人教版 七年级数学 3.4 实际问题与一元一次方程 针对训练 (含答案)
人教版七年级上册数学3 4实际问题与一元一次方程 行程问题训练(含答案)

人教版七年级上册数学3.4实际问题与一元一次方程--行程问题训练一、单选题1.甲船从A 地开往B 地,航速为35千米/时,乙船由B 地开往A 地,航速为25千米/时,甲船先航行2小时后,乙船再出发,两船在距B 地120千米处相遇,求两地的距离.若设两地的距离为x 千米,根据题意可列方程为( ) A .12012023525x -=+ B .12012023525x -+= C .12012022535x -=+ D .12012022535x -+= 2.小明和小亮两人在长为50m 的直道AB(A 、B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若小明跑步速度为5m/s ,小亮跑步速度为4m/s ,则起跑后60s 内,两人相遇的次数为( ) A .3B .4C .5D .63.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( ) A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭4.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度3千米/时,求甲乙两码头的距离.设甲乙两码头的距离为x 千米.则可列方程为( )A .2(3) 2.5(3)x x +=-B .23 2.53x x +=-C .332 2.5x x-=+ D .332 2.5x x+=- 5.一条铁路线A ,B ,C 三个车站的位置如图所示,已知B ,C 两车站之间相距528千米,火车从B 站出发,向C 站方向匀速行驶,经过20分钟,距A 站120千米,经过1.5小时,距A 站274千米,则火车从B 站开出( )小时后可到达C 站.A .3B .72C .4D .1746.秋季运动会上,七年级(1)班的萌萌、路佳、王玉三人一起进行百米赛跑(假定三人均为匀速直线运动).如果当萌萌到达终点时,路佳距终点还有10米,王玉距终点还有20米.那么当路佳到达终点时,王玉距终点还有( ) A .10米B .988米C .1119米D .无法确定7.甲、乙两人从同一地点出发,如果甲先出发2小时后,乙从后面追赶,那么当乙追上甲时,下面说法正确的是( ) A .乙比甲多走了2小时 B .乙走的路程比甲多 C .甲、乙所用的时间相等D .甲、乙所走的路程相等8.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还,”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的12,走了6天到达目的地.”则此人在第3天和第4天共走了( ) A .144里B .72里C .36里D .18里二、填空题9.甲、乙两人从长度为400m 的环形运动场同一起点同向出发,甲跑步速度为 300m/min ,乙步行,当甲第四次超越乙时,乙正好走完第二圈,再过_________min ,甲、乙之 间相距100m .(在甲第五次超越乙前)10.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.设此人第三天走的路程为x 里,则列方程为________. 11.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 _____.12.小杰,小丽两人在400米的环形跑道上练习跑步,小杰每分钟跑300米,小丽每分钟跑150米,两人同时同地同向出发,__分钟后两人第一次相遇.13.如图,在ABC 中,3cm AB =,6cm BC ,5cm AC =,蚂蚁甲从点A 出发,以1.5cm/s 的速度沿着三角形的边按A B C A →→→的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm/s 的速度沿着三角形的边按A C B A →→→的方向行走,那么甲出发________s 后,甲乙第一次相距2cm .14.已知点A、B在数轴上,点A表示的数为-5,点B表示的数为15.动点P从点A出发,以每秒3个单位长度的速度沿数轴正方向匀速移动,则点P移动__________秒后,=.PA PB315.一辆汽车从A城出发驶向B城,如果以每小时50千米的速度行驶恰好准时到达,如果以每小时40千米的速度行驶,会比规定时间晚15分钟到达.设A、B两城的距离为x千米,根据题意,可列出方程是____.16.我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x日追上驽马,根据题意,可列方程为______,x的值为______.三、解答题17.一艘船在甲码头到乙码头顺流行驶,用了2小时;再从乙码头返回甲码头逆水行驶,用了3小时,已知这艘船在静水中航行的速度为15千米/小时,则水流的速度为多少千米每小时?18.如图,点A、B在数轴上表示的数分别为12-和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动______秒钟时,两只蚂蚁相遇;相遇点在数轴上表示的数是______;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).19.已知数轴上两点A、B对应的数分别为2 、5,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,直接写出点P对应的数是___________;(2)若点P到点A、点B的距离之和为8.请直接写出x的值为___________;(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动,当点A与点B之间的距离为5个单位长度时,求点P所对应的数是多少?20.已知,如图所示A、B分别为数轴上的两点,A对应的数为-10,B点对应的数为80.(1)请写出AB的三等分点M对应的数.(2)现有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C 点相遇.请你求出C点对应的数.(3)若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时P点对应的数.参考答案:1.A 2.C 3.A 4.C 5.C 6.C 7.D 8.B9.13或32.10.11142378248x x x x x x 11.3262262x x =-+- 12.8313.4 14.5或10 15.15504060x x =- 16. 240x =150× (12+x ) 20 17.3 18.(1)4,-4 (2)t 的值为2秒或6秒 19.(1)1.5; (2) 2.5-或5.5; (3)7-或-47. 20.(1)20或50 (2)44(3)经过11秒或25秒时,两只电子蚂蚁在数轴上相距35个单位长度,此时P 点对应的数为23或65。
人教版七年级上册数学3 4实际问题与一元一次方程(电费水费问题)同步练习(含简单答案)

①若在非节假日,应付票款___________元;
②若在节假日,应付票款___________元.
(2)阳光旅行社于今年5月1日(节假日)组织 团,5月10日(非节假日)组织 团到该景区旅游,两次共付门票款1840元,已知 、 两个团游客共计50人,问 、 两个团各有游客多少人?
(1)若某用户4月份用水20立方米,交水费46元,求 的值;
(2)若该用户7月份交水费71元,请问其7月份用水多少立方米?
18.西安某景区门票价格为50元/人,为吸引游客,特规定:非节假日时,门票打6折销售;节假日时按团队人数分段定价售票,即10人以下(含10人)的团队按原价售票,超过10人的团队,其中10人仍按原价售票,超过10人部分的游客打8折购票.
19.某市城市居民用电收费方式有以下两种:
甲、普通电价:全天0.53元/度;
乙、峰谷电价:峰时(早8:00﹣晚21:00)0.56元/度;谷时(晚21:00﹣早8:00)0.36元/度.
(1)小明家估计七月份总用电量为200度,其中峰时电量为50度,则小明家应选择哪种方式付电费比较合算?
(2)小明家八月份总用电量仍为200度,用峰谷电价付费方式比用普通电价付费方式省了14元,求八月份的峰时电量为多少度?
人教版七年级上册数学3.4实际问题与一元一次方程(电费水费问题)同步练习
一、单选题
1.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费 元;超过5吨,超过部分每吨加收3元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于 的方程正确的是()
A. B.
C. D.
2.某城市按以下规定收取每月的煤气费,用气不超过60立方米,按每立方0.8元收;如果超过60立方米,超过部分按每立方米1.2元收,已知小明家某月共缴纳煤气费72元,那么他家这个月共用()立方米的煤气?
人教版七年级上册数学3 4实际问题与一元一次方程 比赛积分问题训练(含答案)

人教版七年级上册数学3.4实际问题与一元一次方程--比赛积分问题训练一、单选题1.一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是()A.17道B.18道C.19道D.20道2.小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,若小明得了94分,则小明答对的题数是()道. A.17B.18C.19D.203.数学考试出了15道题,做对一题得4分,做错一题倒扣2分,若王刚做了全部15道题,共得36分,则他做对了()A.10道题B.11道题C.12道题D.13道题4.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.221x=B.1(1)212x x-=C.21212x=D.(1)21x x-=5.有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A.x(x﹣1)=21B.x(x﹣1)=42C.x(x+1)=21D.x(x+1)=426.某次数学竞赛共出了25个题,评分标准如下:答对一题加4分,答错一题扣1分,不答记0分,已知小杰不答的题比答错的题多2个,他的总分是74分,则他答错了()A .4题B .3题C .2题D .1题7.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是( )A .2B .3C .4D .58.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x 场,则得方程( )A .3919x x +-=B .2919x x -+=()C . 919x x -=()D .3919x x -+=()二、填空题9.中国CBA 篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1-分,今年某队在全部38场比赛中得到67分,那么这个队今年胜______场.10.某初中学校七年级举行“数学知识应用能力竞技”活动,测试卷由20道题组成,答对一题得5分,不答或答错一题扣1分,某考生的成绩为70分,则他答对了______________道题.11.校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x 场,则可列方程为__________________.12.在一场NBA 篮球比赛中,姚明共投中a 个2分球,b 个3分球,还通过罚球得到9分.在这场比赛中,他一共得了____________分.13.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个队踢了16场比赛,负了5场,共得27分,那么这个队平了______场.14.在某年全国足球超级联赛前15场比赛中,某队保持连续不败,共积37分,按比赛规则,胜一场得3分,平一场得1分,则该队共胜了_____场.15.有一张数学竞赛练习卷,只有25道选择题,做对一道给4分,做错一道扣1分,某同学全部做完练习,共得70分,问他一共对了_________道题.16.河南卫视推出的大型文化类栏目《中华好诗词》受到广大诗词爱好者的喜爱,2019年度总决赛,第二轮比赛中共有20道选择题,答对一道题得5分,答错或不答一题倒扣2分,选手A得到了72分设她做对了x道题,则可列方程为______.三、解答题17.篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.某次篮球联赛中,太阳队目前的战绩是7胜5负,后面还要比赛13场.若太阳队的最终得分为40分,求太阳队一共胜了几场?18.某电视台组织知识竞赛,共设20道选择题,每题必答,如表记录了3个参赛者的得分情况.(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分.你认为可能吗?为什么?19.某电视台组织学习党史知识竞赛,共设20道选择题,各题分值相同,答对一题得5分,可以选择不答,下表记录的是3名参赛者的得分情况.(1)由表格知,不答一题得______分,答错一题扣______分.(2)某参赛者D答错题数比不答题数的2倍多1题,最后得分为64分,他答对几道题?(3)在前10道题中,参赛者E答对8题,1题放弃不答,1题答错,则后面10题中,至少要答对几题才有可能使最后得分不低于79分?为什么?20.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?参考答案:1.C2.B3.B4.B5.B6.C7.C8.D9.3510.1511.3x+(8-x )=1812.2a +3b +913.314.11.15.1916.()522072x x --=17.15场18.(1)16道;(2)不可能19.(1)2,1;(2)13道;(3)6道20.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.。
人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案

人教版七年级数学上册《3.4 实际问题与一元一次方程》练习题-带参考答案一、选择题1.某电冰箱的进价为1530元,按商品标价的九折出售时,利润率为15%,若设该电冰箱的标价为x元,则可列方程为()A.90%x−1530=15%×1530B.90%x−1530=(1+15%)xC.1530×90%=15%x D.x−1530×90%=15%x2.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.参与种树的有()人.A.8 B.7 C.6 D.53.某车间24名工人生产螺栓和螺母,每人每天平均生产螺栓4个或螺母6个,现有x名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1:3配套,为求x列出的方程是()A.3×4(24﹣x)=6x B.4x=3×6(24﹣x)C.3×6x=4(24﹣x)D.3×4x=6(24﹣x)4.足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队进行了14场比赛,共得19分,若其中只负5场,那么这个队胜了()A.3场B.4场C.5场D.6场5.互联网“微商”经营已经成为大众创业的一种新途径,某互联网平台上一件商品的标价为200元,按标价的六折销售,仍可获利20%,则这件商品的进价为()A.80元B.90元C.100元D.110元6.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A.54−x=20%×108 B.54−x=20%×(108+x)C.54+x=20%×162 D.108−x=20%(54+x)7.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.2天B.3天C.4天D.8天8.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90 元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288B.296C.312D.320二、填空题9.一项工程甲单独做要20 h,乙单独做要12 h.现在先由甲单独做5 h,然后乙加入进来合做.完成整个工程一共需要多少小时?若设一共需要x h,则所列的方程为10.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为°.11.今年3.15期间,惠东商场为感谢新老顾客,决定对某产品实行优惠政策:购买该产品,另外赠送礼品一份,经过与该产品的供应商协调,供应商同意将该产品供货价格降低5%,同时免费为顾客提供礼品;而该产品的商场零售价保持不变,这样一来,该产品的单位利润率由原来的x%提高到(x+6)%,则x的值是12.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套,所有工人全部参与生产,则生产螺钉的工人有人.13.某超市推出如下优惠方案:⑴一次性购物不超过100元不享受优惠;⑵一次性购物超过100元但不超过300元一律9折;⑶一次性购物超过300元一律8折。
人教版七年级数学上册 3-4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)【含答案】

人教版七年级数学上册 3.4 实际问题与一元一次方程 同步练习(数字、和差倍分问题)一、选择题1.把夏禹时代的“洛书”用数学符号翻译出来就是一个三阶幻方,如图所示,它的每行、每列、每条对角线上三个数之和均相等,则幻方中的a ,b 之和为( )A .9B .10C .11D .122.我国的《洛书》中记载着世界上最古老的一个幻方:将1-9这九个数字填入33⨯的方格内,使得处于同一横行、同一竖列、同一斜对角线上的三个数之和都相等.在如图所示的幻方中,字母m 所表示的数是( )A .2B .7C .8D .93.一个五位数,个位数为5,这个五位数加上6120后所得的新的五位数的万位、千位、百位、十位、个位的数恰巧分别为原来五位数的个位、万位、千位、百位、十位上的数,则原来的五位数为( )A .48755B .47585C .37645D .364754.如果某一年的5月份中,有5个星期五,它们的日期之和为80,那么这个月的4日是( )A .星期一B .星期二C .星期五D .星期日5.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-6.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队,如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .96+x =13(72﹣x ) B .13(96﹣x )=72﹣x C .13(96+x )=72﹣x D .13×96+x =72﹣x 7.课外兴趣小组的女生人数占全组人数的13,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x 人,则下列方程正确的是( )A .1132x x =B .11+632x x =C .11+632x x =D .11(6)23x += 8.中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何?这道题的意思是:今有若干人乘车,每4人乘一车,最终剩余1辆车,若每2人共乘一车,最终剩余8个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .()4x 12x 8-=+ B .()4x 12x 8+=- C .x x 8142++= D .x x 8142--= 9.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物人出八,盈三;人出七,不足四问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元问人数是多少?若设人数为x,则下列关于x 的方程符合题意的是( )A .8x+3=7x -4B .8x -3=7x+4C .8(x -3)=7(x+4)D .17x+4=18x -3 二、填空题11.已知m ,n 都是质数,若关于x 的方程597mx n +=的解是3,则4m n -=__________..12.小明分发一堆水果分给好朋友,第1个朋友取走一半加1个,第2个朋友取走剩下的一半加1个,第3个朋友再取走剩下的一半加1个,……,直到第7个朋友再取走剩下的一半加1个时,恰好给小明留下了1个水果,则这堆水果一共有_______个.13.一个两位数,十位数字是a ,个位数字比十位数字的2倍少2,交换它的十位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数为__________.14.《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有x 个人共同出钱买鸡,根据题意,可列一元一次方程为_____________.15.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有______升酒.三、解答题16.把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?17.一个四位数,它的个位数字是8,若把这个数字调到千位上,其他数字向后顺移,得到新的四位数比原来的四位数大117,求原来的四位数.18.对任意一个三位数m ,将m 的各个数位上的数字分别加2得到一个新的三位数m ′,并且在这一过程中各个数位均不产生进位,则称m 为“真牛数”,m '为m 的“猛牛数”.把“真牛数”m 与“猛牛数”m '的和与37的商记为F (m ).例如:n =315是一个“真牛数”,理由如下:3+2=5<9,1+2=3<9,5+2=7<9.∴315是一个“真牛数”,它F (n )=37n n '+=315537852=3737+; (1)判断678 (填“是”或者“不是”“真牛数”:计算F (370)= ;(2)若s 、t 都是“真牛数”,s 的百位数字为1,t 的百位数字为3,t 的个位数字是s 个位数字的3倍,则F (s )+F (t )=36,求s 的值.19.妈妈擦干我第一滴眼泪,永远慈祥美丽的妈妈,我真的不想让你失望,因为我的梦想在远方.2020年小明同学的年龄比她妈妈小26岁,今年她妈年龄正好是小明同学的年龄的3倍少2岁.(1)小明同学今年多少岁?(2)经过多少年后妈年龄是小明同学的年龄的2倍?20.学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中90100m <<,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人21.定义:对于整数n ,在计算n +(n +1)+(n +2)时,结果能被15整除,则称n 为15的“亲和数”,如4是15的“亲和数”,因为4+5+6=15,15能被15整除;﹣7不是15的“亲和数”,因为(﹣7)+(﹣6)+(﹣5)=﹣18,﹣18不能被15整除.(1)填空:﹣16 15的“亲和数”(填“是”还是“不是”);(2)求出1到2021这2021个整数中,是15的“亲和数”的个数;(3)当n 在﹣10到10之间时,直接写出使2n +3是15的“亲和数”的所有n 的值.22.新学期,两摞规格相同的数学课本整齐的叠放在讲台上,请根据图中所给出的数据信息,解答下列问题: (1)每本书的厚度为______cm ,课桌的高度为______cm ;(2)当课本数为x (本)时,请写出同样叠放在桌面上的一摞数学课本高出地面的距离为__________cm (用含x 的代数式表示);(3)若桌面上有26本相同的数学课本整齐叠放成一摞,现从中取走a (a≤26)本,求余下的数学课本高出地面的距离; (4)若桌面上有50本相同规格的数学课本整齐的叠成一摞,现从中取走a (a≤50)本放在旁边另叠成一摞,发现两摞课本的高度相差2cm ,则a=______ .23.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位) (2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?1.A 2.C 3.A 4.D 5.C 6.C 7.B 8.A 9.A 10.B11.1312.38213.3414.911616x x -=+15.8.7516.20,24,11,4417.875818.(1)不是,26;(2)s 可能为101,111,121,131,141.19.(1)14岁;(2)12年后20.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人21.(1)是;(2)404个;(3)n =2-或-7或3或8.22.(1)0.5;(2)850.5x +;(3)余下的数学课本高出地面的距离为() 980.5a -cm ;(4)23或2723.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元。
人教版数学七年级上同步训练:3.4《实际问题与一元一次方程》【含答案】

3.4 实际问题与一元一次方程5分钟训练(预习类训练,可用于课前)1.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了()A.31.25B.60C.125D.100思路解析:设这套服装原价为x元,则x-0.8x=25,解得x=125.所以实际用了125-25=100元.答案:D2.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电标价是()A.3 200元B.3 429元C.2 667元D.3 168元思路解析:设标价为x,根据题意有0.9x=(1+0.2)×2 400,解得x=3 200.答案:A3.球队训练用的足球是由32块黑白相间的牛皮缝制而成的,其中黑皮可看作正五边形,白皮可看作正六边形,黑、白皮块的数目比为3∶5,要求出黑皮、白皮的块数,若设黑皮的块数为x,则列出的方程正确的是()A.3x=32-xB.3x=5(32-x)C.5x=3(32-x)D.6x=32-x思路解析:因为黑、白皮块的数目比为3∶5,若设黑皮的块数为x,则白皮块数为32-x,由此得方程为5x=3(32-x).答案:C10分钟训练(强化类训练,可用于课中)1.我国政府为解决老百姓看病难,决定下调药品价格,某种药品在2003年涨价30%后,年降价70%调至a元,则这种药品在2003年涨价前的价格为()A.10039a元 B.39100a元 C.a(1-40%)元 D.140%a元思路解析:设在2003年涨价前的价格为x元,则有(1+0.3)(1-0.7)x=a,解得x=10039a.答案:A2.某区中学生足球赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,猛虎队踢平的场数是所负场数的2倍,共得17分,该队共胜多少场?思路解析:首先要利用一个未知数,表示胜、负、平的场数,再利用总分列出方程.解:设踢成负的场数是x,则踢平的场数是2x,踢胜的场数是8-x-2x=8-3x,则有2x+3(8-3x)=17,解得x=1.所以踢胜的场数为8-3=5场.3.一件夹克,按成本加5成作为售价,后因季节关系,按售价的8折出售,降价后每件卖60元,问这批夹克每件成本是多少元.降价后每件是赔还是赚,赔或赚多少元?(生活中处处有数学,我们应当善于用数学的眼光去看世界,用数学的方法去分析和解决问题)思路解析:列表:解:设一件夹克的成本为x元,根据题意有(1+50%)x×80%=60,解得x=50.所以60-x=60-50=10(元).答:一件夹克的成本为50元,降价后每件仍可赚10元.4.商场出售的A型冰箱每台售价2 190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度.商场如果将A型冰箱打9折出售(打一折后的售价为原价的110),消费者购买合算吗?(按使用期为10每年365天,每度电0.40元计算)若不合算,商场至少打几折,消费者购买才合算?思路解析:问题1可以通过计算出A型冰箱和B型节能冰箱10年各自的费用来判断是否合算,问题2可以用方程来解.解:A型10年费用:2 190×910+365×10×1×0.4=3 431(元),B型10年费用:2 190×(1+10%)+365×10×0.55×0.4=3 212(元),所以消费者购买A型冰箱不合算.设商场打x折消费者购买才合算,根据题意,得2 190x+365×10×1×0.4=3 212.解得x=0.8.所以,商场至少打8折,消费者购买才合算.快乐时光都有名字了在一家工厂,我那位朋友正在有条不紊地指挥生产,稀疏的头发想方设法地覆盖在脑袋上.“你已经使之成为一门科学了.”我赞叹道.“每一根头发都做了安排.”“是啊,”朋友苦笑着说,“过去它们只有一个总数,可现在它们都有自己的名字了.”30分钟训练(巩固类训练,可用于课后)1.某商场同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次卖出的两件上衣是赔了还是赚了.思路解析:要求出两件上衣的进价,可分别根据售出的价格求出.解:设两件上衣的成本分别为x 、y 元,根据题意,得(1+25%)x=135,(1-25%)y=135. 分别解这两个方程,得x=108,y=180.108+180=288>270.答:所以这次出售是亏损,并且亏损了18元.2.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车量数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10 000辆.”乙同学说:“四环路比三环路车流量每小时多2 000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.” 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少.思路解析:此题关键在于理解题意,抽象出数学式子.解:设三环路的流量为每小时x (辆),则四环路的流量为每小时2 000+x (辆),3x-2 000-x=20 000,解得x=11 000,所以高峰时车流量为三环路11 000辆,四环路13 000辆.3.随着科技的进步,高科技产品的成本价在降低.某种品牌的电脑成本降低8%,而零售价不变,那么利润将由目前的x%增加到(x+10)%,求x 的值.思路解析:题目中没有成本价,而解题时要用到成本价,故可设成本价为a (或设为单位1).解:设成本价为a ,则原售价为a (1+100x ),成本降低8%后新成本为a (1-8%),根据售价不变,利润增加到(x+10)%,有a (1-8%)[1+(x+10)%]=a (1+100x ),解得x=15. 4.某工业园区用于甲、乙两个不同项目的投资共2 000万元.甲项目的年收益率为5.4%,乙项目的年收益率为8.28%,该工业园区仅以上两个项目可获得收益1 224 000元.问该工业园区对两个项目的投资各是多少万元.思路解析:本题可采用间接设未知数法,抓住相等关系:“甲项目的收益+乙项目的收益=总收益”列方程.解:设对甲项目投资为x 万元,则对乙项目投资为(2 000-x)万元.根据题意,得5.4%x+8.28%(2 000-x)=122.4.解得x=1 500.从而2 000-x=2 000-1 500=500. 答:该工业园区对甲项目投资为1 500万元,对乙项目投资为500万元.5.某牛奶加工厂现有鲜奶9吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获利1 200元;制成奶片销售,每吨可获利2 000元,该加工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受条件限制两种加工方式不可同时进行,受气温影响牛奶必须在4天内销售或加工完毕,为此,该加工场设计了两种生产、销售方案:方案一:尽可能地制成奶片,其余直接销售鲜牛奶.方案二:一部分制成奶片,其余全部加工成酸奶,并保证在四天内完成.分别计算两种方案的利润,你认为哪种方案利润高?思路解析:方案一的利润易求.方案二中必须先知4天中用几天制奶片,用几天加工酸奶.故设用x天加工奶片,则用(4-x)天加工酸奶,依题意有1·x+3·(4-x)=9.∴x=1.5.此时利润可求.答案:方案二获得利润高些.6.江苏宿迁模拟某公司有2位股东,20名工人.从2000年至2002公司每年股东的总利润和每年工人的工资总额如图3-4-1所示.图3-4-1(1)填写下表:(2)假设在以后的若干年中,每年工人的工资和股东的利润都按上图中的速度增长,那么到哪一股东的平均利润是工人的平均工资的8倍?思路解析:(1)直接由图可填.(2)由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍.股东的平均利润为25 000+12 500x,每位工人年平均工资为5 000+1 250x,由题意可得方程(5 000+1 250x)×8=25 000+12 500x,解出即可.答案:(1)(2)设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1 250元,每位股东年平均利润增长12 500元,所以(5 000+1 250x)×8=25 000+12 500x.解得x=6.答:到2010年每位股东年平均利润是每位工人年平均工资的8倍.7.北京模拟夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1 ℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高 1 ℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1 ℃后两种空调每天各节电多少度.思路解析:本题文字比较多,条件也比较多,要注意抓主要问题,即“两种空调每天共节电405度”,如果设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.这样可得方程1.1x+x+27=405,解出即可.解:设只将温度调高1 ℃后,乙种空调每天节电x度,则甲种空调每天节电(x+27)度.依题意,得1.1x+x+27=405.解得x=180,∴x+27=207.答:只将温度调高1 ℃后,甲种空调每天节电207度,乙种空调每天节电180度.。
人教版七年级上册数学第三章一元一次方程3-4实际问题与一元一次方程课后练习【含答案】

人教版七年级上册数学第三章一元一次方程3.4实际问题与一元一次方程课后练习一、单选题(共12题)1.虽然受到新冠疫情的影响,但2020年我国前三季度的GDP比2019年前三季度增长0.7%,达到亿元,称为世界上首个实现经济正增长的主要经济体.设我国2019年前三季度的GDP为x亿元,根据题意,可列出方程()A. (1+0.7%)x=722786B. x+0.7%=722786C. x+(1+0.7%)=722786D. x+(1−0.7%)=7227862.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x张.根据题意,下面所列方程正确的是()A. x+5(12−x)=48B. x+5(x−12)=48C. x+12(x−5)=48D. 5x+(12−x)=483.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是()A. 2×1000(26−x)=800xB. 1000(13−x)=800xC. 1000(26−x)=2×800xD. 1000(26−x)=800x4.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,一共有三百八十一盏灯,则这个塔顶的灯数为()A. 4盏B. 3盏C. 2盏D. 1盏5.一个电器商店卖出一件电器,售价为1820元,以进价计算,获利40%,则进价为()A. 728元B. 1300元C. 1092元D. 455元6.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程()A. 54−x=20%×108B. 54−x=20%×(108+x)C. 54+x=20%×162D. 108−x=20%(54+x)7.由于换季,超市准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元;而按原售价的九折出售,将盈利20元,则该商品的原售价为()A. 300元B. 270元C. 250元D. 230元8.某商场上月的营业额是a万元,本月营业额为500万元,比上月增长15%,那么可列方程为()A. 15%a=500B. (1+15%)a=500C. 15%(1+a)=500D. 1+15%a=5009.日历中同一竖列相邻三个数的和不可能是()A. 35B. 39C. 51D. 6010.一件服装的进货价为80元,按标价的6折出售,仍获利50%,则这件服装的标价为()A. 150B. 200C. 250D. 30011.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A. 8天B. 7天C. 6天D. 5天12.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量要比环保限制的最大量少100t.新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?如果设新工艺的废水排量为2xt,旧工艺的废水排量为5xt.那么下面所列方程正确的是()A. 5x−200=2x+100B. 5x+200=2x−100C. 5x+200=2x+100D. 5x−200=2x−100二、填空题(共6题)13.某酒店客房都有三人间普通客房,双人间普通客房,收费标准为:三人间150元/间,双人间140元/间.为吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团,优惠期间到该酒店入住,住了一些三人间普通客房和双人间普通客房,若每间客房正好住满,且一天共花去住宿费1310元,则该旅游团住了三人间普通客房和双人间普通客房共________间;14.在如图的方格中,若要使横,竖,斜对角的3个实数相乘都得到同样的结果,则图中m的值为________.15.一组“数值转换机”按下面的程序计算,如果输入的数是30,则输出的结果为56,要使输出的结果为76,则输入的最小正整数是________.16.某电视台组织知识竞赛,共设有20道单项选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况.如果参赛者D得70分,则他答对的题数为________.17.李明组织同学一起去看电影,已知电影票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了________张电影票.18.按下面的程序计算:若输入n=20,输出结果是101;若开始输入的n值为正整数,最后输出的结果为131,则开始输入的n 值可以是________.三、综合题(共4题)19.由于疫情防控的需要,学校开学第一周给某班配备了一定数量的口罩,若每个学生发5个,则多40个口罩,若每个学生发6个,则少12个口罩,请问该班有多少名学生?学校给该班准备了多少个口罩?20.今年开学,由于疫情防控的需要,某学校统一购置口罩(1)班全体学生配备了一定数量的口罩,若每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?21.某项工程,如果让甲工程队单独工作需75天完成,如果让乙工程队单独工作需50天完成.如果让两个工程队一起工作15天,再由乙工程队完成剩余部分,共需多少天完成?(请列方程解应用题)22.为了适应新的教育形势发展的需要,我县某初中学校研究决定探索符合学校情况的课改模式,通过多方面调查、探究和思考,学校最终确定的课改思路为“先学后教、以学定教”,根据学校实际决定先在七年级实行小班额教学,但是由于学校教室有限,除了八、九年级学生所占教室外,能供七年级用的就不多了,若每间教室安排40名学生,则缺少1间教室;若每间教室安排44名学生,则空出1间教室,请你根据所提供的信息帮助算一算该校能供七年级学生所用的教室校共有多少间?答案解析部分一、单选题1. A解:依题意得:(1+0.7%)x=722786.故A.【分析】由2020年我国前三季度的GDP=2019年我国前三季度的GDP×(1+增长率),即可得出关于x的一元一次方程,此题得解.2. A解: 1元纸币为x张, 那么5元纸币有(12-x)张,∴ x+5(12-x) =48 ,故A.【分析】由题意得:等量关系为: 1x1元纸币的张数+ 5x5元纸币的张数=48,据此列方程即可.3. C解:设安排x名工人生产口罩面,则(26-x)人生产耳绳,由题意得1000(26-x)=2×800x.故选:C.【分析】设安x名工人生产口罩面,则(26-x)生产口罩耳绳,由一个口罩面需要配两个口罩耳绳可知,口罩耳绳的个数是口罩面个数的2倍,从而得出等量关系,则可列出方程.4. B解:设塔顶的灯数为x盏,则从塔顶向下,每一层灯的数量依次是2x,4x,8x,16x,32x,64x,所以x+2x+4x+8x+16x+32x+64x=381,127x=381x=381÷127x=3答:这个塔顶的灯数为3盏.故B.【分析】设塔顶的灯数为x盖,则根据每层悬挂的红灯数是上层的2倍,分别求出每一层灯的数量,然后求和,根据它们的和是381列方程求解即可.5. B解:设电器每件的进价是x元,利润可表示为(1820-x)元,则1820-x=40%x,解得x=1300即电器每件的进价是1300元.所以B选项是正确的.故B.【分析】设电器每件的进价是x元,根据利润=利润率×进价=售价-进价,列出方程,求出解即可.6. B解:根据题意可得改造后旱地的面积为(54-x)公顷;林地的面积为(108+x)公顷,根据题意可得等式为:旱地的面积=林地的面积×20%,即54-x=20%×(108+x).【分析】根据原有林地108公顷,旱地54公顷,列方程求解即可。
人教版七年级数学上 册 3.4 实际问题与一元一次方程(含答案)

3.4 实际问题与一元一次方程1.王刚是某校的篮球明星,在一场篮球比赛中,他一人得21分,如果他投进的2分球比3分球多3个,那么他一共投进的2分球有( ) A.2个 B.3个 C.6个 D.7个2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26-x)=800xB .1000(13-x)=800xC .1000(26-x)=2×800xD .1000(26-x)=800x 3.用铁皮做罐头盒,每张铁皮可制作15个盒身或42个盒底,一个盒身与两个盒底配成一套罐头盒.现有108张铁皮,怎样分配材料可以正好制成整套罐头盒?若设用x 张铁皮做盒身,根据题意可列方程( )A .2×15(108-x)=42xB .15x =2×42(108-x)C .15(108-x)=2×42x D.2×15x=42(108-x)4.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的鸦 为 只,树为 棵. 5.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( ) A .10天 B .20天 C .30天 D .25天6.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%.设把x 公顷旱地改造为林地,则可列方程( ) A .60-x =20%(120+x) B .60+x =20%×120 C .180-x =20%(60+x) D .60-x =20%×1207.我校“春之声”广播室小记者谭艳同学为了及时报道学校参加全市中学生篮球比赛情况,她从领队韦老师那里了解到校队共参加了16场比赛,积分28分.按规定赢一场得2分,输一场得1分.可是小谭忘记了输赢各多少场了,请你根据上面提供的信息分别求出输、赢各多少场.8.整理一批数据,由一人做需80小时完成,现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的34,应该怎样安排参与整理数据的具体人数?9. 打扫本班清洁区域卫生,1个人打扫需要30 min 完成,生活委员计划由一部分人先打扫5 min ,然后增加2人与他们一起打扫3 min 完成打扫任务.假设同学们打扫清洁区域卫生的效率相同,那么生活委员应先安排多少人打扫?10.现有甲、乙两家商店出售茶瓶和茶杯,茶瓶每只价格为20元,茶杯每只5元.已知甲店制定的优惠方法是买一只茶瓶送一只茶杯;乙店按总价的92%付款.某单位办公室需购茶瓶4只,茶杯若干只(不少于4只).(1)当需购买40只茶杯时,若让你去办这件事,你将打算去哪家商店购买,为什么?(2)当购买茶杯多少只时,两种优惠方法的效果是一样的?11.某工厂现有15 m3木料,准备制作圆桌或方桌(用部分木料制作桌面,其余木料制作桌腿).(1)已知一张圆桌由一个桌面和一条桌腿组成,如果1 m3木料可制作40个桌面或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少立方米.(2)已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题.①如果1 m3木料可制作50个桌面或制作300条桌腿,应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3 m3木料可制作20个桌面或制作320条桌腿,应怎样计划用料才能制作尽可能多的桌子?12.某公司新建办公楼需要装修,若由甲工程队单独完成需要18周,由乙工程队单独完成需要12周.现在招标的结果是由甲工程队先做3周,再由甲、乙两队合做,共需装修费40000元.若按两队完成的工作量支付装修费,该如何分配?13.某市为节约用水,制定了如下标准:每月用水量不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费( )A.20元 B.24元 C.30元 D.36元14.北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如图所示.比如6口以下的家庭年天然气用量在第二档时,其中350立方米按2.28元/米3收费,超过350立方米的部分按2.5元/米3收费.小冬一家有5口人,他想帮父母计算一下实行阶梯价格收费后,家里天然气费的支出情况.(1)如果他家2017年全年使用300立方米天然气,需要交天然气费________元;如果他家2017年全年使用500立方米天然气,需要交天然气费________元.(2)如果他家2017年需要交1563元天然气费,那么他家2017年用了多少立方米天然气?15.某牛奶加工厂现有鲜奶8吨,若直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1200元;若制成奶片销售,每吨可获取利润2000元.该工厂的生产能力如下:制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批鲜奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多地制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?为什么?答案1. C2. C3.D4. 20 55. D6.A7. 解设球队赢了x场,则输了(16-x)场.由题意,得2x+(16-x)×1=28,解得x=12,答:球队赢了12场,输了4场.8.解:设开始安排x人做.依题意,得2×180x+8×180(x+5)=34.解得x=2.答:应该先安排2人做2小时后,再增加5人做8小时.9.解:设生活委员应先安排x人打扫.根据题意,得130x×5+130×3(x+2)=1,解得x=3.答:生活委员应先安排3人打扫.10. 解(1)当购买40只茶杯时,则甲商店需付:4×20+5(40-4)=260(元). 则乙商店需付:(4×20+5×40)×92%=257.6(元).因此应去乙商店买.(2)设购买茶杯x 只,由题意列方程,得4×20+(x -4)×5=(4×20+5x)×92%, 即5x+60=73.6+4.6x, 解得x=34.所以当购买茶杯34只时,两种优惠方法的效果是一样的.11. 解:(1)设用x m 3木料制作桌面,则用(15-x)m 3木料制作桌腿恰好配套. 由题意,得40x =20(15-x).解得x =5.答:制作桌面的木料为5 m 3.(2)①设用a m 3木料制作桌面,则用(15-a)m 3木料制作桌腿恰好配套.由题意,得4×50a=300(15-a).解得a =9.所以制作桌腿的木料为15-9=6(m 3).答:用9 m 3木料制作桌面,用6 m 3木料制作桌腿恰好配套.②设用y m 3木料制作桌面,则用(15-y) m 3木料制作桌腿能制作尽可能多的桌子.由题意,得4×20×y 3=320×15-y3.解得y =12.所以制作桌腿的木料为15-12=3(m 3).答:用12 m 3木料制作桌面,用3 m 3木料制作桌腿能制作尽可能多的桌子. 12.解:设甲工程队先做3周后还需x 周完成.由题意,得118(x +3)+112x =1,解得x =6.即甲工程队做了9周,乙工程队做了6周,甲工程队的工作量为118×9=12,乙工程队的工作量为112×6=12. 因为两队完成的工作量相同,所以装修费40000元应平分,两队各得20000元.13.C14. 解:(1)如果他家2017年全年使用300立方米天然气,那么需要交天然气费2.28×300=684(元);如果他家2017年全年使用500立方米天然气,那么需要交天然气费 2.28×350+2.5×(500-350)=798+375=1173(元). 故答案为684,1173.(2)设小冬家2017年用了x 立方米天然气.因为1563>1173,所以小冬家2017年所用天然气超过了500立方米. 根据题意,得2.28×350+2.5×(500-350)+3.9(x -500)=1563, 解得x =600.答:小冬家2017年用了600立方米天然气.15.解:选择方案二获利最多.理由:方案一:最多生产4吨奶片,其余的鲜奶直接销售,其利润为4×2000+(8-4)×500=10000(元);方案二:设x 天生产奶片,(4-x)天生产酸奶.根据题意,得x +3(4-x)=8,解得x =2,则4-x =2,所以2天生产酸奶加工的鲜奶是2×3=6(吨),则方案二的利润为2×2000+6×1200=4000+7200=11200(元). 因为11200>10000,所以选择方案二获利较多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版 七年级数学 3.4 实际问题与一元一次方程 针对训练一、选择题1.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;如果按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元2. 某市出租车的收费标准是起步价5元(行驶路程不超过3 km ,都需付5元车费),超过3 km ,每增加1 km ,加收1.2元(不足1 km 的按1 km 收费). 某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是( )A .8 kmB .9 kmC .6 kmD .10 km3. 一项工程,甲单独做需10天完成,乙单独做需6天完成.现由甲先做2天,乙再加入合做,完成这项工程共需多少天?若设完成这项工程共需x 天,依题意可得方程( )A.x 10+x 6=1B.x +210+x -26=1C.x 10+x -26=1D.2x +x -210+x -26=14. 2019·榆林期末某中学的学生自己动手整理图书馆的图书,如果让七年级(1)班学生单独整理需要5小时;如果让七年级(2)班学生单独整理需要3小时.如果(2)班学生先单独整理1小时,(1)班学生单独整理2小时,剩下的图书由两个班学生合作整理,则全部整理完还需( )A.12小时B .1小时 C.32小时D .2小时5. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( )A .5x -45=7x -3B .5x +45=7x +3C.x +455=x +37D.x -455=x -376. 已知七年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( )A .2x +3(72-x )=30B .3x +2(30-x )=72C .2x +3(30-x )=72D .3x +2(72-x )=307. 某中学去年中学生共有4200人,今年初中生增加了8%,高中生增加了11%,使得中学生总数增加了10%.如果设去年初中生有x 人,那么下面所列方程正确的是( )A .(1+8%)x +(1+11%)(4200-x )=4200×10%B .8%x +11%(4200-x )=4200×(1+10%)C .8%x +(1+11%)(4200-x )=4200×10%D .8%x +11%(4200-x )=4200×10%8. 某同学花了30元钱购买图书馆会员证,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张4元,要想使得购会员证比不购会员证合算,该同学去图书馆阅览应超过( )A .8次B .9次C .10次D .11次9. 2019·荆门欣欣服装店某天用相同的价格a (a >0)元卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( )A .盈利B .亏损C .不盈不亏D .与售价a 有关10. 为配合荆州市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可打8折.小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小慧同学不买卡直接购书,则她需付款( )A .140元B .150元C .160元D .200元二、填空题11. 一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元.12. 湖南省2019年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x元费用后,共剩 5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.13. 2019·来宾期末一旅客携带了30千克行李乘飞机,按民航规定,旅客最多可免费携带20千克行李,超出部分每千克按飞机票价的1.5%购买行李票,该旅客此次机票与行李票共花了920元,则他的飞机票价是________元.14. 我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元.”该物品的价格是________元.15. 2019·芜湖南陵期末某校组织学生和教师为边远山区学校捐赠图书,原计划共捐赠5000册,实际捐赠时学生比原计划多捐了15%,教师比原计划多捐了20%,实际共捐赠5825册,则原计划学生捐赠图书________册.三、解答题16. 某服装厂加工车间有工人54人,每人每天可以加工上衣8件或裤子10条,应怎样分配工人,才能使每天生产的上衣和裤子配套?17. 某牛奶加工厂现有鲜奶8吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多地制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?为什么?18. 2019·杭州西湖区月考某地开始实施农村义务教育学校营养计划“蛋奶工程”,该地农村小学每份营养餐的标准是质量为300克,蛋白质含量为8%,包括一盒牛奶、一包饼干和一个鸡蛋.已知牛奶的蛋白质含量为5%,饼干的蛋白质含量为12.5%,鸡蛋的蛋白质含量为15%,一个鸡蛋的质量为60克.(1)一份营养餐和一个鸡蛋中蛋白质的含量分别为多少克?(2)每份营养餐中牛奶和饼干的质量分别为多少克?19. A,B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米,一列快车从B站出发,每小时行驶80千米.(1)若两车同时开出,相向而行,则出发后多少小时相遇?(2)若两车相向而行,慢车先行28分钟,则快车开出后多少小时两车相遇?(3)若两车同时开出,同向而行,慢车在前,则出发后多少小时快车追上慢车?20. 实际应用题情境:试根据图中的信息,解答下列问题:(1)购买6根跳绳需________元,购买12根跳绳需________元.(2)小红比小明多买2根,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.人教版 七年级数学 3.4 实际问题与一元一次方程 针对训练 -答案一、选择题1. 【答案】C2. 【答案】A [解析] 设此人坐车行驶的路程最多为x km ,则有5+(x -3)×1.2=11,解得x =8.3. 【答案】C [解析] 设工作总量为1,则甲的工作效率为110,乙的工作效率为16.根据题意有关系式:甲完成的工作量+乙完成的工作量=1.甲工作的天数为x ,乙工作的天数为x -2,于是有x 10+x -26=1.故选C.4. 【答案】A [解析] 设全部整理完还需x 小时,根据题意得1+x 3+2+x 5=1,解得x =12.5. 【答案】B6. 【答案】B7. 【答案】D8. 【答案】C [解析] 设该同学去图书馆阅览次数为x 次时,办会员证与不办会员证花费相同,则30+x =4x ,解得x =10.所以去的次数超过10次时,办会员证合算.故选C.9. 【答案】B [解析] 设第一件服装的进价为x 元,依题意得x(1+20%)=a.设第二件服装的进价为y 元,依题意得y(1-20%)=a ,所以x(1+20%)=y(1-20%),整理得3x =2y.该服装店卖出这两件服装的盈利情况为0.2x -0.2y =0.2x -0.3x =-0.1x(元),即赔了0.1x 元.10. 【答案】B[解析] 此题的关键描述:“先买优惠卡再凭卡付款,结果节省了10元”,设出未知数,根据题中的关键描述语列出方程求解.设小慧同学不买卡直接购书需付款x元,则有20+0.8x=x-10,解得x=150,即小慧同学不买卡直接购书需付款150元.故选B.二、填空题11. 【答案】180【解析】设成本为x元,由题意得:300×0.8-x=60,解得x=180.12. 【答案】20 000-3x=5 00013. 【答案】800[解析] 设他的飞机票价是x元,根据题意得(30-20)×1.5%x+x =920,解得x=800.14. 【答案】53[解析] 设有x个人共同购买该物品,依题意,得8x-3=7x+4,解得x=7.8x-3=8×7-3=53.故答案为53.15. 【答案】3500[解析] 设原计划学生捐赠图书x册,则教师捐赠图书(5000-x)册.依题意得15%x+(5000-x)×20%=5825-5000,解得x=3500.三、解答题16. 【答案】解:设做上衣的有x人,则做裤子的有(54-x)人.依题意,得8x=10(54-x),解得x=30.所以54-x=54-30=24.答:安排30人做上衣,24人做裤子,才能使每天生产的上衣和裤子配套.17. 【答案】解:选择方案二获利较多.理由:方案一:最多生产4吨奶片,其余的鲜奶直接销售,则利润为4×2000+(8-4)×500=10000(元).方案二:设生产x天奶片,则生产(4-x)天酸奶.根据题意得x+3(4-x)=8,解得x=2.则利润为2×2000+(4-2)×3×1200=4000+7200=11200(元).因为10000<11200,所以选择方案二获利较多.18. 【答案】解:(1)由题意,得300×8%=24(克),60×15%=9(克).答:一份营养餐和一个鸡蛋中蛋白质的含量分别为24克,9克.(2)设每份营养餐中牛奶的质量为x克,则饼干的质量为(300-60-x)克.由题意,得5%x+12.5%(300-60-x)+9=24,解得x=200.故饼干的质量为300-60-200=40(克).答:每份营养餐中牛奶和饼干的质量分别为200克和40克.19. 【答案】[解析] 本题中(1)(2)属于相遇问题,(3)属于追及问题,它们可借助示意图分析相等关系:(1)由上图可知:慢车行驶的路程+快车行驶的路程=全程448千米.(2)由上图可知:慢车提前行驶的路程+快车出发后慢车行驶的路程+快车行驶的路程=全程448千米.(3)由上图可知: 快车行驶的路程-慢车行驶的路程=448千米.解:(1)设两车出发后x 小时相遇.依题意,得60x +80x =448,解这个方程,得x =3.2.答:两车出发后3.2小时相遇.(2)设快车开出后y 小时两车相遇.依题意,得60×2860+60y +80y =448,解这个方程,得y =3.答:快车开出后3小时两车相遇.(3)设两车出发后z 小时快车追上慢车.依题意,得80z -60z =448,解得z =22.4.答:两车出发后22.4小时快车追上慢车.20. 【答案】解:(1)购买6根跳绳需6×25=150(元),购买12根跳绳需12×25×0.8=240(元).故答案为150,240.(2)有这种可能.若小红比小明多买2根,付款时小红反而比小明少5元,则小红购买的跳绳超过10根,小明购买的跳绳不超过10根.设小红购买跳绳x 根(x >10).根据题意得25×80%x =25(x -2)-5,解得x =11.因此小红购买跳绳11根.。