+∠5=90°, ∴∠4=∠3=∠2, ∵∠F =∠F , ∴△FBD ∽△FDA ,∴BF BD DF AD ==∴BF =4DF , 在Rt △ODF 中,∵(3+BF )2=32+DF 2,∴(DF )2=32+DF 2,∴DF =7.【点睛】本题主要考查了等腰三角形的性质、角平分线的性质、平行线的判定、切线的性质及判定、勾股定理等知识点,综合性比较强,熟练掌握基础知识是解题的关键. 20.见解析. 【解析】 【分析】由三角形的外角的性质可得∠DCE=∠BDE ,由“AAS”可证△BDE ≌△ACE ,可得DE=EC ,由等腰三角形的性质可得结论. 【详解】证明:∵∠ADE =∠1+∠DCE =∠2+∠BDE ,且∠1=∠2, ∴∠DCE =∠BDE ,且∠A =∠B ,AE =BE , ∴△BDE ≌△ACE (AAS ) ∴DE =EC ∴∠EDC =∠C. 【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.21.(11;(2)5x =. 【解析】 【分析】(1)根据整数指数幂的运算以及特殊三角函数值计算即可; (2)根据解分式方程的步骤解即可,注意要验根. 【详解】(1)()112cos3020192π-⎛⎫---- ⎪⎝⎭=21+22⨯-,1+; (2)4501x x-=- , 去分母得:4x-5(x-1)=0 去括号得,4x-5x+5=0 移项得,4x-5x=-5,合并,得:-x=-5, 系数化为1,得:x=5.经检验,x=5是原分式方程的解. 【点睛】本题主要考查了实数的运算以及解分式方程,计算时一定要细心,分式方程要检验.22.(1)证明见解析;(2)DF =【解析】 【分析】(1)由AAS 证明ABD CAE △△≌即可解答;(2)证明OE 是△ABD 的中位线,可得BD=2OE=2,(1)中全等得AE=BD=2,由勾股定理得AO ,2AB AO ==,又因为Rt △ABC 是等腰直角三角形,,由三线合一得BF=FC=12,因为在BDF △中,1tan tan 2BFD BAD ∠=∠=,所以设DH a =,则2FH a =,2BH a =,在Rt △BDH 中,由勾股定理得:22222)a a =+,解得15a =,25a =(舍),再由勾股定理得DF =【详解】(1)∵AB 为直径,∴90ADB ∠=,∴90BAD ABD ∠+∠=, ∵BDOC ,∴90AEO ∠=,∴90AEC ∠=.∵90BAC =,∴90BAD EAC ∠+∠=,∴ABD EAC ∠=∠. ∵AB AC =,∴ABD CAE △△≌,∴BD AE = (2)连结AF ,作DH BF ⊥,则90AFB ∠=o . ∵1OE =,BDOC ,AO OB =,∴2BD =,∴2AE =,AD=4.∴AO ,AB =AC=AB =∵Rt △ABC 是等腰直角三角形, ,由三线合一得BF=FC=12, 在BDF △中,1tan tan 2BFD BAD ∠=∠=,设DH a =,则2FH a =,2BH a =,∴在Rt △BDH 中,由勾股定理得:22222)a a =+,解得15a =,25a =(舍),∴DF =EF ,AF ,证AEF FDB ≌,证等腰直角DEF 亦可)【点睛】本题考查直径所对的圆周角是直角、勾股定理、等腰直角三角形的三线合一、三角函数等知识点,解题关键是熟练掌握以上性质. 23.(1)11x x +-;(2)见解析. 【解析】【分析】(1)将x =2代入化简后的式子即可解答本题;(2)先判断,然后令化简的结果等于0,求出x 的值,再将所得的x 的值代入化简后的式子,看是否使得原分式有意义即可解答本题. 【详解】 解:2222111211x x x x x x +-⎛⎫-÷⎪--++⎝⎭22(1)11(1)(1)(1)1x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21(1)11x x x ⎛⎫=-⋅+ ⎪--⎝⎭1(1)1x x =⋅+- 11x x +=- (1)当x =2时,原式=2121+-=3; (2)原代数式的值不等等于0, 理由:令11x x +-=0,得x =﹣1, 当x =﹣1时,原分式无意义, 故原代数式的值不等等于0. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 24.(1)a =3,k =6;(2)①CP =CD ,见解析; ②302m <<. 【解析】 【分析】(1)把点B(2,a)代入y =x+1求得a 的值,然后再根据待定系数法即可求得k ; (2)①把x =32分别代入反比例函数的解析式和一次函数的解析式求得P 、C 的坐标,根据一次函数的解析式求得D 点的坐标,从而求得PC =CD =32; ②由①的结论结合图象即可求得. 【详解】(1)∵直线l :y =x+1经过点B(2,a), ∴a =2+1=3, ∴B(2,3),∵点B(2,3)在双曲线ky x=(x >0)上, ∴k =2×3=6;(2)①∵点P 的横坐标为32,把x =32代入y =6x 得,y =632=4,代入y =x+1得,y =32+1=52,∴P(32,4),C(32,52), ∵直线l :y =x+1与y 轴交于点A , ∴A(0,1), ∴D(32,1), ∴CP =4﹣52=32,CD =52﹣1=32,∴CP =CD ;②由图象结合①的结论可知,若CP >CD ,m 的取值范围为0<m <32. 【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.25.(1)画图见解析,tan ∠ABC =12;(2)见解析. 【解析】 【分析】(1)利用数形结合的思想解决问题即可.(2)沿图中虚线剪开,可以拼成平行四边形DEFG . 【详解】(1)如图1中,△ABC 即为所求.作AH ⊥BC 于H .∵S △ABC =12•BC•AH=4,BC =,∴AH在Rt △ABH 中,BH =, ∴tan ∠ABC =AH 1BH 2=. (2)如图2中,平行四边形DEFG 如图所示.【点睛】本题考查作图-应用与设计,勾股定理,平行四边形的判定和性质,图形的拼剪等知识,解题的关键是灵活运用所学知识解决问题.。

2019年云南省曲靖市中考数学一模试卷(含答案解析)

2019年云南省曲靖市中考数学一模试卷(含答案解析)

2019年云南省曲靖市中考数学一模试卷一、选择题(本大题共8小题,共32.0分)1.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D. 【答案】D2.下列是一元二次方程的是A. B. C. D. 【答案】A3.半径为r的圆的内接正六边形边长为A. B. C. r D. 2r 【答案】C4.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子假设骰子落在长方形内的每一点都是等可能的,经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数左右由此可估计宜传画上世界杯图案的面积为A. B. C. D. 【答案】B5.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D. 【答案】B6.下列事件中必然发生的事件是A. 一个图形平移后所得的图形与原来的图形不一定全等B. 不等式的两边同时乘以一个数,结果仍是不等式C. 过圆外一点引圆的两条切线,这两条切线的长度不一定相等D. 200件产品中有8件次品,从中任意抽取9件,至少有一件是正品【答案】D7.如图,四边形ABCD是的内接四边形,若,则的度数是A.B.C.D.【答案】D【解析】解:,而,.故选:D.先根据圆周角定理计算出,然后根据圆内接四边形的性质求的度数.本题考查了圆内接四边形的性质:圆内接四边形的对角互补圆内接四边形的任意一个外角等于它的内对角就是和它相邻的内角的对角也考查了圆周角定理.8.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为,求原正方形空地的边长xm,可列方程为A.B.C.D.【答案】A【解析】解:设原正方形的边长为xm,依题意有,故选:A.可设原正方形的边长为xm,则剩余的空地长为,宽为根据长方形的面积公式方程可列出.本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式另外求得剩余的空地的长和宽是解决本题的关键.二、填空题(本大题共6小题,共18.0分)9.若式子有意义,则x的取值范围是______.【答案】【解析】解:根据题意得:,解得:.故答案是:.根据二次根式有意义的条件即可求解.本题考查的知识点为:二次根式的被开方数是非负数.10.如图,已知点O是的内切圆的圆心,若,则______.【答案】【解析】解:,,点O是的内切圆的圆心,,,,,故答案为:.根据三角形内角和定理求出,根据内心的性质得到,,根据三角形内角和定理计算即可.本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.11.若,则多项式______.【答案】9【解析】解:,原式.故答案为:9.原式前两项提取2变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.圆锥的母线长是6cm,侧面积是,该圆锥底面圆的半径长等于______cm.【答案】5【解析】解:根据题意得:,即,则圆锥底面圆的半径长等于5cm,故答案为:5利用圆锥的侧面积公式计算即可求出所求.此题考查了圆锥的计算,熟练掌握圆锥侧面积公式是解本题的关键.13.若是关于自变量x的二次函数,则______.【答案】2【解析】解:根据二次函数的定义,得:,解得或,又,,当时,这个函数是二次函数.故答案是:2.根据二次函数的定义条件列出方程与不等式求解即可.本题考查了二次函数,利用二次函数的定义是解题关键,注意二次项的系数不等于零.14.如图所示,在平面直角坐标系中,,,是等腰直角三角形且,把绕点B顺时针旋转,得到,把绕点C顺时针旋转,得到,依此类推,得到的等腰直角三角形的直角顶点的坐标为______.【答案】【解析】解:作轴于H,,,,是等腰直角三角形,,,的纵坐标为1,绕点B顺时针旋转,得到;把绕点C顺时针旋转,得到,的纵坐标为,的纵坐标为1,的纵坐标为,的纵坐标为1,,的纵坐标为1,横坐标为,即.故答案为:.根据题意可以求得的纵坐标为,的纵坐标为1,的纵坐标为,的纵坐标为1,,从而发现其中的变化的规律,从而可以求得的坐标.本题考查坐标与图形变化旋转,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.三、计算题(本大题共1小题,共6.0分)15.先化简,再求值:,其中.【答案】解:,当时,原式.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共8小题,共64.0分)16.计算:【答案】解:原式.【解析】直接利用零指数幂的性质以及零指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17.如图,在边长均为1的正方形网格纸上有和,顶点A、B,C,D、E、F均在格点上,如果是由绕着某点O旋转得到的,点的对应点是点D,点C的对应点是点请按要求完成以下操作或运算:在图上找到点O的位置不写作法,但要标出字母,并写出点O的坐标;求点B绕着点O顺时针旋转到点E所经过的路径长.【答案】解:如图所示,连接AD,CF,作AD和CF的垂直平分线,交于点O,则点O即为旋转中心,由点可得直角坐标系,故点O的坐标为;点B绕着点O顺时针旋转到点E所经过的路径长为:.【解析】根据旋转变换中对应点与旋转中心的距离相等,可知旋转中心即为对应点连线的垂直平分线的交点;根据点可得直角坐标系,进而得到点O的坐标为;点B绕着点O顺时针旋转到点E所经过的路径为扇形的弧线,根据弧长计算公式即可得到路径长.本题主要考查了利用旋转变换作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.解方程用配方法求解【答案】解:,,即,开方,得,解得,.,,或,所以,.【解析】将一元二次方程配成的形式,再利用直接开平方法求解;提取公因式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.本题考查了解一元二次方程因式分解法:先把一元二次方程化为一般式,然后把方程左边分解为两个一次式的积,从而可把一元二次方程化为两个一元一次方程,解两个一元一次方程,得到一元二次方程的解也考查了配方法解一元二次方程.19.已知是关于x的抛物线解析式.求证:抛物线与x轴一定有两个交点;点、、是抛物线上的三个点,当抛物线经过原点时,判断、、的大小关系.【答案】证明:,,抛物线与x轴一定有两个交点;解:抛物线经过原点,.解得:,抛物线的解析式为当时,;当时,;当时,..【解析】根据一元二次方程的根的判别式求出即可;由抛物线经过原点可求得,从而得到抛物线的解析式,然后可求得、、的值,然后再比较大小即可.本题主要考查的是抛物线与x轴的交点,二次函数图象上点的坐标特征,求得m的值是解题的关键.20.一不透明的布袋里,装有红、黄、蓝三种颜色的小球除颜色外其余都相同,其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.求口袋中黄球的个数;甲同学先随机摸出一个小球不放回,再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;【答案】解:设口袋中黄球的个数为x个,根据题意得:,解得:,经检验:是原分式方程的解,口袋中黄球的个数为1个;画树状图得:共有12种等可能的结果,两次摸出都是红球的有2种情况,两次摸出都是红球的概率为:.【解析】设口袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某网店经营一种新文具,进价为20元,销售一段时间后统计发现:当销售单价是25元时,平均每天的销售量为250件,销售单价每上涨1元,平均每天的销售量就减少10件.求销售单价元为多少时,该文具每天的销售利润元最大?并求出W;为回馈广大顾客同时提高该文具知名度,该网店决定在11月11日双十一开展降价促销活动若当天按的单价降价销售并多售出件文具,求销售款额为5250时m的值.【答案】解:销售量,总利润当时,最大利润为2250元.原来销售量,设,,要降价销售,,.【解析】首先确定有关利润与售价x之间的二次函数,配方后即可确定最大利润;首先确定原来的销售量,然后销售量单件利润总利润列出方程求解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,二次函数的性质的运用,解答时根据条件建立方程是解答本题的关键.22.如图,AB是的直径,点C是外一点,连接AC,BC,AC与交于点D,弦DE与直径AB交于点F,.求证:BC是的切线;若,,,求CD的长.【答案】证明:连接BD,则,,,,,是的直径,,,,,,是的切线;解:是的直径,,,,,,,,,,,.【解析】连接BD,根据圆周角定理得到,推出,由AB是的直径,得到,推出,于是得到结论;根据垂径定理得到,,等量代换得到,求得,解直角三角形即可得到结论.本题考查了切线的判定和性质,垂径定理,解直角三角形,圆周角定理,熟练掌握切线的判定和性质是解题的关键.23.如图,对称轴为的抛物线与x轴交于点与y轴交于点B,顶点为C.求抛物线的解析式;求的面积;若点P在x轴上,将线段BP绕着点P逆时针旋转得到PD,点D是否会落在抛物线上?如果会,求出点P的坐标;若果不会,说明理由.【答案】解:抛物线对称轴为,点,则抛物线与x轴另外一个交点为,则抛物线的表达式为:,令,则,即点,点C的坐标为;设对称轴交直线AB与点H,把点B、A坐标代入一次函数表达式:得:,解得:,则直线BA的表达式为:,则点,;会,理由:当点D在对称轴左侧时,如图所示,过点D分别作x、y轴的垂线于点N、M,设点P坐标为,,,,,, ≌ ,,,即点D的坐标将点D坐标代入二次函数表达式解得:,即点P坐标为,当点D在对称轴右侧时,同理当点P坐标为.【解析】抛物线对称轴为,点,则抛物线与x轴另外一个交点为,即可求解;利用即可求解;会,理由:分当点D在对称轴左侧时、当点D在对称轴右侧时,两种情况求解即可.本题考查的是二次函数综合运用,涉及到三角形全等、一次函数等知识,题目难度不大,但要弄清题意,避免遗漏.第11页,共11页。

云南省曲靖市2019-2020学年第三次中考模拟考试数学试卷含解析

云南省曲靖市2019-2020学年第三次中考模拟考试数学试卷含解析

云南省曲靖市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x的值是().A.3-B.3C.2D.82.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%3.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,44.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是()A.216000米B.0.00216米C.0.000216米D.0.0000216米5.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.246.等式组26058xx x+⎧⎨≤+⎩>的解集在下列数轴上表示正确的是().A .B .C .D .7.下列运算结果正确的是()A .a 3+a 4=a 7B .a 4÷a 3=aC .a 3•a 2=2a 3D .(a 3)3=a 68.若正比例函数y =kx 的图象上一点(除原点外)到x 轴的距离与到y 轴的距离之比为3,且y 值随着x 值的增大而减小,则k 的值为( ) A .﹣13B .﹣3C .13D .39.如图,△ABC 中,AD ⊥BC ,AB=AC ,∠BAD=30°,且AD=AE ,则∠EDC 等于( )A .10°B .12.5°C .15°D .20°10.已知M ,N ,P ,Q 四点的位置如图所示,下列结论中,正确的是( )A .∠NOQ =42°B .∠NOP =132°C .∠PON 比∠MOQ 大D .∠MOQ 与∠MOP 互补11.若,则的值为( )A .﹣6B .6C .18D .3012.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.把多项式3x 2-12因式分解的结果是_____________. 14.若x a y 与3x 2y b 是同类项,则ab 的值为_____. 15.分解因式:4ax 2-ay 2=________________.16.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____. 17.半径为2的圆中,60°的圆心角所对的弧的弧长为_____. 181850的结果为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.20.(6分)已知:如图,在△ABC 中,∠ACB=90°,以BC 为直径的⊙O 交AB 于点D ,E 为»BD的中点.求证:∠ACD=∠DEC ;(2)延长DE 、CB 交于点P ,若PB=BO ,DE=2,求PE的长21.(6分)如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.求证:BDE CAD ∆∆∽;若13AB =,10BC =,求线段DE 的长.22.(8分)我们知道ABC △中,如果3AB =,4AC =,那么当AB AC ⊥时,ABC △的面积最大为6; (1)若四边形ABCD 中,16AD BD BC ++=,且6BD =,直接写出AD BD BC ,,满足什么位置关系时四边形ABCD 面积最大?并直接写出最大面积.(2)已知四边形ABCD 中,16AD BD BC ++=,求BD 为多少时,四边形ABCD 面积最大?并求出最大面积是多少?23.(8分)如图,一次函数y=kx+b 与反比例函数y=的图象相较于A (2,3),B (﹣3,n )两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b >的解集;过点B 作BC ⊥x 轴,垂足为C ,求S △ABC .24.(10分)如图,为了测量建筑物AB 的高度,在D 处树立标杆CD ,标杆的高是2m ,在DB 上选取观测点E 、F ,从E 测得标杆和建筑物的顶部C 、A 的仰角分别为58°、45°.从F 测得C 、A 的仰角分别为22°、70°.求建筑物AB 的高度(精确到0.1m ).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)25.(10分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围.26.(12分)解方程: +=1.27.(12分)如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O 的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.2.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.D【解析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.4.B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】2.16×10﹣3米=0.00216米.故选B.【点睛】考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】Q E、F分别是AC、DC的中点,∴EF是ADCV的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624==⨯=.AD故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.6.B【解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【详解】26058xx x+>⎧⎨≤+⎩①②,解不等式①得,x>-3,解不等式②得,x≤2,在数轴上表示①、②的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.B【解析】【分析】分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【详解】A. a3+a4≠a7 ,不是同类项,不能合并,本选项错误;B. a4÷a3=a4-3=a;,本选项正确;C. a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.8.B【解析】【分析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.【详解】设该点的坐标为(a,b),则|b|=1|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±1.又∵y值随着x值的增大而减小,∴k=﹣1.故选:B.【点睛】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.9.C【解析】试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,∴∠DAC=∠BAD=30°,∵AD=AE(已知),∴∠ADE=75°∴∠EDC=90°-∠ADE=15°.故选C.考点:本题主要考查了等腰三角形的性质,三角形内角和定理点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.10.C【解析】试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D 错误.故答案选C.考点:角的度量.11.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B .考点:整式的混合运算—化简求值;整体思想;条件求值. 12.D 【解析】 【分析】根据二次函数的图象与性质逐一判断即可求出答案. 【详解】由图象可知:△>0, ∴b 2﹣4ac >0, ∴b 2>4ac , 故A 正确; ∵抛物线开口向上, ∴a <0,∵抛物线与y 轴的负半轴, ∴c <0,∵抛物线对称轴为x=2ba<0, ∴b <0, ∴abc <0, 故B 正确;∵当x=1时,y=a+b+c >0, ∵4a <0, ∴a+b+c >4a , ∴b+c >3a , 故C 正确;∵当x=﹣1时,y=a ﹣b+c >0, ∴a ﹣b+c >c , ∴a ﹣b >0, ∴a >b , 故D 错误; 故选D .考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3(x+2)(x-2) 【解析】 【分析】因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x 2-12因式分解先提公因式3,再利用平方差公式因式分解. 【详解】3x 2-12=3(24x -)=3(2)(2)x x +-. 14.2 【解析】试题解析:∵x a y 与3x 2y b 是同类项, ∴a=2,b=1, 则ab=2.15.a (2x+y )(2x-y ) 【解析】 【分析】首先提取公因式a ,再利用平方差进行分解即可. 【详解】 原式=a (4x 2-y 2) =a (2x+y )(2x-y ), 故答案为a (2x+y )(2x-y ). 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 16.3.05×105 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】故答案为:.【点睛】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.17.2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.18.【解析】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式=﹣点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【解析】【分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x ﹣20;然后分段求出哪种方式上网学习合算即可.【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【点睛】本题考查一次函数的应用.20.(1)见解析;(2)PE=4.【解析】【分析】(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【详解】解:(1)证明:∵BC是⊙O的直径,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)证明:连结OE∵E为BD弧的中点. ∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴PO PE PC PD=∵PB=BO,DE=2 ∴PB=BO=OC∴23 PO PE PC PD==∴223 PEPE=+∴PE=4【点睛】本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.21.(1)见解析;(2)6013 DE=.【解析】【分析】对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC=,∴B C∠=∠.又∵AD为BC边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD=, 即51312DE =, ∴6013DE =. 【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.22. (1)当AD BD ⊥,BC BD ⊥时有最大值1;(2)当8BD =时,面积有最大值32.【解析】【分析】(1)由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,由此即可解决问题.(2)设BD=x ,由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,构建二次函数,利用二次函数的性质即可解决问题.【详解】(1) 由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大, 最大面积为12×6×(16-6)=1. 故当AD BD ⊥,BC BD ⊥时有最大值1;(2)当AD BD P ,BC BD ⊥时有最大值,设BD x =, 由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,16AD BD BC ++=Q16AD BC x ∴+=-ABD CBD ABCD S S S ∴=+V V 四边形1122AD BD BC BD =⋅+⋅ ()12AD BC BD =+⋅ ()1162x x =-()21=8322x --+ 102-<Q ∴抛物线开口向下∴当8BD = 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题. 23.(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)﹣3<x <0或x >2;(3)1.【解析】【分析】(1)根据点A 位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B 坐标代入反比例函数解析式,求出n 的值,进而求出一次函数解析式(2)根据点A 和点B 的坐标及图象特点,即可求出反比例函数值大于一次函数值时x 的取值范围 (3)由点A 和点B 的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)∵点A (2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∴n==﹣2,∵A (2,3),B (﹣3,﹣2)两点在y=kx+b 上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)由图象可知﹣3<x <0或x >2;(3)以BC 为底,则BC 边上的高为3+2=1,∴S △ABC =×2×1=1.24.建筑物AB 的高度约为5.9米【解析】【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度;【详解】在Rt △CED 中,∠CED=58°,∵tan58°=CD DE, ∴DE=2tan 58tan 58o o CD = , 在Rt △CFD 中,∠CFD=22°,∵tan22°=CD DF, ∴DF=2tan 22tan 22o o CD = , ∴EF=DF ﹣DE=2tan 22o -2tan 58o, 同理:EF=BE ﹣BF=tan 4570o oAB AB tam - , ∴tan 4570o o AB AB tam -=2tan 22o -2tan 58o , 解得:AB≈5.9(米),答:建筑物AB 的高度约为5.9米.【点睛】考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题.25.(1)2-1y x =;(2)3x >-.【解析】【分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x+2,解不等式即得结果.【详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+,∵直线2y x b =+过点M (4,7),∴8+b=7,解得b=-1,∴一次函数的解析式为:y=2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y=2x -1,又∵点Q 在直线32y x =+的下方,如图,∴2x -1<3x+2,解得x>-3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.26.-3【解析】试题分析:解得x=-3经检验: x=-3是原方程的根.∴原方程的根是x=-3考点:解一元一次方程点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.27.(1)证明见解析;(2)15 2【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,连接OE,∵DB=DE,∴EF=12BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3 ,∴22534-=∴sin∠DEF=DFDE=45,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=45 AEAO=,∵AE=6,∴AO=15 2.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.。

云南省曲靖市2019年中考数学一模试卷(含解析)

云南省曲靖市2019年中考数学一模试卷(含解析)

2020年云南省曲靖市中考数学一模试卷一、选择题(本大题共8小题,共32.0分)1.计算:(﹣5)+3的结果是()A.﹣8 B.﹣2 C.2 D.8【分析】根据有理数的加法法则,求出(﹣5)+3的结果是多少即可.【解答】解:(﹣5)+3的结果是﹣2.故选:B.【点评】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确有理数的加法法则.2.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9)B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2【分析】直接找出公因式m,提取分解因式即可.【解答】解:m2﹣9m=m(m﹣9).故选:A.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.3.在下面几何体中,其俯视图是三角形的是()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.1【解答】解:A.圆柱的俯视图是圆,故A不符合题意;B.圆锥的俯视图是圆,故B不符合题意;C.正方体的俯视图是正方形,故C不符合题意;D.三棱柱的俯视图是三角形,故D符合题意;故选:D.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.4.2016年国庆节期间,沈阳共接待游客约657.9万人次,657.9万用科学记数法表示为()A.0.6579×103 B.6.579×102 C.6.579×106 D.65.79×105【分析】利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:657.9万用科学记数法表示为:6.579×106.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()A.3次B.3.5次C.4次D.4.5次【分析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则(x1w1+x2w2+…+xnwn)÷(w1+w2+…+wn)叫做这n个数的加权平均数,依此列式计算即可求解.【解答】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).答:这20名男生该周参加篮球运动次数的平均数是4次.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.6.在平面直角坐标系中,点A在第一象限,点B在x轴正半轴上,∠AOB=60°,OA =8.点A的坐标是()A.(4,8)B.(4,4)C.(4,4)D.(8,4)【分析】根据直角三角形的性质得出点A的横坐标为4,再用勾股定理得出点A的纵坐标为4,从而得出答案.【解答】解:∵点A在第一象限,点B在x轴正半轴上,∠AOB=60°,OA=8,∴点A的横坐标为4,由勾股定理得点A的纵坐标为=4,点A坐标(4,4),故选:B.【点评】本题考查了坐标与图象的特征,掌握直角三角形的性质以及勾股定理是解题的关键.7.如图,正五边形ABCDE的对角线BD.CE相交于点F,则下列结论正确的是()3A.∠BCE=36°B.△BCF是直角三角形C.△BCD≌△CDE D.AB⊥BD【分析】在正五边形ABCDE中,易知BC=CD=DE,∠BCD=∠CDE=108°,由此可证△BCD≌△CDE解决问题.【解答】解:在正五边形ABCDE中,易知BC=CD=DE,∠BCD=∠CDE=108°,在△BCD和△CDE中,,∴△BCD≌△CDE,故选:C.【点评】本题考查全等三角形的判定和性质、正五边形的性质等知识,解题的关键是灵活运用所学知识解决问题,记住正五边形的有关性质,属于中考常考题型.8.分式方程=的解是()A.x=﹣2 B.x=﹣3 C.x=2 D.x=3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.二、填空题(本大题共6小题,共18.0分)1.若式子√3−x有意义,则x的取值范围是______.【答案】x≤3【解析】解:根据题意得:3−x≥0,解得:x≤3.故答案是:x≤3.根据二次根式有意义的条件即可求解.本题考查的知识点为:二次根式的被开方数是非负数.2.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124∘,则∠A=______.【答案】68∘【解析】解:∵∠BOC=124∘,∴∠OBC+∠OCB=180∘−124∘=56∘,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112∘,∴∠A=180∘−112∘=68∘,故答案为:68∘.根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.3.若x2−2x=3,则多项式2x2−4x+3=______.【答案】9【解析】解:∵x2−2x=3,∴原式=2(x2−2x)+3=6+3=9.故答案为:9.原式前两项提取2变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.4.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于______cm.【答案】55【解析】解:根据题意得:S=πrl,即r=Sπl =30π6π=5,则圆锥底面圆的半径长等于5cm,故答案为:5利用圆锥的侧面积公式计算即可求出所求.此题考查了圆锥的计算,熟练掌握圆锥侧面积公式是解本题的关键.5.若y=(m+2)x m2−2+mx+1是关于自变量x的二次函数,则m=______.【答案】2【解析】解:根据二次函数的定义,得:m2−2=2,解得m=2或m=−2,又∵m+2≠0,∴m≠−2,∴当m=2时,这个函数是二次函数.故答案是:2.根据二次函数的定义条件列出方程与不等式求解即可.本题考查了二次函数,利用二次函数的定义是解题关键,注意二次项的系数不等于零.6.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90∘,把△AP1B绕点B顺时针旋转180∘,得到△BP2C,把△BP2C绕点C顺时针旋转180∘,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2019的坐标为______.【答案】(4037,1)【解析】解:作P1⊥x轴于H,∵A(0,0),B(2,0),∴AB=2,∵△AP1B是等腰直角三角形,7∴P 1H =12AB =1,AH =BH =1,∴P 1的纵坐标为1,∵△AP 1B绕点B 顺时针旋转180∘,得到△BP 2C;把△BP 2C绕点C 顺时针旋转180∘,得到△CP 3D, ∴P 2的纵坐标为−1,P 3的纵坐标为1,P 4的纵坐标为−1,P 5的纵坐标为1,…, ∴P 2019的纵坐标为1,横坐标为2019×2−1=4037, 即P 2019(4037,1). 故答案为:(4037,1).根据题意可以求得P 2的纵坐标为−1,P 3的纵坐标为1,P 4的纵坐标为−1,P 5的纵坐标为1,…,从而发现其中的变化的规律,从而可以求得P 2019的坐标.本题考查坐标与图形变化−旋转,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.三、计算题(本大题共1小题,共6.0分) 7. 先化简,再求值:(1+1x 2−1)÷x 2x 2−2x +1,其中x =2.【答案】解:(1+1x 2−1)÷x 2x 2−2x +1=x 2−1+1x ÷x 2x =x 2(x +1)(x −1)⋅(x −1)2x 2=x −1x +1, 当x =2时, 原式=2−12+1=13.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值. 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共8小题,共64.0分) 8. 计算:√9+(√93−2)0−|−3|−(13)−1【答案】解:原式=3+1−3−3 =−2.【解析】直接利用零指数幂的性质以及零指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.9. 如图,在边长均为1的正方形网格纸上有△ABC和△DEF,顶点A 、B ,C ,D 、E 、F均在格点上,如果△DEF是由△ABC绕着某点O 旋转得到的,点A (−4,1)的对应点是点D ,点C 的对应点是点F .请按要求完成以下操作或运算:(1)在图上找到点O 的位置(不写作法,但要标出字母),并写出点O 的坐标; (2)求点B 绕着点O 顺时针旋转到点E 所经过的路径长.【答案】解:(1)如图所示,连接AD,CF,作AD和CF的垂直平分线,交于点O,则点O 即为旋转中心,由点A(−4,1)可得直角坐标系,故点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径长为:90×π×3180=32π.【解析】(1)根据旋转变换中对应点与旋转中心的距离相等,可知旋转中心即为对应点连线的垂直平分线的交点;根据点A(−4,1)可得直角坐标系,进而得到点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径为扇形的弧线,根据弧长计算公式即可得到路径长.本题主要考查了利用旋转变换作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.10.解方程(1)x2−4x+3=0(用配方法求解)(2)(2x−3)2−2x+3=0【答案】解:(1)x2−4x+3=0,x2−4x=−3x2−4x+4=−3+4,即(x−2)2=1,开方,得x−2=±1,解得x1=3,x2=1.(2)(2x−3)2−2x+3=0,(2x−3)(2x−3−1)=0,∴2x−3=0或2x−4=0,所以x1=32,x2=2.【解析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解;(2)提取公因式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把一元二次方程化为一般式,然后把方程左边分解为两个一次式的积,从而可把一元二次方程化为两个一元一次方程,解两个一元一次方程,得到一元二次方程的解.也考查了配方法解一元二次方程.11.已知y=x2−(m+2)x+(2m−1)是关于x的抛物线解析式.(1)求证:抛物线与x轴一定有两个交点;(2)点A(−2,y1)、B(1,y2)、C(4,y3)是抛物线上的三个点,当抛物线经过原点时,判断y1、y2、y3的大小关系.【答案】(1)证明:y=x2−(m+2)x+(2m−1),∵△=[−(m+2)]2−4×1×(2m−1)=(m+2)2+4>0,∴抛物线与x轴一定有两个交点;(2)解:∵抛物线y=x2−(m+2)x+(2m−1)经过原点,∴2m−1=0.解得:m=12,∴抛物线的解析式为y=x2−52x.当x=−2时,y1=7;当x=1时,y2=−2;当x=4时,y3=6.∴y2<y1<y3.【解析】(1)根据一元二次方程的根的判别式求出即可;(2)由抛物线经过原点可求得m=12,从而得到抛物线的解析式,然后可求得y1、y2、y3的值,然后再比较大小即可.本题主要考查的是抛物线与x轴的交点,二次函数图象上点的坐标特征,求得m的值是解题的关键.12.一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;9【答案】解:(1)设口袋中黄球的个数为x个,根据题意得:22+1+x =12,解得:x=1,经检验:x=1是原分式方程的解,∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:212=16.【解析】(1)设口袋中黄球的个数为x个,根据概率公式得到22+1+x =12,然后利用比例性质求出x即可;(2)画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.13.某网店经营一种新文具,进价为20元,销售一段时间后统计发现:当销售单价是25元时,平均每天的销售量为250件,销售单价每上涨1元,平均每天的销售量就减少10件.(1)求销售单价x(元)为多少时,该文具每天的销售利润W(元)最大?并求出W;(2)为回馈广大顾客同时提高该文具知名度,该网店决定在11月11日(双十一)开展降价促销活动.若当天按(1)的单价降价m%销售并多售出2m%件文具,求销售款额为5250时m的值.【答案】解:(1)∵销售量=250−10(x−25)=500−10x,∴总利润=(x−20)(500−10x)=−10x2+700x−10000=−10(x−35)2+2250∴当x=35时,最大利润为2250元.(2)原来销售量500−10x=500−350=150,35(1−m%)150(1+2m%)=5250设m%=a,∴(1−a)(1+2a)=1,解得:a=0或a=1,2∵要降价销售,∴a=1,2∴m=50.【解析】(1)首先确定有关利润与售价x之间的二次函数,配方后即可确定最大利润;(2)首先确定原来的销售量,然后销售量×单件利润=总利润列出方程求解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,二次函数的性质的运用,解答时根据条件建立方程是解答本题的关键.14.如图,AB是⊙O的直径,点C是⊙O外一点,连接AC,BC,AC与⊙O交于点D,弦DE与直径AB交于点F,∠C=∠E.(1)求证:BC是⊙O的切线;(2)若DE⊥AB,AE⏜=2BE⏜,AB=2√3,求CD的长.【答案】(1)证明:连接BD,则∠BAE=∠BDE,∵∠AFE=∠DFB,∴∠E=∠ABD,∵∠C=∠E,∴∠C=∠ABE,∵AB是⊙O的直径,∴∠ADB=90∘,∴∠BDC=90∘,∴∠C+∠CBD=90∘,∴∠ABD+∠CBD=90∘,∴AB⊥BC,∴BC是⊙O的切线;(2)解:∵AB是⊙O的直径,DE⊥AB,∴AD⏜=AE⏜,BD⏜=BE⏜,∵AE⏜=2BE⏜,∴AD⏜=2BD⏜,∴∠ABD=2∠DAB,∴∠BAC=30∘,∠ABD=60∘,∴∠C=60∘,∵AB=2√3,11∴BC=√33AB=2,∴CD=12BC=1.【解析】(1)连接BD,根据圆周角定理得到∠BAE=∠BDE,推出∠C=∠ABE,由AB是⊙O的直径,得到∠ADB=90∘,推出AB⊥BC,于是得到结论;(2)根据垂径定理得到AD⏜=AE⏜,BD⏜=BE⏜,等量代换得到AD⏜=2BD⏜,求得∠ABD=2∠DAB,解直角三角形即可得到结论.本题考查了切线的判定和性质,垂径定理,解直角三角形,圆周角定理,熟练掌握切线的判定和性质是解题的关键.15.如图,对称轴为x=1的抛物线y=x2+bx+c与x轴交于点A(3,0)与y轴交于点B,顶点为C.(1)求抛物线的解析式;(2)求△ABC的面积;(3)若点P在x轴上,将线段BP绕着点P逆时针旋转90∘得到PD,点D是否会落在抛物线上?如果会,求出点P的坐标;若果不会,说明理由.【答案】解:(1)抛物线对称轴为x=1,点A(3,0),则抛物线与x轴另外一个交点为(−1,0),则抛物线的表达式为:y=(x+1)(x−3)=x2−2x−3,令x=0,则y=−3,即点B(0,−3),点C的坐标为(1,−4);(2)设对称轴交直线AB与点H,把点B、A坐标代入一次函数表达式:y=kx−3得:0=3k−3,解得:k=1,则直线BA的表达式为:y=x−3,则点H(1,−2),S△ABC=12CH×OA=12×2×3=3;(3)会,理由:①当点D在对称轴左侧时,如图所示,过点D分别作x、y轴的垂线于点N、M,设点P坐标为(m,0),13∵∠DPN +∠OPB =90∘,∠OPB +∠OBP =90∘,∴∠OBP =∠DPN,∠DNP =∠BOP =90∘,PB =PD,∴△DNP≌△POB (AAS ),∴DM =OB =3,DN =OP =−m,即点D 的坐标(−3,−m )将点D 坐标代入二次函数表达式解得:m =−12,即点P 坐标为(−12,0),②当点D 在对称轴右侧时,同理当点P 坐标为(−5,0).【解析】(1)抛物线对称轴为x =1,点A (3,0),则抛物线与x 轴另外一个交点为(−1,0),即可求解;(2)利用S △ABC =12CH ×OA即可求解; (3)会,理由:分①当点D 在对称轴左侧时、②当点D 在对称轴右侧时,两种情况求解即可.本题考查的是二次函数综合运用,涉及到三角形全等、一次函数等知识,题目难度不大,但要弄清题意,避免遗漏.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省曲靖市中考数学一模试卷一、选择题(本大题共8小题,共32.0分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、是轴对称图形,不是中心对称图形.故不符合题意;C、不是轴对称图形,是中心对称图形.故不符合题意;D、是轴对称图形,也是中心对称图形.故符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查中心对称图形,轴对称图形的知识,记住:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.2.下列是一元二次方程的是()+2x−6=0A. x2+3=0B. xy+3x−4=0C. 2x−3+y=0D. 1x【答案】A【解析】解:A、该方程是一元二次方程,故本选项正确;B、该方程中含有两个未知数,不是一元二次方程,故本选项错误;C、该方程中含有两个未知数,不是一元二次方程,故本选项错误;D、该方程是分式方程,故本选项错误;故选:A.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.半径为r的圆的内接正六边形边长为()A. 12r B. √32r C. r D. 2r【答案】C【解析】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=r.故选:C.画出圆O的内接正六边形ABCDEF,连接OA,OB,得到正三角形AOB,可以求出AB的长.本题考查的是正多边形和圆,连接OA,OB,得到正三角形AOB,就可以求出正六边形的边长.4.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为()A. 2.4m2B. 3.2m2C. 4.8m2D. 7.2m2【答案】B【解析】解:∵骰子落在世界杯图案中的频率稳定在常数0.4左右,∴估计骰子落在世界杯图案中的概率为0.4,∴估计宜传画上世界杯图案的面积=0.4×(4×2)=3.2(m2).故选:B.利用频率估计概率得到估计骰子落在世界杯图案中的概率为0.4,然后根据几何概率的计算方法计算世界杯图案的面积.本题考查了频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.5.在平面直角坐标系中,点(1,−2)关于原点对称的点的坐标是()A. (1,2)B. (−1,2)C. (2,−1)D.(2,1)【答案】B【解析】解:点(1,−2)关于原点对称的点的坐标是(−1,2),故选:B.平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),记忆方法是结合平面直角坐标系的图形记忆.关于原点对称的点坐标的关系,是需要识记的基本问题.6.下列事件中必然发生的事件是()A. 一个图形平移后所得的图形与原来的图形不一定全等B. 不等式的两边同时乘以一个数,结果仍是不等式C. 过圆外一点引圆的两条切线,这两条切线的长度不一定相等D. 200件产品中有8件次品,从中任意抽取9件,至少有一件是正品【答案】D【解析】解:一个图形平移后所得的图形与原来的图形一定全等,A是不可能事件;不等式的两边同时乘以一个数0,结果不是不等式,B是随机事件;过圆外一点引圆的两条切线,这两条切线的长度一定相等,C是不可能事件;200件产品中有8件次品,从中任意抽取9件,至少有一件是正品,D是必然事件;故选:D.根据事件发生的可能性大小判断相应事件的类型.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=144∘,则∠C的度数是()A. 14∘B. 72∘C. 36∘D. 108∘【答案】D【解析】解:∵∠A=12∠BOD=12×144∘=72∘,而∠A+∠C=180∘,∴∠C=180∘−72∘=108∘.故选:D.先根据圆周角定理计算出∠A=72∘,然后根据圆内接四边形的性质求∠C的度数.本题考查了圆内接四边形的性质:圆内接四边形的对角互补.圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).也考查了圆周角定理.8.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为()A. (x−1)(x−2)=18B. x2−3x+16=0C. (x+1)(x+2)=18D. x2+3x+16=0【答案】A【解析】解:设原正方形的边长为xm,依题意有(x−1)(x−2)=18,故选:A.可设原正方形的边长为xm,则剩余的空地长为(x−1)m,宽为(x−2)m.根据长方形的面积公式方程可列出.本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.二、填空题(本大题共6小题,共18.0分)9.若式子√3−x有意义,则x的取值范围是______.【答案】x≤3【解析】解:根据题意得:3−x≥0,解得:x≤3.故答案是:x≤3.根据二次根式有意义的条件即可求解.本题考查的知识点为:二次根式的被开方数是非负数.10.如图,已知点O是△ABC的内切圆的圆心,若∠BOC=124∘,则∠A=______.【答案】68∘【解析】解:∵∠BOC=124∘,∴∠OBC+∠OCB=180∘−124∘=56∘,∵点O是△ABC的内切圆的圆心,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=112∘,∴∠A=180∘−112∘=68∘,故答案为:68∘.根据三角形内角和定理求出∠OBC+∠OCB,根据内心的性质得到∠ABC=2∠OBC,∠ACB=2∠OCB,根据三角形内角和定理计算即可.本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握角形的内心是三角形三个内角角平分线的交点是解题的关键.11.若x2−2x=3,则多项式2x2−4x+3=______.【答案】9【解析】解:∵x2−2x=3,∴原式=2(x2−2x)+3=6+3=9.故答案为:9.原式前两项提取2变形后,将已知等式代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.圆锥的母线长是6cm,侧面积是30πcm2,该圆锥底面圆的半径长等于______cm.【答案】5【解析】解:根据题意得:S=πrl,即r=Sπl =30π6π=5,则圆锥底面圆的半径长等于5cm,故答案为:5利用圆锥的侧面积公式计算即可求出所求.此题考查了圆锥的计算,熟练掌握圆锥侧面积公式是解本题的关键.13.若y=(m+2)x m2−2+mx+1是关于自变量x的二次函数,则m=______.【答案】2【解析】解:根据二次函数的定义,得:m2−2=2,解得m=2或m=−2,又∵m+2≠0,∴m≠−2,∴当m=2时,这个函数是二次函数.故答案是:2.根据二次函数的定义条件列出方程与不等式求解即可.本题考查了二次函数,利用二次函数的定义是解题关键,注意二次项的系数不等于零.14.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90∘,把△AP1B绕点B顺时针旋转180∘,得到△BP2C,把△BP2C绕点C顺时针旋转180∘,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2019的坐标为______.【答案】(4037,1)【解析】解:作P1⊥x轴于H,∵A(0,0),B(2,0),∴AB=2,∵△AP1B是等腰直角三角形,∴P1H=1AB=1,AH=BH=1,2∴P1的纵坐标为1,∵△AP1B绕点B顺时针旋转180∘,得到△BP2C;把△BP2C绕点C顺时针旋转180∘,得到△CP3D,∴P2的纵坐标为−1,P3的纵坐标为1,P4的纵坐标为−1,P5的纵坐标为1,…,∴P2019的纵坐标为1,横坐标为2019×2−1=4037,即P2019(4037,1).故答案为:(4037,1).根据题意可以求得P2的纵坐标为−1,P3的纵坐标为1,P4的纵坐标为−1,P5的纵坐标为1,…,从而发现其中的变化的规律,从而可以求得P 2019的坐标.本题考查坐标与图形变化−旋转,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.三、计算题(本大题共1小题,共6.0分) 15. 先化简,再求值:(1+1x 2−1)÷x 2x 2−2x +1,其中x =2.【答案】解:(1+1x 2−1)÷x 2x 2−2x +1=x 2−1+1x 2−1÷x 2x 2−2x +1 =x 2(x +1)(x −1)⋅(x −1)2x 2=x −1x +1, 当x =2时, 原式=2−12+1=13.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共8小题,共64.0分) 16. 计算:√9+(√93−2)0−|−3|−(13)−1【答案】解:原式=3+1−3−3 =−2.【解析】直接利用零指数幂的性质以及零指数幂的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键.17. 如图,在边长均为1的正方形网格纸上有△ABC和△DEF,顶点A 、B ,C ,D 、E 、F 均在格点上,如果△DEF是由△ABC绕着某点O 旋转得到的,点A (−4,1)的对应点是点D ,点C 的对应点是点F .请按要求完成以下操作或运算:(1)在图上找到点O 的位置(不写作法,但要标出字母),并写出点O 的坐标; (2)求点B 绕着点O 顺时针旋转到点E 所经过的路径长.【答案】解:(1)如图所示,连接AD,CF,作AD和CF的垂直平分线,交于点O,则点O即为旋转中心,由点A(−4,1)可得直角坐标系,故点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径长为:90×π×3180=32π.【解析】(1)根据旋转变换中对应点与旋转中心的距离相等,可知旋转中心即为对应点连线的垂直平分线的交点;根据点A(−4,1)可得直角坐标系,进而得到点O的坐标为(1,−1);(2)点B绕着点O顺时针旋转到点E所经过的路径为扇形的弧线,根据弧长计算公式即可得到路径长.本题主要考查了利用旋转变换作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.解方程(1)x2−4x+3=0(用配方法求解)(2)(2x−3)2−2x+3=0【答案】解:(1)x2−4x+3=0,x2−4x=−3x2−4x+4=−3+4,即(x−2)2=1,开方,得x−2=±1,解得x1=3,x2=1.(2)(2x−3)2−2x+3=0,(2x−3)(2x−3−1)=0,∴2x−3=0或2x−4=0,所以x1=32,x2=2.【解析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解;(2)提取公因式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.本题考查了解一元二次方程−因式分解法:先把一元二次方程化为一般式,然后把方程左边分解为两个一次式的积,从而可把一元二次方程化为两个一元一次方程,解两个一元一次方程,得到一元二次方程的解.也考查了配方法解一元二次方程.19.已知y=x2−(m+2)x+(2m−1)是关于x的抛物线解析式.(1)求证:抛物线与x轴一定有两个交点;(2)点A(−2,y1)、B(1,y2)、C(4,y3)是抛物线上的三个点,当抛物线经过原点时,判断y1、y2、y3的大小关系.【答案】(1)证明:y=x2−(m+2)x+(2m−1),∵△=[−(m+2)]2−4×1×(2m−1)=(m+2)2+4>0,∴抛物线与x轴一定有两个交点;(2)解:∵抛物线y=x2−(m+2)x+(2m−1)经过原点,∴2m−1=0.解得:m=12,∴抛物线的解析式为y=x2−52x.当x=−2时,y1=7;当x=1时,y2=−2;当x=4时,y3=6.∴y2<y1<y3.【解析】(1)根据一元二次方程的根的判别式求出即可;(2)由抛物线经过原点可求得m=12,从而得到抛物线的解析式,然后可求得y1、y2、y3的值,然后再比较大小即可.本题主要考查的是抛物线与x轴的交点,二次函数图象上点的坐标特征,求得m的值是解题的关键.20.一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;【答案】解:(1)设口袋中黄球的个数为x个,根据题意得:22+1+x =12,解得:x=1,经检验:x=1是原分式方程的解,∴口袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸出都是红球的有2种情况,∴两次摸出都是红球的概率为:212=16.【解析】(1)设口袋中黄球的个数为x个,根据概率公式得到22+1+x =12,然后利用比例性质求出x即可;(2)画树状图展示所有12种等可能的结果数,再找出两次摸出都是红球的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.某网店经营一种新文具,进价为20元,销售一段时间后统计发现:当销售单价是25元时,平均每天的销售量为250件,销售单价每上涨1元,平均每天的销售量就减少10件.(1)求销售单价x(元)为多少时,该文具每天的销售利润W(元)最大?并求出W;(2)为回馈广大顾客同时提高该文具知名度,该网店决定在11月11日(双十一)开展降价促销活动.若当天按(1)的单价降价m%销售并多售出2m%件文具,求销售款额为5250时m的值.【答案】解:(1)∵销售量=250−10(x−25)=500−10x,∴总利润=(x−20)(500−10x)=−10x2+700x−10000=−10(x−35)2+2250∴当x=35时,最大利润为2250元.(2)原来销售量500−10x=500−350=150,35(1−m%)150(1+2m%)=5250设m%=a,∴(1−a)(1+2a)=1,解得:a=0或a=1,2∵要降价销售,∴a=1,2∴m=50.【解析】(1)首先确定有关利润与售价x之间的二次函数,配方后即可确定最大利润;(2)首先确定原来的销售量,然后销售量×单件利润=总利润列出方程求解即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,二次函数的性质的运用,解答时根据条件建立方程是解答本题的关键.22.如图,AB是⊙O的直径,点C是⊙O外一点,连接AC,BC,AC与⊙O交于点D,弦DE与直径AB交于点F,∠C=∠E.(1)求证:BC是⊙O的切线;(2)若DE⊥AB,AE⏜=2BE⏜,AB=2√3,求CD的长.【答案】(1)证明:连接BD,则∠BAE=∠BDE,∵∠AFE=∠DFB,∴∠E=∠ABD,∵∠C=∠E,∴∠C=∠ABE,∵AB是⊙O的直径,∴∠ADB=90∘,∴∠BDC=90∘,∴∠C+∠CBD=90∘,∴∠ABD+∠CBD=90∘,∴AB⊥BC,∴BC是⊙O的切线;(2)解:∵AB是⊙O的直径,DE⊥AB,∴AD⏜=AE⏜,BD⏜=BE⏜,∵AE⏜=2BE⏜,∴AD⏜=2BD⏜,∴∠ABD=2∠DAB,∴∠BAC=30∘,∠ABD=60∘,∴∠C=60∘,∵AB=2√3,∴BC=√3AB=2,3∴CD=1BC=1.2【解析】(1)连接BD,根据圆周角定理得到∠BAE=∠BDE,推出∠C=∠ABE,由AB是⊙O的直径,得到∠ADB= 90∘,推出AB⊥BC,于是得到结论;(2)根据垂径定理得到AD⏜=AE⏜,BD⏜=BE⏜,等量代换得到AD⏜=2BD⏜,求得∠ABD=2∠DAB,解直角三角形即可得到结论.本题考查了切线的判定和性质,垂径定理,解直角三角形,圆周角定理,熟练掌握切线的判定和性质是解题的关键.23.如图,对称轴为x=1的抛物线y=x2+bx+c与x轴交于点A(3,0)与y轴交于点B,顶点为C.(1)求抛物线的解析式;(2)求△ABC的面积;(3)若点P在x轴上,将线段BP绕着点P逆时针旋转90∘得到PD,点D是否会落在抛物线上?如果会,求出点P的坐标;若果不会,说明理由.【答案】解:(1)抛物线对称轴为x=1,点A(3,0),则抛物线与x轴另外一个交点为(−1,0),则抛物线的表达式为:y=(x+1)(x−3)=x2−2x−3,令x=0,则y=−3,即点B(0,−3),点C的坐标为(1,−4);(2)设对称轴交直线AB与点H,把点B、A坐标代入一次函数表达式:y=kx−3得:0=3k−3,解得:k=1,则直线BA的表达式为:y=x−3,则点H(1,−2),S△ABC=12CH×OA=12×2×3=3;(3)会,理由:①当点D在对称轴左侧时,如图所示,过点D分别作x、y轴的垂线于点N、M,设点P坐标为(m,0),∵∠DPN+∠OPB=90∘,∠OPB+∠OBP=90∘,∴∠OBP=∠DPN,∠DNP=∠BOP=90∘,PB=PD,∴△DNP≌△POB(AAS),∴DM=OB=3,DN=OP=−m,即点D的坐标(−3,−m)将点D坐标代入二次函数表达式解得:m=−12,即点P坐标为(−12,0),②当点D在对称轴右侧时,同理当点P坐标为(−5,0).【解析】(1)抛物线对称轴为x=1,点A(3,0),则抛物线与x轴另外一个交点为(−1,0),即可求解;(2)利用S△ABC=12CH×OA即可求解;(3)会,理由:分①当点D在对称轴左侧时、②当点D在对称轴右侧时,两种情况求解即可.本题考查的是二次函数综合运用,涉及到三角形全等、一次函数等知识,题目难度不大,但要弄清题意,避免遗漏.。

相关文档
最新文档