海南海口市龙华区八中 2017年九年级数学中考模拟试卷 (含答案)

合集下载

海南省海口市2016-2017学年海口九中八年级上学期期中数学模拟试卷及参考答案

海南省海口市2016-2017学年海口九中八年级上学期期中数学模拟试卷及参考答案

海南省海口市2016-2017学年海口九中八年级上学期期中数学模拟试卷一、选择题1. 的平方根是( )A . 9B . ±9C . ±3D . 32.下列说法中,正确的是( )A . ﹣4的算术平方根是2B . ﹣ 是2的一个平方根C . (﹣1)的立方根是﹣ 1D . =±53. 下列实数中,无理数是( )A .B . 0C .D . ﹣3.144. 与数轴上的点一一对应的数是( )A . 分数B . 有理数C . 无理数D . 实数5. 一个正方形的面积为21,估计该正方形边长应在( )A . 2到3之间B . 3到4之间C . 4到5之间D . 5到6之间6. 若2x•( )=﹣6x y ,则括号内应填的代数式是( )A . 3xyB . ﹣3xyC . ﹣3x yD . ﹣3y7. 下列算式计算结果为m ﹣m ﹣6的是( )A . (m+2)(m ﹣3)B . (m ﹣2)(m+3)C . (m ﹣2)(m ﹣3)D . (m+2)(m+3)8. 若x ﹣kx+1恰好是另一个整式的平方,则常数k 的值为( )A . 1B . 2C . ﹣2D . ±29. 下列两个多项式相乘,不能运用公式(a+b )(a ﹣b )=a ﹣b 计算的是( )A . (﹣m+n )(m ﹣n )B . (﹣m+n )(m+n )C . (﹣m ﹣n )(﹣m+n )D . (m ﹣n )(n+m )10. 下列因式分解正确的是( )A . x ﹣y =(x ﹣y )B . ﹣a+a =﹣a (1﹣a )C . 4x ﹣4x+1=4x (x ﹣1)+1D . a ﹣4b =(a+4b )(a ﹣4b )11. 如图,从边长为a cm 的正方形纸片中剪去一个边长为(a ﹣3)cm 的正方形(a >3),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的面积为( )A . 6a cmB . (6a+9)cmC . (6a ﹣9)cmD . (a ﹣6a+9)cm 二、填空题12. =________.13. 如图,点B 、D 、C 、F在同一条直线上,且BC=FD ,AB=EF 、请你只添加一个条件(不再加辅助线),使△ABC ≌△EFD ,你添加的条件是________14. 把命题“全等三角形的对应边相等”改写成“如果…,那么…”的形式.________.15. 填上适当的整式,使等式成立:(x ﹣y )﹣________ =(x+y ) .三、解答题23222222222222222222216. 如图,某玩具厂要制作一批体积为100 000cm 的长方体包装盒,其高为40cm .按设计需要,底面应做成正方形.求底面边长应是多少?17. 计算(1) ﹣2x (3x ﹣xy ﹣1);(2) (﹣3a )﹣(3a ﹣1)(3a+2)(3) ﹣2x (2x+3y )﹣(2x ﹣y )(4) 997×1003.18. 把下列多项式分解因式:(1) 3x ﹣27xy (2) 16a ﹣4b (4a ﹣b )19. 先化简,再求值:(2a+b )(﹣b+2a )﹣(2a ﹣3b )﹣5b (3a ﹣2b ),其中a=﹣ ,b= .20. 如图,已知△ABC 为等边三角形,D 、E 分别为BC 、AC 边上的两动点(与点A 、B 、C 不重合),且总使CD=AE ,AD与BE 相交于点F .(1) 求证:AD=BE ;(2) 求∠BFD 的度数.21. 阅读理解:(1)计算后填空:①(x+1)(x+2)=;②(x+3)(x ﹣1)=;(2)归纳、猜想后填空:(x+a )(x+b )=x +()x+();(3)运用(2)的猜想结论,直接写出计算结果:(x ﹣3)(x+m )=;(4)根据你的理解,把下列多项式因式分解(两小题中任选1小题作答即可):①x ﹣5x+6=;②x ﹣3x﹣10=.参考答案1.2.32222222223.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.。

中考模拟】2017年海南省中考数学仿真试卷(一)含答案解析

中考模拟】2017年海南省中考数学仿真试卷(一)含答案解析

中考模拟】2017年海南省中考数学仿真试卷(一)含答案解析2017年海南省中考数学仿真试卷(一)一、选择题(共14小题,每小题3分,满分42分)1.(3分)|-3|的值是()。

A.3B.-3C.0D.无法确定2.(3分)当x=1时,代数式4-3x的值是()。

A.1B.2C.3D.43.(3分)下列计算正确的是()。

A.(2a)²=4a²B.a⁶÷a³=a³C.a³•a²=a⁵D.3a²+2a³=5a⁶4.(3分)为了方便市民出行,提倡低碳交通,近几年某市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达辆,用科学记数法表示是()。

A.0.75×10⁵B.7.5×10⁴C.7.5×10⁵D.75×10³5.(3分)一组数据:2,5,4,3,2的中位数是()。

A.4B.3.2C.3D.26.(3分)化简。

A.1B.-1C.8D.-87.(3分)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()。

A.B.C.D.8.(3分)若反比例函数y=k/x的图象经过点(2,-1),则这个函数的图象一定经过点()。

A.(-2,-1)B.(-1,2)C.(-2,-1/2)D.(1/2,-2)9.(3分)已知边长为a的正方形的面积为8,则下列说法中,错误的是()。

A.a是无理数B.a是方程x²-8=0的解C.a是8的算术平方根D.3<a<410.(3分)如图,CA⊥BE于A,AD∥BC,若∠1=54°,则∠C等于()。

A.30°B.36°C.45°D.54°11.(3分)在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,AB=4,则D到BC的距离是()。

A.3B.4C.5D.612.(3分)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()。

海口市中考数学模拟试卷

海口市中考数学模拟试卷

海口市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·沙雅月考) 若一个数的算术平方根等于它的相反数,则这个数是()A . 0B . 1C . 0或1D . 0或±12. (2分) (2017九下·萧山月考) 三本相同的书本叠成如图所示的几何体,它的主视图是()A .B .C .D .3. (2分)用科学记数法表示31410000()A . 3.141×107B . 3.14×107C . 3.141×108D . 3.141×1064. (2分)(2016·广元) 下列运算正确的是()A . x2•x6=x12B . (﹣6x6)÷(﹣2x2)=3x3C . 2a﹣3a=﹣aD . (x﹣2)2=x2﹣45. (2分)(2016·衡阳) 要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的()A . 平均数B . 中位数C . 众数D . 方差6. (2分) (2016九上·衢江月考) 某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A . 8折B . 8.5折C . 7折D . 6折7. (2分)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A . 30°B . 35°C . 40°D . 45°8. (2分)小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是()A .B .C .D .9. (2分)如果a>b,c>0,那么下列不等式不成立的是()A . a+c>b+cB . c﹣a>c﹣bC . ac>bcD . >10. (2分)(2017·肥城模拟) 如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).下列结论:①ac<0;②4a﹣2b+c>0;③抛物线与x轴的另一个交点是(4,0);④点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2 .其中正确的个数为()A . 1B . 2C . 3D . 411. (2分) (2020八下·正安月考) 给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2 ,则∠C=90°;③命题“菱形的四条边都相等”的逆命题是四条边相等的四边形是菱形.④△ABC中,若 a:b:c=1:2:,则这个三角形是直角三角形.其中,正确命题的个数为()A . 1个B . 2个C . 3个D . 4个12. (2分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A . 110°B . 80°C . 40°D . 30°二、填空题 (共4题;共4分)13. (1分) (2020八上·乌海期末) 分解因式:9m3-4m=________。

海口市九年级数学中考模拟试卷(一)

海口市九年级数学中考模拟试卷(一)

海口市九年级数学中考模拟试卷(一)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列计算正确的是()A . =±5B . =2C . 3-=3D . ×=72. (2分)在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.000 0963贝克/立方米.数据“0.000 0963”用科学记数法可表示为,这里n的值为()A . -3B . -4C . -5D . -63. (2分)(2018·吴中模拟) 下列运算正确的是()A . ﹣a•a3=a3B . ﹣(a2)2=a4C . x﹣ x=D . (﹣2)( +2)=﹣14. (2分)某校举行才艺比赛,三个年级均有男、女各一名选手进入决赛,决赛的规则是男、女各一名选手组成搭档展示才艺,则恰好同一年级的男、女选手组成搭档的概率是()A .B .C .D .5. (2分) (2017九上·天长期末) 如图所示,△ABC中,∠BAC=32°,将△ABC绕点A按顺时针方向旋转55°,对应得到△AB′C′,则∠B′AC的度数为()A . 22°B . 23°C . 24°D . 25°6. (2分)图所给的三视图表示的几何体是()A . 长方体B . 圆柱C . 圆锥D . 圆台7. (2分) (2019八上·吴江期末) 如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于的长为半径画弧,两弧在第二象限交于点P,若点P 的坐标为,则a与b的数量关系为A .B .C .D .8. (2分)(2018·绥化) 某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同若设乙工人每小时搬运x件电子产品,可列方程为A .B .C .D .9. (2分) (2017九上·鄞州月考) 如图,A、B、C是⊙O上的三点,已知,则()A . 15°B .C .D .10. (2分)(2017·信阳模拟) 如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2018·房山模拟) 如果二次根式有意义,那么 x 的取值范围是________.12. (1分) (2016九上·怀柔期末) 如图,tan∠ABC=________.13. (1分)(2018·内江) 如图,直线与两坐标轴分别交于、两点,将线段分成等份,分点分别为,,,… ,过每个分点作轴的垂线分别交直线于点,,,… ,用,,,…,分别表示,,…,的面积,则 ________.14. (1分)关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是________(填序号).15. (1分)(2019·汇川模拟) 如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y= (x >0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为________.16. (1分)(2017·泰兴模拟) 如图,边长为4的正方形ABCD中,点E、F分别在线段AB、CD上,AE=CF=1,O为EF的中点,动点G、H分别在线段AD、BC上,EF与GH的交点P在O、F之间(与O、F不重合),且∠GPE=45°.设AG=m,则m的取值范围为________.三、解答题 (共8题;共77分)17. (5分)先化简,再求值:÷(﹣x),其中.18. (7分)为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛,赛后组委会整理参赛同学的成绩,并制作了如图不完整的频数分布表和频数分布直方图分数段(分手为x分)频数百分比60≤x<70820%70≤x<80a30%80≤x≤9016b%90≤x<100410%请根据图表提供的信息,解答下列问题:(1)表中的a= ,b= ;请补全频数分布直方图;(2)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应扇形的圆心角的度数是________ .(3)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为________ .19. (10分) (2019八上·江宁月考) 某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(2)已知洗衣机的排水速度为每分钟19升.①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.20. (10分) (2019九上·南关期末) 现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个矩形养鸡场ABCD(篱笆只围AB、BC、CD三边),其示意图如图所示.(1)若矩形养鸡场的面积为92平方米,求所用的墙长AD.(结果精确到0.1米)(参考数据:=1.41,=1.73,=2.24)(2)求此矩形养鸡场的最大面积.21. (10分)(2018·枣庄) 如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.22. (10分) (2016九上·岳池期末) 如图,将圆心角都是90°的扇形OAB和扇形OCD叠放在一起,连接AC、BD.(1)将△AOC经过怎样的图形变换可以得到△BOD?(2)若的长为πcm,OD=3cm,求图中阴影部分的面积是多少?23. (15分)(2017·东城模拟) 二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.24. (10分)(2018·遵义模拟) 安装在屋顶的太阳能热水器的横截面示意图如图所示.已知安装集热管的支架AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,支架BF的长度为0.9m,且与屋面AB垂直,支架AE的长度为1.9m,且与铅垂线OD的夹角为35°,支架的支撑点A、B在屋面上的距离为 m.(1)求⊙O的半径;(2)求屋面AB与水平线AD的夹角.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共77分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

【中考模拟2017】海南海口市 2017年九年级数学 中考模拟测试卷 五(含答案)

【中考模拟2017】海南海口市 2017年九年级数学 中考模拟测试卷 五(含答案)

2017年九年级数学中考模拟试卷一、选择题:1.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和C.﹣2和﹣D.0和02.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2bB.3a+1=2b+6C.3ac=2bc+5D.a=3.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A.的 B.中 C.国 D.梦4.某小组7位学生的中考体育测试成绩(满分60分)依次为57,60,59,57,60,58,60,则这组数据的众数与中位数分别是()A.60,59 B.60,57 C.59,60 D.60,585.若3×9m×27m=321,则m的值为()A.3B.4C.5D.66.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字7.下列等式成立的是()8.下列运算正确的是( )A. B. C. D.9.一个圆柱的侧面展开图是一个面积为10的矩形,这个圆柱的高为L与这个圆柱的底面半径r之间的函数关系为()A.正比例函数B.反比例函数C.一次函数D.二次函数10.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为( )A.35° B.40° C.50° D.65°11.下列事件中,不是必然事件的是()A.对顶角相等B.内错角相等C.三角形内角和等于180°D.等腰梯形是轴对称图形12.有四个命题,其中正确的命题是( )①经过三点一定可以作一个圆;②任意一个三角形有且只有一外接圆;③三角形的外心到三角形的三个顶点的距离相等;④在圆中,平分弦的直径一定垂直于这条弦A.①②③④B.①②③C.②③④D.②③13.如图,已知a∥b,三角形直角顶点在直线a上,已知∠1=25°18/27//,则∠2度数是()A.25°18/27//B.640 41/33//C.74°4133//D.64°41/43//14.小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.4二、填空题:15.分解因式:a3﹣25a= .16.某玩具店今年3月份售出某种玩具2500个,5月份售出该玩具3600个,每月平均增长率为.17.半径为6cm的圆中,垂直平分半径OA的弦长为 cm.18.如图,在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF= .三、计算题:19.计算:﹣0.52+20.解不等式组:,并把解集在数轴上表示出来.四、解答题:21.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。

【中考模拟2017】海南省海口市 2017年九年级数学中考模拟试卷 四 (含答案)

【中考模拟2017】海南省海口市 2017年九年级数学中考模拟试卷 四 (含答案)

2017年九年级数学中考模拟试卷一、选择题:1.2的相反数是()A. B. C.﹣2 D.22.三个连续正整数的和不大于15,则符合条件的正整数有()A. 2组B.4组C.8组D.12组3.下列几何体中,截面图不可能是三角形的有()①圆锥;②圆柱;③长方体;④球.A.1个B.2个C.3个D.4个4.某校进行书法比赛,有39名同学参加预赛,只能有19名同学参加决赛,他们预赛的成绩各不相同,其中一名同学想知道自己能否进入决赛,不仅要了解自己的预赛成绩,还要了解这39名同学预赛成绩的()A.平均数B.中位数C.方差D.众数5.下列运算正确的是()A.2a﹣3a=aB.3x2•4xy3=12x2y3C.6x3y÷3x2=2xyD.(2x3)4=8x126.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为38万公里,将数38万用科学计数法表示,其结果()A.3.8×104B.38×104C.3.8×105D.3.8×1067.如果把分式中的a和b都扩大了2倍,那么分式的值()A.扩大2倍 B.不变 C.缩小2倍 D.缩小4倍8.一个正方形的面积为50平方厘米,则正方形的边长约为( )A.5厘米B.6厘米C.7厘米D.8厘米9.若点(x,y1),(x2,y2),(x3,y3)都是反比例函数y=-x-1图象上的点,并且y1<0<y2<y3,则下列各式1中正确的是( )A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x110.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是( )A.34°B.36°C.38°D.40°11.下列事件中,是随机事件的是()A.度量四边形的内角和为180°B.通常加热到100℃,水沸腾C.袋中有2个黄球,3个绿球,共五个球,随机摸出一个球是红球D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上12.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°13.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75° B.55° C.40° D.35°14.如图,已知□ABCD中,AE⊥BC于定E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA/E/,连接DA/.若∠ADC=600,∠ADA/=500,则∠DA/E/的大小为()A.1300B.1500C.1600D.1700二、填空题:15.分解因式:2b2-8b+8= .16.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为.17.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm 时,⊙M与直线OA的位置关系是.18.如图,在矩形ABCD中,AB=1,AD=2,将AD绕点A顺时针...旋转,当点D落在BC上点D′时,则∠DAD′=__________度三、计算题:19.计算:4+(-2)2×2-(-36)÷4.20.解不等式组:四、解答题:21.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?22.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.23.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)五、综合题:24.爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC 这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当tan∠PAB=1,c=4时,a= ,b= ;如图2,当∠PAB=30°,c=2时,a= ,b= ;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.25.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC.抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式.(2)若点P是第二象限内抛物线上的动点,其横坐标为t.①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时点P的坐标.②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由.参考答案1.C2.B3.B4.B5.C6.C7.C8.C9.D10.C11.D12.B13.C14.C15.答案为:2(b-2)2;16.【解答】解:设金色纸边的宽为xcm,那么挂图的长和宽应该为(50+2x)和(30+2x),根据题意可得出方程为:(50+2x)(30+2x)=1800,∴x2+40x﹣75=0.17.【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=OM=,∴⊙M与直线OA的位置关系是相离.故答案为相离.18.答案为:30°19.2120.略21.解:设应分配x人生产甲种零件,则生产乙种零件(62-x)人,由题意得:2×12x=3×23(62-x)解得x=46,62-x=62-46=16因此应分配46人生产甲种零件,16人生产乙种零件.其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.23.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.8米.24.略25.(1)y=-x2-2x+3;(2)①P点的坐标为:(﹣1,4)或(﹣2,3)。

【精选3份合集】2017-2018学年海口市中考数学联合模拟试题及答案

【精选3份合集】2017-2018学年海口市中考数学联合模拟试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC 中,AC 的垂直平分线分别交AC 、BC 于E ,D 两点,EC =4,△ABC 的周长为23,则△ABD 的周长为( )A .13B .15C .17D .19【答案】B 【解析】∵DE 垂直平分AC ,∴AD=CD ,AC=2EC=8,∵C △ABC =AC+BC+AB=23,∴AB+BC=23-8=15,∴C △ABD =AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A .零上3℃B .零下3℃C .零上7℃D .零下7℃ 【答案】B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义3.函数1y x =-x 的取值范围是( ) A .1x >B .1x <C .1x ≤D .1x ≥【答案】D【解析】根据二次根式的意义,被开方数是非负数.【详解】根据题意得10x -≥,解得1x ≥.故选D .【点睛】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.5.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8B.7×10﹣8C.7×10﹣9D.7×10﹣10【答案】C【解析】本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a×10n(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×910﹣,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.6.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【答案】B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.7.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.480480420x x-=-B.480480204x x-=+C.480480420x x-=+D.480480204x x-=-【答案】C【解析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【点睛】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.8.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC 和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.9.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.12B.13C.310D.15【答案】D【解析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【详解】根据题意:从袋中任意摸出一个球,是白球的概率为=210=15.故答案为D【点睛】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P (A )=m n . 10.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .D .(a+2)(a ﹣2)=a 2+4【答案】C 【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误;C 、﹣C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.二、填空题(本题包括8个小题)11有意义,则x 的取值范围是_____. 【答案】x≥﹣2且x≠1.20x +≥,∴2x ≥-,又∵x 在分母上,∴0x ≠.故答案为2x ≥-且0x ≠.12.-3的倒数是___________ 【答案】13-【解析】乘积为1的两数互为相反数,即a 的倒数即为1a ,符号一致 【详解】∵-3的倒数是13-∴答案是13-13.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.【答案】(-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12,B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=2)4,B4在y轴负半轴;∴OB5=2)5,B5所在的象限为第三象限;∴OB6=2)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).14.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.【答案】72°【解析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键15.若分式的值为零,则x的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.16.观察下列各等式:231-+=--++=56784---+++=1011121314159----++++=171819202122232416……根据以上规律可知第11行左起第一个数是__.【答案】-1.【解析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.17.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.【答案】1.【解析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.18.计算:|-3|-1=__.【答案】2【解析】根据有理数的加减混合运算法则计算.【详解】解:|﹣3|﹣1=3-1=2.故答案为2.【点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.三、解答题(本题包括8个小题)19.孔明同学对本校学生会组织的“为贫困山区献爱心”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:10:8,又知此次调查中捐款30元的学生一共16人.孔明同学调查的这组学生共有_______人;这组数据的众数是_____元,中位数是_____元;若该校有2000名学生,都进行了捐款,估计全校学生共捐款多少元?【答案】(1)60;(2)20,20;(3)38000【解析】(1)利用从左到右各长方形高度之比为3:4:5:10:8,可设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则根据题意得8x=1,解得x=2,然后计算3x+4x+5x++10x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用2000乘以样本平均数即可.【详解】(1)设捐5元、10元、15元、20元和30元的人数分别为3x、4x、5x、10x、8x,则8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人数分别为6,8,10,20,1.∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第四组内,∴中位数为20元;(3)5610815102020301660⨯+⨯+⨯+⨯+⨯⨯2000=38000(元),∴估算全校学生共捐款38000元. 【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.20.列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?【答案】从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】设年平均增长率为x ,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x 1=0.5=50%,x 2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.21.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①② 【答案】原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式①,得x >﹣4,解不等式②,得x≤1,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤1.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.22.如图,在等边三角形ABC 中,点D ,E 分别在BC, AB 上,且∠ADE=60°.求证:△ADC~△DEB .【答案】见解析【解析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB. 【详解】证明: ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ADC DEB【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.23.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.【答案】(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为83或2或8﹣2.【解析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD 是正方形,∴AB =CB =CD =DA =4,∠D =∠DAB =90°∠DAC =∠BAC =43°,∴AC =224+4=42,∵∠DAC =∠AHC+∠ACH =43°,∠ACH+∠ACG =43°,∴∠AHC =∠ACG .故答案为=.(2)结论:AC 2=AG•AH .理由:∵∠AHC =∠ACG ,∠CAH =∠CAG =133°,∴△AHC ∽△ACG ,∴AH AC AC AG=, ∴AC 2=AG•AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH•AG =12AC 2=12×(42)2=1. ∴△AGH 的面积为1.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴12BC BE AH AE ==, ∴AE =23AB =83. 如图2中,当CH =HG 时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH=1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,设BM=BE=m,则CM=EM2m,∴m+2m=4,∴m=4(2﹣1),∴AE=4﹣4(2﹣1)=8﹣42,综上所述,满足条件的m的值为83或2或8﹣2.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.24.观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D 落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=2,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.【答案】(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3)1 4 .【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得MD AMCF DC,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN 为平行四边形,∵∠AMC=90°,∴四边形MCEN 为矩形,∴∠DCF=90°,∴Rt △AMD ∽Rt △DCF , ∴MD AM CF DC=, 设DC=x ,∵∠ACB=45°,,∴AM=CM=1,MD=1-x , ∴11x CF x-=, ∴CF=-x 2+x=-(x-12)2+14, ∴当x=12时有最大值,CF 最大值为14. 点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质. 25.某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A ,B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A 型号客车x 辆,租车总费用为y 元.求y 与x 的函数解析式,请直接写出x 的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?【答案】 (1) 21≤x≤62且x 为整数;(2)共有25种租车方案,当租用A 型号客车21辆,B 型号客车41辆时,租金最少,为19460元.【解析】(1)根据租车总费用=A 、B 两种车的费用之和,列出函数关系式,再根据AB 两种车至少要能坐1441人即可得取x 的取值范围;(2)由总费用不超过21940元可得关于x 的不等式,解不等式后再利用函数的性质即可解决问题.【详解】(1)由题意得y =380x +280(62-x)=100x +17360,∵30x +20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x 为整数;(2)由题意得100x +17360≤21940,解得x≤45.8,∴21≤x≤45且x 为整数,∴共有25种租车方案,∵k =100>0,∴y 随x 的增大而增大,当x =21时,y 有最小值, y 最小=100×21+17360=19460,故共有25种租车方案,当租用A 型号客车21辆,B 型号客车41辆时,租金最少,为19460元.【点睛】本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.26.先化简代数式:222111a a a a a +⎛⎫-÷⎪---⎝⎭,再代入一个你喜欢的数求值. 【答案】13【解析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算. 【详解】解:原式2211(1)(1)a a a a a a ⎡⎤+-=-⋅⎢⎥-+-⎣⎦ 2(1)21(1)(1)a a a a a a+---=⋅+- 11a =+. 使原分式有意义的a 值可取2, 当2a =时,原式11213==+. 【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺【答案】B 【解析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x 尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺, ∴ 1.5150.5x , 解得x=45(尺),故选B .【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.2.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )A .8B .4C .12D .16【答案】A 【解析】∵AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,∴DA=DB ,EA=EC ,则△ADE 的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A .3.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3【答案】B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0), 所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061444.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.10033100x yx y+=⎧⎨+=⎩B.1003100x yx y+=⎧⎨+=⎩C.100131003x yx y+=⎧⎪⎨+=⎪⎩D.1003100x yx y+=⎧⎨+=⎩【答案】C【解析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【详解】解:设大马有x匹,小马有y匹,由题意得:100131003x yx y+=⎧⎪⎨+=⎪⎩,故选C.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.5.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C∆相似的是()A.B.C .D .【答案】B【解析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型. 6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm【答案】D 【解析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为x ,宽为y ,根据题意得:x+2y=a ,则图②中两块阴影部分周长和是:2a+2(b-2y )+2(b-x )=2a+4b-4y-2x=2a+4b-2(x+2y )=2a+4b-2a=4b .故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.7.在如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )。

海口市中考数学模拟考试试卷

海口市中考数学模拟考试试卷

海口市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·海口模拟) |2﹣5|=()A . ﹣7B . 7C . ﹣3D . 32. (2分) (2015九上·宜春期末) 两个三次多项式的和的次数是()A . 六次B . 三次C . 不低于三次D . 不高于三次3. (2分) (2015七上·宜昌期中) 在有理数(﹣1)2、、﹣|﹣2|、(﹣2)3中负数有()个.A . 4B . 3C . 2D . 14. (2分)下列说法错误的是()A . 长方体和正方体都是四棱柱B . 棱柱的侧面都是四边形C . 柱体的上下底面形状相同D . 圆柱只有底面为圆的两个面5. (2分)化简的结果是()A . x+2B . x﹣1C . ﹣xD . x6. (2分)与﹣2ab是同类项的为()A . -2acC . abD . ﹣2abc7. (2分)下列说法正确的是().A . 一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B . 为了解全国中学生的心理健康情况,应该采用普查的方式C . 一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D . 若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定8. (2分)如图,在Rt△ABC中,∠C=90°,CDEF为内接正方形,若AE=2cm,BE=1cm,则图中阴影部分的面积为()λA . 1cm2B . cm2C . cm2D . 2cm29. (2分)若点A(x1 , y1),B(x2 , y2),和C(x3 , y3),分别在反比例函数的图象上,且x1<x2<0<x3 ,则下列判断中正确的是()A . y1<y2<y3B . y2<y1<y3C . y3<y2<y1D . y2<y3<y110. (2分)如图是某座天桥的设计图,设计数据如图所示,桥拱是圆弧形,则桥拱的半径为()B . 15mC . 20 mD . 26m二、填空题: (共4题;共4分)11. (1分)若a为最大的负整数,b为绝对值最小的数,则ab的值为________.12. (1分) (2017八下·瑶海期中) 一元二次方程x(x﹣1)=x的解是________.13. (1分)(2016·齐齐哈尔) 一个侧面积为16 πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为________cm.14. (1分)(2020·上海模拟) 如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=,则CD=________.三、计算题: (共2题;共25分)15. (5分)计算:|- |+ sin 45°+tan 60°- - +(π-3)0.16. (20分) (2019九上·平川期中) 解方程(1) x2+1=3x(2)(x﹣2)(x﹣3)=12(3)(2x﹣3)2+x(2x﹣3)=0(因式分解法)(4) 2x2﹣4x﹣1=0(用配方法).四、作图题: (共1题;共10分)17. (10分) (2017八下·江都期中) 方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)试作出△ABC以C为旋转中心,沿顺时针方向旋转90°后的图形△A1B1C;(2)以原点O为对称中心,再画出与△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.五、解答题: (共4题;共40分)18. (15分) (2019九上·潮南期末) 为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.甲乙丙单价(元/棵)141628合理用地(m2/棵)0.410.419. (5分)(2017·聊城) 耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)20. (10分)(2017·贵阳) 如图,直线y=2x+6与反比例函数y= (k>0)的图象交于点A(1,m),与x 轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?21. (10分)(2016·凉山) 为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.六、综合题: (共2题;共21分)22. (15分)(2017·深圳模拟) 平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.23. (6分)(2017·抚州模拟) 如图,AB是半圆O的直径,点P(不与点A,B重合)为半圆上一点.将图形沿BP折叠,分别得到点A,O的对称点A′,O′.设∠ABP=α.(1)当α=10°时,∠ABA′________°;(2)当点O′落在上时,求出α的度数.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题: (共4题;共4分)11-1、12-1、13-1、14-1、三、计算题: (共2题;共25分)15-1、16-1、16-2、16-3、16-4、四、作图题: (共1题;共10分) 17-1、17-2、五、解答题: (共4题;共40分) 18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、六、综合题: (共2题;共21分) 22-1、22-2、22-3、23-1、23-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年九年级数学中考模拟试卷
一、选择题:
1.实数a,b,c,d在数轴上的对应点的位置如图所示,则这四个数中,相反数是正数的为()
A.a
B.b
C.c
D.d
2.下列方程的变形中,正确的是()
A.方程 3x﹣2=2x+1,移项,得 3x﹣2x=﹣1+2
B.方程 3﹣x=2﹣5(x﹣1),去括号,得 3﹣x=2﹣5x﹣1
C.方程x= ,未知数系数化为 1,得 x=1
D.方程﹣=1 化成 5(x﹣1)﹣2x=10
3.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面是的字是()
A.丽
B.连
C.云
D.港
4.某校男子足球队的年龄分布情况如下表:
A.15,15 B.15,14 C.16,15 D.14,15
5.下列计算正确的是()
A.x3•x2=2x6
B.x4•x2=x8
C.(﹣x2)3=﹣x6
D.(x3)2=﹣x5
6.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为( )
A.0.149×106
B.1.49×107
C.1.49×108
D.14.9×107
7.下列算式中,你认为正确的是()
8.下列运算中,错误的个数为 ( )
A.1
B.2
C.3
D.4
9.如图,直线l和双曲线y=kx-1(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作
垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则() A.S1<S2<S3 B.S1>S2>S3 C.S1=S2>S3 D.S1=S2<S3
10.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕
点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()
A.4,30°
B.2,60°
C.1,30°
D.3,60°
11.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()
A. B. C. D.
12.如图,AD是⊙O的切线,A为切点.点C在⊙O上,连接BC并延长交AD于点D,若∠AOC=70°,则∠ADB=()
A.35°
B.45°
C.55°
D.65°
小是()
A.68°
B.70°
C.71°
D.72°
14.如图,己知△ABC中,∠C=90°,∠A=30°,AC=.动点D在边AC上,以BC为边作等边△BDE(点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E移动的路线长为()
A. B. C. D.
二、填空题:
15.分解因式:x2-3x-4= .
16.据调查,2015年4月某市的房价均价为7600元/m2,2017年同期将达到9800元/m2.假设这两年该市房价的平均增长率为x,根据题意,可列方程为.
17.如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.
18.把两张宽为2cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.
三、计算题:
19.计算:
20.解不等式组:,并将它的解集在数轴上表示出来.
四、解答题:
21.已知一个长方形的周长为60cm
(1)若长比宽多6cm,求这个长方形的宽?(2)若长与宽的比是2:1,求这个长方形的长?
22.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,
3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).
(1)用树状图或列表法列出所有可能出现的结果;
(2)求两个数字的积为奇数的概率.
23.如图,为了测量某建筑物BC的高度,小明先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后
在水平地而上向建筑物前进了50m到达D处,此时遇到一斜坡,坡度i=1:,沿着斜坡前进20米到达E处测得建筑物顶部的仰角是45°,(坡度i=1:是指坡面的铅直高度FE与水平宽度DE的比).请你计算出该建筑物BC的高度.(取=1.732,结果精确到0.1m).
五、综合题:
24.四边形ABCD是正方形,点E在边BC上(不与端点B、C重合),点F在对角线AC上,且EF⊥AC,连接AE,
点G是AE的中点,连接DF、FG
(1)若AB=7,BE=,求FG的长;
(2)求证:DF=FG;
(3)将图1中的△CEF绕点C按顺时针旋转,使边CF的顶点F恰好在正方形ABCD的边BC上(如图2),连接AE、点G仍是AE的中点,猜想BF与FG之间的数量关系,并证明你的猜想.
25.在平面直角坐标系中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.
(1)求证:该二次函数的图象与x轴必有两个交点;
(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;
(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.
参考答案
1.A
2.D
3.D
4.A
5.C
6.C
7.D
8.D
9.D
10.B
11.C
12.C
13.D
14.A
15.答案为:(x-4)(x+1);(a+1)(a-2).
16.答案为:7600(1+x)2=9800.
17.答案为:.
18.答案为:菱形,4;
19.解:原式=5.25.
20.答案为:2.5<x≤4.
21.(1)设宽为xcm,2x+2(x+6)=60,4x=48,x=12,所以这个长方形的宽为12cm;
(2)设宽为xcm,2x+4x=60,x=10,所以这个长方形的长为20cm;
则共有12种等可能的结果;
(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为: =.
23.解:过E作EF⊥AB于F,EG⊥BC与G,
∵CB⊥AB,∴四边形EFBG是矩形,∴EG=FB,EF=BG,
设CG=x米,∵∠CEG=45°,∴FB=EG=CG=x,∵DE的坡度i=1:,∴∠EDF=30°,
∵DE=20,∴DF=20cos30°=10,BG=EF=20sin30°=10,∴AB=50+10+x,BC=x+10,在Rt△ABC中,∵∠A=30°,∴BC=AB•tan∠A,即x+10=(50+10+x),
解得:x≈18.3,∴BC=28.3米,答:建筑物BC的高度是28.3米.
24.
25.解:(1)令mx2﹣(m+n)x+n=0,则△=(m+n)2﹣4mn=(m﹣n)2,
∵二次函数图象与y轴正半轴交于A点,∴A(0,n),且n>0,
又∵m<0,∴m﹣n<0,∴△=(m﹣n)2>0,∴该二次函数的图象与轴必有两个交点;
(2)令mx2﹣(m+n)x+n=0,解得:x1=1,x2=,
由(1)得<0,故B的坐标为(1,0),又因为∠ABO=45°,所以A(0,1),即n=1,
则可求得直线AB的解析式为:y=﹣x+1.再向下平移2个单位可得到直线l:y=﹣x﹣1;(3)由(2)得二次函数的解析式为:y=mx2﹣(m+1)x+1.
∵M(p,q)为二次函数图象上的一个动点,∴q=mp2﹣(m+1)p+1.
∴点M关于轴的对称点M′的坐标为(p,﹣q).
∴M′点在二次函数y=﹣m2+(m+1)x﹣1上.
∵当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,
当p=0时,q=1;当p=﹣3时,q=12m+4;
结合图象可知:﹣(12m+4)<2,解得:m>﹣.∴m的取值范围为:-<m<0.。

相关文档
最新文档