经济应用数学习题及问题详解
经济数学基础应用题

经济数学基础应用题1、设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本与边际成本;(2)当产量q 为多少时,平均成本最小?解:(1)因为总成本、平均成本与边际成本分别为:q q q C 625.0100)(2++=,625.0100)(++=q qq C ,65.0)(+='q q C . 所以,1851061025.0100)10(2=⨯+⨯+=C , 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C . (2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去). 因为20=q 就是其在定义域内唯一驻点,且该问题确实存在最小值,所以当q =20时,平均成本最小.2、某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q=1000-10p(q 为需求量,p 为价格)。
试求:1)成本函数,收入函数;2)产量为多少吨时利润最大?解 1)成本函数C(q)=60q+2000、因为q=1000-10p,即p=100-q 101, 所以收入函数R(q)=p ⨯q=(100-q 101)q=100q-2101q (2)因为利润函数L(q)=R(q)-C(q)=100q-2101q -(60q+2000) =40q-2101q -2000且'L (q)=(40q-2101q -2000)'=40-0、2q 令'L (q)=0,即40-0、2q=0,得q200,它就是L(q)的最大值点,即当产量为200吨时利润最大。
3、设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元,又已知需求函数q=2000-4p,其中p 为价格,q 为产量。
{财务管理财务知识}经济应用数学经济应用数学微积分

{财务管理财务知识}经济应用数学经济应用数学微积分经济应用数学——微积分部分习题解答(参考)习题一(P37)1.设函数求:f(0),f(-1),f(),f(a+1)解:分析:即求当x为0,-1,,(a+1)时的函数值。
f(0)==-1;f(-1)==f()=;f(a+1)=3.下列各组函数是否表示相同的函数?为什么?(1)y=lg与y=2lgx(2)y=1与y=sinx+cosx(3)y=与y=x+1(4)y=-x与y=-x解:分析:相同函数的条件是D与f相同。
(定义域与对应规则)(1)不同,D不同(2)相同定义域与对应法则相同(3)不同,D不同(4)不同对应法则不同(当x=-1,对应y不同)4.求下列函数的定义域:(1)y=(2)y=(3)y=lg(4)y=lglg(x+1)(5)y=arcsin(6)y=tan(2x+1)(2x+1)解:求定义域应记住:①分母≠0②a≥0③x﹥0④三角函数的限制。
(1)y=解D:x≠0[或(-)(2)y=(4)lglg(x+1)解:D:-1≤x﹤1解:D:(0,+∞)(3)y=lg(5)y=arcsin解:D:[-2,1解:D:[-1,3](6)y=tan(2x+1)解:2x+1D:x5.判断下列函数的奇偶性。
(1)f(x)=(3)f(x)=lg(x+解:f(-x)==f(x)解:f(-x)=lg(-x+f(x)是偶函数。
=lg=lg=lg(x+=-lg(x+)=-f(x)f(x)是奇函数。
(4)f(x)=xe解:f(-x)=-xe≠f(x)[也≠-f(x)]f(x)是非奇非偶函数。
(5)f(x)=log解:f(-x)=log分析:判断奇偶函数=log((1)f(-x)=f(x),f(x)是偶函数=-log(2)f(-x)=-f(x),f(x)是奇函数=-f(x)否则非奇非偶。
f(x)是奇函数。
(6)设f(x)=求f(0),f(-1),f(1),f(-2),f(2),并作出函数图像。
经济应用数学习题及答案

经济应用数学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN经济应用数学习题第一章 极限和连续 填空题1. sin lim x x x→∞=0 ; 2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的; 3当 0x → 时,1cos x - 是比 x 高 阶的无穷小量。
4. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25. 2lim(1)x x x →∞-=2-e选择题 1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )1 2.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 计算题 1.求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x 2. x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u -2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim 000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。
2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4.设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D ) (A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x 7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导 (C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y yy dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -= 5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。
经济数学试题及答案

经济数学试题及答案一、选择题1. 假设市场需求曲线为Qd=100-2P,市场供给曲线为Qs=-20+4P,求平衡价格和平衡数量。
答案:平衡价格为20,平衡数量为40。
2. 若某商品的需求弹性为-2,需求量为10时,价格为20,求需求量变化1%时的价格变化百分比。
答案:需求量变化1%时,价格变化百分比为2%。
3. 某企业生产一种商品,已知其总生产成本函数为C(Q)=100+2Q+0.5Q^2,求当产量为10时,平均成本和边际成本。
答案:当产量为10时,平均成本为25,边际成本为13。
二、计算题1. 已知一家工厂的生产函数为Q=10L^0.5K^0.5,其中L为劳动力投入,K为资本投入。
若工厂每年投入的劳动力为100人,资本为400万元,劳动力每人每年工作2000小时,资本的年利率为10%,求工厂的年产量和总成本。
答案:工厂的年产量为2万单位,总成本为500万元。
2. 假设某商品的总收益函数为R(Q)=500Q-0.5Q^2,总成本函数为C(Q)=100+40Q,求当产量为20时,利润最大化的产量和利润。
答案:当产量为20时,利润最大化的产量为10,利润为250。
三、证明题1. 某商品的边际收益递减法则是指随着生产规模的扩大,每增加一单位产量所带来的边际收益递减。
证明边际收益递减法则成立。
证明:当企业的产品产量增加时,企业需要增加投入以提高产量,但边际收益会递减。
假设某企业当前产量为Q,边际收益为MR,增加一单位产量后,产量为Q+1,边际收益为MR+ΔMR。
由于边际收益递减,ΔMR<0。
所以,边际收益递减法则成立。
四、应用题某公司生产A、B两种产品,已知产品A每单位成本为10元,产品B每单位成本为20元。
市场上A、B产品的需求量分别为1000和500,价格分别为15和25。
若公司希望通过调整价格来提高总利润,应如何调整?答案:根据产品的成本和需求量,计算可得产品A的利润为5000元((15-10)*1000),产品B的利润为2500元((25-20)*500)。
经济类应用问题

实践应用例1 某文具店出售每册120元和80元的两种纪念册,两种纪念册售后都有售价30%的利润,但每册120元的销售情况不佳.某人共有1080元钱,欲买一定数量的某一种纪念册,若买每册120元的钱不够,但该店予以优惠,如数付给他满足了他的要求,结果文具店获利和卖出同数量的每册80元的纪念册获得一样多,问此人共买纪念册多少册?分析由于利润=售价-进价,而这些纪念册售价即为1080元,进价为原售价的(1-30%),即120(1-30%),利润与每册80元的获利一样多,即为80×30%,由相等关系可列方程.解设共买纪念册x册,根据题意,得1080-120(1-30%)x=80×30% x解得x=10答:此人共买纪念册10册.例2 某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你帮助设计一下商场的进货方案.解分以下情况计算:①设购进甲种电视机x台,乙种电视机(50-x)台,则1500x+2100(50-x)=90000解得x=25, 50-25=25②设购进甲种电视机x台,丙种电视机(50-x)台,则1500x+2500(50-x)=90000解得x=35, 50-35=15③设购进乙种电视机y台,丙种电视机(50-y)台,则1500y+2500(50-y)=90000解得y=87.5, 50-87.5=-37.5(不合题意,舍去)故商场进货方案为甲种25台,乙种25台;或购进甲种35台,丙种15台.四、交流反思利率问题是有关本金、利率、利息之间关系的一类应用题,基本数量关系是:利息=本金×利率;本息和=本金+利息;利息税=利息×20%.。
二次函数的应用(经济问题)

二次函数的应用————经济问题例题2:某旅行社有客房120间,每间房的日租金为160元,每天都客满,经市场调查发现,如果每间客房的日租金每增加10元时,那么客房每天出租数会减少6间,不考虑其他因素,旅行社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?练习:某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,售价为多少元时,才能在半月内获得最大利润?习题:1、旅行社组团去外地旅游,30人起组团,每人单价800元,旅行社对超过30人的团给予优惠,即旅行团每增加1人,每人的单价就降低10元,你能帮助算一下,当一个旅行团的人数是多少时,旅行社可以获得最大营业额?2、某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,将销售价定为多少,才能时每天所获销售利润最大?最大利润是多少?问题1:试销某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)是销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日的销售利润是多少元?问题2、某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下图所示的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前七个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第7个月公司所获利润是多少万元?。
《-经济数学》应用题及参考答案

《-经济数学》应用题及参考答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《经济数学》一、判断题1. 已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( ) A. 1 B. 2 C. 3 D. 42. 若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A. )2()1()23(f f f <-<-B. )2()23()1(f f f <-<-C. )23()1()2(-<-<f f fD. )1()23()2(-<-<f f f 4. 设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( ) A. 奇函数 B. 偶函数 C. 既是奇函数又是偶函数 D. 非奇非偶函数5. 下列函数中,在区间()0,1上是增函数的是( ) A.x y = B. x y -=3 C. x y 1= D. 42+-=x y二、填空题1.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为. 2.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) =.三、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少此时,每件产品平均成本为多少6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品参考答案一、选择题1. B 奇次项系数为0,20,2m m -==2. D 3(2)(2),212f f =--<-<-4. A ()()()()F x f x f x F x -=--=-5. A 3y x =-在R 上递减,1y x =在(0,)+∞上递减,24y x =-+在(0,)+∞上递减,二、填空题1. 3.62. 45q – 0.25q 2三、简答题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x x x C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='x x C ,得20=x (20-=x 舍去) 因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000) = 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大. 3.解 C (p ) = 50000+100q = 50000+100(2000-4p )=250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R-=-== 利润函数22202.0201001.042001.014q q q q q q C R L --=----=-= 则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)5. 解 因为 C q ()=C q q ()=05369800.q q ++ (q >0) 'C q ()=(.)05369800q q ++'=0598002.-q 令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=05140369800140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q ++ 'C q ()=()2502010q q ++'=-+2501102q令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去), q 1=50是C q ()在其定义域内的唯一驻点. 所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。
最新经济应用数学习题及答案

经济应用数学习题第一章 极限和连续 填空题1. sin limx xx→∞=0 ;2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的; 3当 0x → 时,1cos x - 是比 x 高 阶的无穷小量。
4. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25.2lim(1)x x x →∞-=2-e选择题1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )12.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件计算题1.求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x 2. x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u - 2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。
2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4.设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5.函数 )(x f e y =,则 ="y ( D )(A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f +6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导(C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y y y dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -= 5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经济应用数学习题第一章 极限和连续 填空题1. sin limx xx→∞=0 ;2.函数 x y ln =是由 u y =,v u ln =,x v =复合而成的; 3当 0x → 时,1cos x - 是比 x 高 阶的无穷小量。
4. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a =25. 2lim(1)x x x→∞-=2-e选择题1.02lim5arcsin x xx →= ( C )(A ) 0 (B )不存在 (C )25(D )12.()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的( A )(A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件计算题1. 求极限 20cos 1lim2x x x →-解:20cos 1lim 2x x x →-=414sin lim 0-=-→x x x 2. x x x 10)41(lim -→=41)41(40)41(lim ---→=-e x x x 3.201lim x x e x x →--112lim 0-=-=→x e x x导数和微分 填空题1若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u =2'')]([)()()()(x v x v x u x v x u - 2.设)(x f 在0x 处可导,且A x f =')(0,则hh x f h x f h )3()2(lim000--+→用A 的代数式表示为A 5 ;32)(x e x f =,则xf x f x )1()21(lim--→= 4e - 。
2(12)(1)'()2,lim2'(1)4x x f x f f x xe f ex →--==-=-解选择题1. 设 )(x f 在点 0x 处可导,则下列命题中正确的是 ( A ) (A ) 000()()limx x f x f x x x →-- 存在 (B ) 000()()lim x x f x f x x x →--不存在(C ) 00()()limx x f x f x x →+-存在 (D ) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在0x 处可导,且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( D )(A ) 4 (B ) –4 (C ) 2 (D ) –2 3. 3设 ()y f x = 可导,则 (2)()f x h f x -- = ( B )(A ) ()()f x h o h '+ (B ) 2()()f x h o h '-+ (C ) ()()f x h o h '-+ (D ) 2()()f x h o h '+ 4. 设 (0)0f = ,且 0()limx f x x → 存在,则 0()lim x f x x→ 等于( B )(A )()f x ' (B )(0)f ' (C )(0)f (D )1(0)2f '5. 函数 )(x f e y =,则 ="y ( D )(A ) )(x f e (B ) )(")(x f e x f(C ) 2)()]('[x f e x f (D ) )}(")]('{[2)(x f x f e x f + 6函数 x x x f )1()(-=的导数为( D )(A )x x x )1(- (B ) 1)1(--x x (C )x x x ln (D ) )]1ln(1[)1(-+--x x xx x7函数 xx x f =)( 在 0=x 处( D )(A )连续但不可导 (B ) 连续且可导(C )极限存在但不连续 (D ) 不连续也不可导计算与应用题1. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy 解: )(1)(1)][ln(''''xy y xyxy xy xy y +=== )1('''-=+=⋅y x yy xy y y xy2. 2设 x y e y ln = 确定 y 是 x 的函数,求 dxdy 解:''ln (ln )y y y dy y e y y x xdx x e x ⋅=⋅+=- 3. 3求 13cos x y e x -= 的微分解:'131313(3cos sin )(3cos sin )x x x dy y dx e x e x dx e x x dx ---==--=-+4. 4求 2xe y x= 的微分;解:222'222(21)x x x e x e e x y x x --== 22(21)x e x dy dx x -= 5设sin 10()20ax x e x f x xa x ⎧+-≠⎪=⎨⎪=⎩在(,)-∞+∞上连续,求a 的值。
00sin 1lim ()limax x x x e f x x→→+-= 0lim(cos )axx x ae →=+…………………………2分1a =+………………………………………2分又()f x 在(,)-∞+∞上连续,即0lim ()(0)2x f x f a →==…………2分21a a ∴=+1a ∴=……………………………………………………1分6设11,01(),0sin ,0x x x x f x ax kx x x ⎧-⎛⎫⎪> ⎪⎪+⎝⎭⎪==⎨⎪⎪<⎪⎩(其中0)k ≠ (1) 求()f x 在点0x =的左、右极限;(2) 当a 和k 取何值时,()f x 在点0x =连续。
(1)0sin lim ()lim x x kxf x k x--→→== …………………2分 111210001(1)lim ()lim()lim 1(1)xxx x x xx x e f x e x ex +++--→→→--====++……2分 (2)因为()f x 在0x =处连续,满足0lim ()lim ()(0)x x f x f x f -+→→==…………2分所以2k a e -== ……………………1分导数的应用 填空题1. 设需求函数 (83)Q p P =- ,P 为价格,则需求弹性值2P EQ EP==2-2. 函数 33y x x =- 的单调递减区间是 ),(-11 二.选择题1.函数 sin y x = 在区间 [0, π]上满足罗尔定理的 ξ = ( C )(A ) 0 (B )4π(C ) 2π (D )π 2. 函数 ()y f x = 在点 0x x = 处取得极大值,则必有( D )(A ) 0()0f x '= (B ) 0()0f x ''< (C ) 0()0f x '= 且 0()0f x ''< (D ) 0()0f x '= 或不存在应用题1已知某商品的需求函数为x =125-5p ,成本函数为C (x )=100 + x +x 2,若生产的商品都能全部售出。
求:(1)使利润最大时的产量;(2) 最大利润时商品需求对价格的弹性及商品的售价。
222101251()()()10010051.224100 '()2.424010 "() 2.40,10''23(5,10,23,x xL x R x C x px x x x x x x x L x x x L x x x px x p x xηη=-=-=---=⋅---=-+-=-+=⇒==-<∴=⨯-===解()驻点唯一当时,利润最大。
(2)=当时则=)11.510=-2.某工厂生产某种产品 吨,所需要的成本 ()5200C x x =+ (万元),将其投放市场后,所得到的总收入为 2()100.01R x x x =- (万元)。
问该产品生产多少吨时,所获得利润最大, 最大利润是多少? 解:()()()L x R x C x =-=20.015200x x -+-,'()0.025L x x =-+令'()0L x = 得 250x ="()0.020L x =-< "(250)0L ∴<∴该产品生产250吨时所获利润最大,最大利润是 (250)425L =(万元)3.已知某产品的需求函数为105QP =-,成本函数为 202C Q =+ ,求产量为多少时利润最大?并验证是否符合最大利润原则。
解:()()()L Q R Q C Q =-2()102025Q P Q C Q Q Q =⋅-=--- '2()85L Q Q =-+,令 '()0L Q = 得 20Q =又 "2()05L Q =-< ,所以符合最大利润原则。
4某商店以单价100元购进一批服装,假设该服装的需求函数为400Q p =-(p 为销售价格)。
(12分)(1) 求收入函数()R Q ,利润函数()L Q ;(2) 求边际收入函数及边际利润函数;(3) 销售价格定为多少时,才能获得最大利润,并求出最大利润。
解:(1) 400p Q =-,()(400)R Q Qp Q Q ==-,………………2分 ()100C Q Q =,2()()()(400)100300L Q R Q C Q Q Q Q Q Q =-=--=-…………2分(2) 边际收入函数为'()4002R Q Q =- (1)分边际利润函数为'()3002L Q Q =- ………………………1分 (3) 令'()30020L Q Q =-=,得150Q =件。
…………………1分因''(150)20L =-<,所以当150Q =时,函数取得极大值, (1)分因为是唯一的极值点,所以就是最大值点,………………………1分 即400400150250p Q =-=-=元时,可获得最大利润。
……………1分最大利润为2(150)30022500L Q Q =-=元。
…………………2分第五章不定积分填空题1. 设 sin x e x + 是 )(x f 的一个原函数,则 ()f x ' =x e x sin -;2.=⎰dx xx ln 1ln ln x C+3. 若2()f x dx x C =+⎰ ,则 2(1)xf x dx -=⎰422x x c-+;选择题1. 设 )()(x G x F '=',则 ( B )(A ) )()(x G x F = 为常数 (B ) )()(x G x F -为常数(C ) 0)()(=-x G x F (D )dx x G dx ddx x F dx d )()(⎰⎰= 2. 已知函数 ()f x 的导数是 sin x ,则 ()f x 的所有原函数是( B ) (A )cos x (B )cos x C -+ (C )sin x (D )sin x C + 3.若 22()x f x dx x e C =+⎰ ,则 ()f x = ( D )(A )22x xe (B )222x x e (C )2x xe (D )22(1)x xe x + 三计算1.求不定积分 3x xe dx ⎰原式=333111()333x x x xd e xe e dx =-=⎰⎰33111(3)333x x xe e d x -⋅⎰=331139x x xe e C -+2. 2. 211x dx x -+⎰解:原式2222111(1)1121x dx dx d x x x x =-=++++⎰⎰⎰211dx x -+⎰arctan x C =+3. 求解:2ln(1)t x t ==-令则原式=2211122211(1)(1)tdt dt dt t t t t t ⋅⋅==---+⎰⎰⎰11()11dt t t =--+⎰ln 1ln 1t t C =--++1ln1t C C t -=+=++4. 求 ln x xdx ⎰解:原式22222111111ln ()ln ln 22224xd x x x x dx x x x C x ==-⋅=-+⎰⎰定积分填空题1. 1321sin x xdx -⎰ =2.30(sin )xt t dt '=⎰3sin x x3. dx x f dx dba)(⎰ =4设 )(x f 在 [,]a b 上连续,则⎰⎰-babadt t f dx x f )()( =521(ln )edx x x +∞=⎰16若1cos ()t xx e tdt Φ=⋅⎰,则'()x Φ= cos x e x -⋅7若⎰-=13)(x x dt t f ,则=)7(f112。