深圳市宝安区2018届九年级上期末质量检测数学试题有答案新人教版精品-精品
广东省深圳市2018-2019学年第一学期九年级上册数学学科期末调研测试卷(含答案)

B. 10(1 2 x) 15
C.10(1 x ) 15
2
D.10(1 x) 15
6.下列命题正确的是
第 1 页(共 4 页)
A.方程 x 2 2 x 3 0 有两个不相等的实数根 B.反比例函数 y
2 的图像经过点(-1,2) x
B
C.对角线相等的菱形是正方形 D.有一个角为直角的四边形是矩形 7.2018 年 10 月 24 日,被称为“工程界的珠峰”的港珠澳大桥 迎来了正式通车的历史性时刻.大桥采用斜拉索的建造方式. 已知斜拉索 AB 与桥面 AC 的夹角为∠ ,桥塔 BC 与桥面垂直,
1 , 则△ABC 与△DEF 2
D E D' A
第 4 题图
1 2
B.
1 3
C.
1 4
D.
1 9
C
4.如图,将矩形 ABCD 沿着 AE 翻折,点 D 刚好落在对角线 AC 的 中点 D ' 处,则 CAB 的度数为 A.20° B.30° C.40°
B
D.60°
5. “大潮起珠江—广东改革开放 40 周年展览”自 2018 年 11 月 8 日开放以来,吸引了来 自市内外的大批市民和游客.开放第一天大约有 10 万人参观,第三天达到 15 万人参观, 设参观人数平均每天的增长率为 x ,可列方程为 A. 10(1 x) 15
3 1 20180
18.深圳某中学为提升学生素质,准备开设校本课程.为了了解学生喜欢校本课程的情况, 以便合理安排场地,在全校 1000 名学生中,随机抽取了若干名学生进行调查(每人必 须在这五个项目中选择一个且只能选一个) ,调查结果统计如下: 课程名称 人数 解答下列问题: (1)这次一共抽取了 (2)统计图表中,a= 名学生进行调查; ,b= ,m=______;
广东省深圳市宝安区九年级上册期末数学试卷含解析【精编】.doc

广东省深圳市宝安区九年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为()A.=3 B.=0 C.1=0,2=﹣3 D.1=0,2=32.(3分)下面左侧几何体的左视图是()A. B. C.D.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.(3分)关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣36.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为()A.300(1+%)2=950 B.300(1+2)=950 C.300(1+2)=950 D.300(1+)2=950 7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°9.(3分)下列说法正确的是()A.二次函数y=(+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m11.(3分)一次函数y=a+c的图象如图所示,则二次函数y=a2++c的图象可能大致是()A.B.C.D.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.18.(5分)2﹣8+12=0.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题:(1)填空:每天可售出书本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;=S△COD?如(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC果存在,请直接写出点P的坐标.如果不存在,请说明理由.23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.广东省深圳市宝安区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)方程2=3的解为()A.=3 B.=0 C.1=0,2=﹣3 D.1=0,2=3【解答】解:∵2﹣3=0,∴(﹣3)=0,则=0或﹣3=0,解得:=0或=3,故选:D.2.(3分)下面左侧几何体的左视图是()A. B. C.D.【解答】解:从左面看,是一个长方形.故选C.3.(3分)如果=2,则的值是()A.3 B.﹣3 C.D.【解答】解:∵=2,∴a=2b,∴==3.故选A.4.(3分)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.50【解答】解:根据题意得=0.4,解得:n=30,故选:B.5.(3分)关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,则a的值可以是()A.0 B.﹣1 C.﹣2 D.﹣3【解答】解:∵关于的一元二次方程a2+3﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选B.6.(3分)中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均年收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为,可列方程为()A.300(1+%)2=950 B.300(1+2)=950 C.300(1+2)=950 D.300(1+)2=950【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为,那么根据题意得2018年年收入为:300(1+)2,列出方程为:300(1+)2=950.故选:D.7.(3分)今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为9688元的新手机,前期付款2000元,后期每个月分别付相同的数额,则每个月的付款额y(元)与付款月数(为正整数)之间的函数关系式是()A.y=+2000 B.y=﹣2000 C.y=D.y=【解答】解:由题意可得:y==.故选:C.8.(3分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是()A.19°B.18°C.20°D.21°【解答】解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=60°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=38°,即∠E=19°.故选A9.(3分)下列说法正确的是()A.二次函数y=(+1)2﹣3的顶点坐标是(1,3)B.将二次函数y=2的图象向上平移2个单位,得到二次函数y=(+2)2的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等【解答】解:A、二次函数y=(+1)2﹣3的顶点坐标是(﹣1,﹣3),错误;B、将二次函数y=2的图象向上平移2个单位,得到二次函数y=2+2的图象,错误;C、菱形的对角线互相垂直且平分,错误;D、平面内,两条平行线间的距离处处相等,正确;故选D10.(3分)如图,一路灯B距地面高BA=7m,身高1.4m的小红从路灯下的点D出发,沿A→H的方向行走至点G,若AD=6m,DG=4m,则小红在点G处的影长相对于点D处的影长变化是()A.变长1m B.变长1.2m C.变长1.5m D.变长1.8m【解答】解:由CD∥AB∥FG可得△CDE∽△ABE、△HFG∽△HAB,∴=、=,即=、=,解得:DE=1.5、HG=2.5,∵HG﹣DE=2.5﹣1.5=1,∴影长边长1m.故选:A.11.(3分)一次函数y=a+c的图象如图所示,则二次函数y=a2++c的图象可能大致是()A.B.C.D.【解答】解:∵一次函数y=a+c的图象经过一三四象限,∴a>0,c<0,故二次函数y=a2++c的图象开口向上,对称轴在y轴左边,交y轴于负半轴,故选:C.12.(3分)如图,点P是边长为的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是.其中正确结论是()A.①③B.②③C.②③④D.②④【解答】解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴=,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④正错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选B.二、填空题(本题共有4小题,每小题3分,共12分)13.(3分)有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为.【解答】解:∵共有3张卡片,卡片的正面分别标上数字﹣1,0,﹣2,卡片上的数字为负数的有2张,∴卡片上的数字为负数的概率为;故答案为:.14.(3分)二次函数y=﹣(﹣1)(+2)的对称轴方程是=﹣.【解答】解:y=﹣(﹣1)(+2)=﹣(2+﹣2)=﹣(+)2+,∴二次函数y=﹣(﹣1)(+2)的对称轴为=﹣,故答案为:=﹣.15.(3分)如图,点A在曲线y=(>0)上,过点A作AB⊥轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为4.【解答】解:∵点A在曲线y=(>0)上,AB⊥轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.16.(3分)如图,正方形ABCD中,对角线AC、BD交于点O,点E是OB上一点,且OB=3OE,连接AE,过点D作DG⊥AE于点F,交AB边于点G,连接GE,若AD=6,则GE的长是.【解答】解:作EH⊥AB于H.∵四边形ABCD是正方形,∴AB=AD=6,∴OA=OB=6,∵OB=3OE,∴OE=2,EB=4,∵∠EBH=∠BEH=45°,∴EH=BH=2,∴AH=AB﹣BH=4,∵∠ADG+∠DAF=90°,∠DAF+∠EAH=90°,∴∠ADG=∠EAH,∵∠DAG=∠AHE,∴△DAG∽△AHE,∴=,∴=,∴AG=3,∴GH=AH﹣AG=,在Rt△EGH中,EG==.故答案为.三、解答题(本大题共7小题,共52分)17.(5分)计算:(﹣1)2018﹣()﹣1+2×()0+.【解答】解:原式=1﹣3+2+3=3.18.(5分)2﹣8+12=0.【解答】解:2﹣8+12=0,分解因式得(﹣6)(﹣2)=0,∴﹣6=0,﹣2=0,解方程得:1=6,2=2,∴方程的解是1=6,2=2.19.(8分)在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.【解答】解:(1)画树状图得:∵共有6种等可能的结果,随机从袋中摸出两个球都是白色的有2种情况,∴随机从袋中摸出两个球,都是白色的概率是:=.(2)根据题意,得:=,解得:a=5,经检验a=5是原方程的根,故a=5.20.(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.【解答】(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CF,∴△CGE≌△FCG(ASA),∴GE=GF,∴四边形DFCE是平行四边形,∵DE=CE,∴四边形DFCE是菱形;(2)解:过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.21.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了元.请解答以下问题:(1)填空:每天可售出书300﹣10本(用含的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【解答】解:(1)∵每本书上涨了元,∴每天可售出书(300﹣10)本.故答案为:300﹣10.(2)设每本书上涨了元(≤10),根据题意得:(40﹣30+)(300﹣10)=3750,整理,得:2﹣20+75=0,解得:1=5,2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.22.(8分)如图1,在平面直角坐标系中,▱OABC的一个顶点与坐标原点重合,OA边落在轴上,且OA=4,OC=2,∠COA=45°.反比例函数y=(>0,>0)的图象经过点C,与AB交于点D,连接AC,CD.(1)试求反比例函数的解析式;(2)求证:CD平分∠ACB;=S△COD?如(3)如图2,连接OD,在反比例的函数图象上是否存在一点P,使得S△POC果存在,请直接写出点P的坐标.如果不存在,请说明理由.【解答】解:(1)如图1,过点C作CE⊥轴于E,∴∠CEO=90°,∵∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵点C在反比例函数图象上,∴=2×2=4,∴反比例函数解析式为y=,(2)如图2,过点D作DG⊥轴于G,交BC于F,∵CB∥轴,∴GF⊥CB,∵OA=4,由(1)知,OC=CE=2,∴AE=EC=2,∴∠ECA=45°,∠OCA=90°,∵OC∥AB,∴∠BAC=∠OCA=90°,∴AD⊥AC,∵A(4,0),AB∥OC,∴直线AB的解析式为y=﹣4①,∵反比例函数解析式为y=②,联立①②解得,或(舍),∴D(2+2,2﹣2),∴AG=DG=2﹣2,∴AD=DG=4﹣2,∴DF=2﹣(2﹣2)=4﹣2,∴AD=DF,∵AD⊥AC,DF⊥CB,∴点D是∠ACB的角平分线上,即:CD平分∠ACB;(3)存在,∵点C(2,2),∴直线OC的解析式为y=,OC=2,∵D(2+2,2﹣2),∴CD=2﹣2Ⅰ、如图3,当点P在点C右侧时,即:点P的横坐标大于2,∵S△POC=S△COD,∴设CD的中点为M,∴M(+2,),过点M作MP∥OC交双曲线于P,∴直线PM的解析式为y=﹣2③,∵反比例函数解析式为y=④,联立③④解得,或(舍),∴P(+1,﹣1);Ⅱ、当点P'在点C左侧时,即:点P'的横坐标大于0而小于2,设点M关于OC的对称点为M',M'(m,n),∴=2,=2,∴m=2﹣,n=4﹣,∴M'(2﹣,4﹣),∵P'M'∥OC,∴直线P'M'的解析式为y=+2⑤,联立④⑤解得,或(舍),∴P'(﹣1, +1).即:点P的坐标为(﹣1, +1)或P(+1,﹣1).23.(10分)如图,在平面直角坐标系中,抛物线y=a2+b+c(a<0)与轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,且OC=2OA.(1)试求抛物线的解析式;(2)直线y=+1(>0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m=,试求m的最大值及此时点P的坐标;(3)在(2)的条件下,点Q是轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由.【解答】解:(1)因为抛物线y=a2+b+c经过A(﹣2,0)、B(4,0)两点,所以可以假设y=a(+2)(﹣4),∵OC=2OA,OA=2,∴C(0,4),代入抛物线的解析式得到a=﹣,∴y=﹣(+2)(﹣4)或y=﹣2++4或y=﹣(﹣1)2+.(2)如图1中,作PE⊥轴于E,交BC于F.∵CD∥PE,∴△CMD∽△FMP,∴m==,∵直线y=+1(>0)与y轴交于点D,则D(0,1),∵BC的解析式为y=﹣+4,设P(n,﹣n2+n+4),则F(n,﹣n+4),∴PF=﹣n2+n+4﹣(﹣n+4)=﹣(n﹣2)2+2,∴m==﹣(n﹣2)2+,∵﹣<0,∴当n=2时,m有最大值,最大值为,此时P(2,4).(3)存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形.①当DP是矩形的边时,有两种情形,a、如图2﹣1中,四边形DQNP是矩形时,有(2)可知P(2,4),代入y=+1中,得到=,∴直线DP的解析式为y=+1,可得D(0,1),E(﹣,0),由△DOE∽△QOD可得=,∴OD2=OE•OQ,∴1=•OQ,∴OQ=,∴Q(,0).根据矩形的性质,将点P向右平移个单位,向下平移1个单位得到点N,∴N(2+,4﹣1),即N(,3)b、如图2﹣2中,四边形PDNQ是矩形时,∵直线PD的解析式为y=+1,PQ⊥PD,∴直线PQ的解析式为y=﹣+,∴Q(8,0),根据矩形的性质可知,将点D向右平移6个单位,向下平移4个单位得到点N,∴N(0+6,1﹣4),即N(6,﹣3).②当DP是对角线时,设Q(,0),则QD2=2+1,QP2=(﹣2)2+42,PD2=13,∵Q是直角顶点,∴QD2+QP2=PD2,∴2+1+(﹣2)2+16=13,整理得2﹣2+4=0,方程无解,此种情形不存在,综上所述,满足条件的点N坐标为(,3)或(6,﹣3).。
2018九年级数学上期末模拟试题1深圳市宝安区有答案和解释

(
k2?
k+2
)
=41
? 8
>
0
解
得
:
k
>
2
-
故
选
:
D
•
6
•
解
:
由
题
意
知
蔬
菜
产
量
的
年
平
均
增
长
率
为
X
根
据
20
16
年
蔬
菜
产
量
为
80
吨
则
20
17
年
蔬
菜
产
量
为
80
(
1+X
)
吨
2018
年
蔬
菜
产
量
为
80
(
1+x
)
(
1+X
)
吨
预
计
20
18
年
蔬
菜
产
量
达
到
10C
吨
即
:
80
(
1+X
)
(
1+X
)
=彳00
或
80
(
1+X
)
、
BD
相
交
于
占
八、、
O
过
占
八、、
O
作
OE
垂
直
AC
交
AD
于
占
八、、
E
则
DE
的
长
是
(
深圳宝安区2018-2019学度初三(上)年末数学试题(含解析)

图2ABCD 图3深圳宝安区2018-2019学度初三(上)年末数学试题(含解析)本卷须知1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
九年级数学 2018.1说明:1、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。
考试时间90分钟,总分值100分。
2、考生必须在答题卷上按规定作答;答题卷必须保持整洁,不能折叠。
3、答题前,请将自己的学校名、班级、姓名、考生号等信息用规定的笔填涂在答题卷指定的位置上。
4、本卷选择题1—12,每题选出答案后,用2B 铅笔将答题卷选择题答题区内对应题目的答案标号涂黑;非选择题的答案〔含作辅助线〕必须用规定的笔,写在答题卷指定的答题区内,写在本卷或其他地方无效。
第一部分〔选择题,共36分〕【一】选择题〔此题共有12小题,每题3分,共36分,每题有四个选项,其中只有一个是正确的〕1、SIN60°的值是A 、21B 、23C 、1D 、32、图1是一个球体的一部分,以下四个选项中是它的俯视图的是3、用配方法解方程642=+x x ,以下配方正确的选项是A 、()2242=+x B 、()1022=+x C 、()822=+x D 、()622=+x 4、图2是我们学过的反比例函数图象,它的函数解析式可能是 A 、x y 2-=B 、x y 2=C 、2x y -=D 、2xy -= 5、如图3,∠BAD =∠CAD ,那么以下条件中不一定能使△ABD ≌△ACD 的是A 、∠B =∠CB 、∠BDA =∠CDA图4 A BCD EF图5O C 、AB =ACD 、BD =CD6、过某十字路口的汽车,它可能继续直行,也可能向左或向右转、假设这三种可能性大小相同,那么两辆汽车经过该十字路口全部继续直行的概率为A 、91B 、31C 、21D 、327、矩形具有而菱形不具有的性质是A 、对角线互相平分B 、对角线互相垂直C 、对角线相等D 、是中心对称图形8、关于二次函数322+-=x y ,以下说法中正确的选项是 A 、它的开口方向是向上B 、当X 《–1时,Y 随X 的增大而增大C 、它的顶点坐标是〔–2,3〕D 、当X =0时,Y 有最小值是39、如图4,A 是反比例函数x y 3=〔X 》0〕图象上的一个 动点,B 是X 轴上的一动点,且AO =AB 、那么当点A 在图象上自左向右运动时,△AOB 的面积 A 、增大B 、减小C 、不变D 、无法确定10、如图5,AD 是△ABC 的高,EF 是△ABC 的中位线,那么以下结论中错误的选项是A 、EF ⊥ADB 、EF =21BC C 、DF =21ACD 、DF =21AB11、某公司今年产值200万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年〔包括今年〕的总产值就达到了1400万元、设这个百分数为X ,那么可列方程为A 、()140012002=+xB 、()140012003=+xC 、()200114002=-x D 、()()1400120012002002=++++x x12、如图6,抛物线5621+-=x x :y l 与X 轴分别交于A 、B 两点,顶点为M 、将抛物线L1沿X 轴翻折后再向左平移得到抛物线L2、假设抛物线L2过点B ,与X 轴的另一个交点为C ,顶点为N ,那么四边形AMCN 的面积为A 、32B 、16C 、50D 、40图6甲小刚 图7图10 第二部分〔非选择题,共64分〕 【二】填空题〔每题3分,共12分。
深圳市宝安区2018-2019学年九年级上期末模拟试题(一)含答案解析

广东省深圳市宝安区2018-2019学年九年级(上)期末模拟题(一)一.选择题(共12小题,满分36分)1.方程x(x﹣1)=x的解是()A.x=0B.x=0、x=1C.x=0和x=2D.x=0或x=22.下列图形中,主视图为图①的是()A.B.C.D.3.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b4.在一个不透明的袋子里装有若干个白球和5个红球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现红球摸到的频率稳定在0.25,则袋中白球有()A.15个B.20个C.10个D.25个5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=1007.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE 垂直AC交AD于点E,则DE的长是()A.5B.C.D.9.已知坐标平面上有两个二次函数y=a(x﹣1)(x+7),y=b(x+1)(x﹣15)的图象,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图象依下列哪一种方式平移后,会使得此两图形的对称轴重叠()A.向左平移8单位B.向右平移8单位C.向左平移10单位D.向右平移10单位10.圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.14.我们定义:关于x的函数y=ax2+bx与y=bx2+ax(其中a≠b)叫做互为交换函数.如y=3x2+4x与y=4x2+3x是互为交换函数.如果函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,那么b=.15.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=上运动,则k=.16.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=,OC=,则另一直角边BC的长为.三.解答题(共7小题,满分42分)17.(5分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.18.(5分)解方程:x2+3x+2=0.19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.20.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=2,AD=4,求MD的长.21.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m <n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.如图,直线y=kx+2与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求k的值和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.②连接BN,当∠P BN=45°时,求m的值.参考答案一.选择题1.解:方程移项得:x(x﹣1)﹣x=0,分解因式得:x(x﹣2)=0,解得:x=0或x=2,故选:D.2.解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.3.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.4.解:设袋中白球有x个,根据题意,得:=0.25,解得:x=15,经检验:x=15是分式方程的解,所以袋中白球有15个,故选:A.5.解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△=(﹣2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2.故选:D.6.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.7.解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:∵y=a(x﹣1)(x+7)=ax2+6ax﹣7a,y=b(x+1)(x﹣15)=bx2﹣14bx﹣15b,∴二次函数y=a(x﹣1)(x+7)的对称轴为直线x=﹣3,二次函数y=b(x+1)(x﹣15)的对称轴为直线x=7,∵﹣3﹣7=﹣10,∴将二次函数y=b(x+1)(x﹣15)的图形向左平移10个单位,两图形的对称轴重叠.故选:C.10.解:如图,根据常识桌面与地面平行,所以,△ADE∽△ABC,∴=,解得BC=1.8,所以,地面上阴影部分的面积=π•()2=0.81π平方米.故选:B.11.解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y 轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.14.解:∵由题意函数y=2x2+bx的交换函数为y=bx2+2x,∵函数y=2x2+bx与它的交换函数图象顶点关于x轴对称,两个函数的对称轴相同,∴﹣=﹣,解得b=﹣2或2,∵互为交换函数a≠b,故答案为:﹣2.15.解:如图,连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,由题可得AO=BO,AC=BC,且∠ACB=120°,∴CO⊥AB,∠CAB=30°,∴Rt△AOC中,OC:AO=1:,∵∠AOD+∠COE=90°,∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=()2=3,∵点A是双曲线y=﹣在第二象限分支上的一个动点,=|﹣3|=,∴S△AOD=×=,即|k|=,∴S△OCE∴k=±1,又∵k>0,∴k=1.故答案为:1.16.解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=1,∴FB=OM=OF﹣FM=1﹣=,则BC=CF+BF=1+=.故答案为:.三.解答题(共7小题,满分42分)17.解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=3.18.解:分解因式得:(x+1)(x+2)=0,可得x+1=0或x+2=0,解得:x1=﹣1,x2=﹣2.19.解:(1)树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,∴摇出一红一白的概率==;(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,∴摇奖的平均收益是:×18+×24+×18=22,∵22>20,∴选择摇奖.20.(1)证明:∵四边形ABCD是矩形∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(4﹣x)2+22,解得:x=,答:MD长为.21.解:设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1==25%,x2=﹣(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%.22.解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形A BCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B (4,),D (4,),∴P (4,),∴A (,),C (,)∵AC=BD ,∴﹣=﹣,∴m +n=3223.解:(1)把A(3,0)代入y=kx+2中得,0=3k+2,k=﹣,∴直线AB的解析式为:y=﹣x+2,∴B(0,2),把A(3,0)和B(0,2)代入抛物线y=﹣x2+bx+c中,则,解得:,二次函数的表达式为:y=﹣;(2)①设M(m,0),则P(m,﹣m+2),N(m,﹣)有两种情况:①当N在P的上方时,如图1,∴PN=y N﹣y P=(﹣)﹣(﹣m+2)=﹣+4m,由于四边形OBNP为平行四边形得PN=OB=2,∴+4m=2,解得:m=或;②当N在P的下方时,同理可得:PN=(﹣m+2)﹣(﹣)=﹣4m=2,解得:m=;综上,m=或;②有两解,N点在AB的上方或下方,如图2,过点B作BN的垂线交x轴于点G,过点G作BA的垂线,垂足为点H.由∠PBN=45°得∠GBP=45°,∴GH=BH,设GH=BH=t,则由△AHG∽△AOB,得AH=t,GA=,由AB=AH+BH=t+t=,解得t=,∴AG=×=,从而OG=OA ﹣AG=3﹣=,即G (,0)…………(7分)由B (0,2),G (,0)得:直线BG :y=﹣5x +2,直线BN :y=0.2x +2.则,解得:x 1=0(舍),x 2=,即m=;则,解得:x 1=0(舍),x 2=;即m=;故m=与m=为所求.…………(9分)。
深圳市宝安区2018届九年级上期末质量检测数学试题有答案新人教版-名师版

2017-2018学年第一学期宝安区期末调研试卷九年级 数学第一部分 (选择题,共36分)一、选择题:(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1. 一元二次方程x x 32=的根是( )A.3=xB.3=xC.3021-==x x ,D.3021==x x ,2.下面左侧几何体的左视图是( )3.如果2=b a ,则ba b a -+的值是( ) A.3 B.﹣3 C.21 D.23 4.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球。
经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值约为( )A.20B.30C.40D.505.关于x 的一元二次方程0232=-+x ax 有两个不相等的实数根,则a 的值可以是( )A.0B.﹣1C.﹣2D.﹣36.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x ,可列方程( ) A.950%13002=+)(x B.95013002=+)(x C.95021300=+)(x D.95013002=+)(x 7.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲。
为此,某电子商城推出分期付款购买新手机的活动。
一部售价为9688元的新手机,前期付款2000元,后期每个月分期付相同的数额,则每个月的付款额y (元)与付款月数x (x 为正整数)之间的函数关系式是( ) A.20007688+=x y B.20009688-=x y C.x y 7688= D.xy 2000= 8.如图1,延长矩形ABCD 的边BC 至点E ,使CE=BD ,连结AE ,如果∠ADB=38°,则∠E 的值是( )A.19°B.18°C.20°D.21°9.下列说法正确的是( )A.二次函数3)1(2-+=x y 的顶点坐标是(1,﹣3);B.将二次函数2x y =的图象向上平移2个单位,得到二次函数2)2(+=x y 的图象;C.菱形的对角线互相垂直且相等;D.平面内,两条平行线间的距离处处相等;10.如图2,一路灯B 距地面高BA=7m ,身高1.4m 的小红从路灯下的点D 出发,沿A →H 的方向行走至点G ,若AD=6m ,DG=4m ,则小红在点D 到G 处的影长相对于点G 处的影长变化是( )A.变长1mB.变长1.2mC.变长1.5mD.变长1.8m11.一次函数c ax y +=的图象如下图3所示,则二次函数c x ax y ++=2的图象可能大致是( )12. 如图4,点P 是边长为2的正方形ABCD 的对角线BD 上的动点,过点P 分别作PE ⊥BC 于点E ,PF ⊥DC 于点F ,连接AP 并延长,交射线BC 于点H ,交射线DC 于点M ,连接EF 交AH 于点G 。
广东省深圳市XX学校九年级上期末数学试题有答案精品-精选

2017-2018学年度深圳学校第一学期期末九年级数学试卷班级: 姓名:(考试时间:90 分钟满分:100 分) 2018.01.23注意:本试卷分选择题和非选择题两部分,共100分,考试时间90分钟。
1.答卷前,考生填、涂好学校,班级,姓名及座位号。
2.选择题用 2B 铅笔作答,非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,并将答题卡交回。
一、选择题(每小题 3 分,共 36分)1.在一个不透明的袋子中,装有红球,黄球,蓝球,白球各 1 个,这些球除了颜色外无其他区别,从袋中随机取出一个球,取出红球的概率为() A .21 B.31 C.41 D . 12.如图,若 AB 是圆O 的直径, CD 是圆0的弦,∠ABD =58°,则∠C 的度数为()第2题第3题A.116°B.58°C.42°D.32°3.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出,如图所示,则这堆正方体货箱共有()A.9 箱B.10 箱C.11 箱D.12 箱4.已知关于 x 的一元二次方程()02-m -x 2x 2=+有实数根,则 m 的取值范围是() A.m >1 B.m <1 C.m ≥1 D.m ≤1①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧; ③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤ 90的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆; 其中正确的有()A.3 个B.4 个C.5 个D.6 个6.如果01-x x 2=+,那么代数式7-x 2x 23+的值为() A.6 B.8 C.-6 D.-8 7.若双曲线xky =与直线y=2x+1的一个交点的横坐标为-1,则 k 的值为() A.-1 B.1 C.-2 D.28.当-2<x <2时,下列函数中,①y=2x ;②y=2-x ;③x2-y =;④8x 6x y 2++=,函数值 y 随自变量 x 增大而增大的是()A.①②B.①③C.②③D.①④9.现有矩形纸片 ABCD ,已知AB =10,BC =5,在AB 上取一点G ,以 DG 为折痕折叠,使 DA 落在 DB 上,则 AG 的长是() A.2555+ B.21055+ C.2555- D.21055- 10.已知二次函数()c 1-x a y 2+=,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若2-x 2-x 21>,则下列表达式正确的是()A.0y y 21>+B.0y -y 21>C.()0y -y a 21>D.a ()0y y 21>+11.设 A 是以 BC 为直径的圆上的一点, AD ⊥BC 于 D 点,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足∠BAF=∠CAE ,已知BC =15,BF=6, BD =3,则AE=( )第11题第12题12.如图,抛物线1m x 2-x y 2+++=交 x 轴于点A(a,0),和B(b,0),交 y 轴于点 C ,抛物线的顶点为 D ,下列四个命题:①当x >0时,y >0;②若a=-1,b=3;③抛物线上有两点()(),<<,若,和,212211x 1x y x y x Q P 且2111y y 2x x >,则>+;④点 C 关于抛物线对称轴的对称点 E ,点 G 、 F 分别在 x 轴和 y 轴上,当m=2时,四边形 EDFG 周长的最小值为258+,其中真命题的个数是()A.1 个B.2 个C.3 个D.4 个 二、填空题(每小题 3 分,共 12 分)13.若关于 x 的方程0c x 5x -2=++的一个根为 3,则 c =__________。
2017-2018学年深圳市宝安区九上期末数学试卷

2017-2018学年深圳市宝安区九上期末数学试卷班级:姓名:学号:成绩:一、选择题(12小题 , 共24分)A. B. C., D.,A. B. C. D.A.B. C.D.A.B.C.D.A.B. C. D.A. B.C. D.1. 方程 的解为 x =23x ()x =3x =0x =10x =2−3x =10x =232. 下面左侧几何体的左视图是()3. 如果 ,则 的值是 =ba2a −ba +b ()3−321 234. 已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有 个,黑球有 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出白球的频率稳定在 附近,则 的值约为 20n 0.4n ()203040505. 关于 的一元二次方程 有两个不相等的实数根,则 的值可以是 x ax +23x −2=0a ()−1−2−36. 中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民 年人均年收入美元,预计 年人均年收入将达到 美元,设 年到 年该地区居民人均年收入平均增长率为 ,可列方程为 2016300201895020162018x ()3001+x %=()29503001+x =(2)9503001+2x =()9503001+x =()2950A.B.C. D.A.B.C.D.A.二次函数 的顶点坐标是B.将二次函数 的图象向上平移 个单位,得到二次函数的图象C.菱形的对角线互相垂直且相等D.平面内,两条平行线间的距离处处相等A.变长B.变长C.变长D.变长 7. 今年,某公司推出一款的新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买新手机的活动,一部售价为 元的新手机,前期付款 元,后期每个月分别付相同的数额,则每个月的付款额 (元)与付款月数 ( 为正整数)之间的函数关系式是 96882000y x x ()y =+x 76882000y =−x 96882000y = x7688y = x20008. 如图,延长矩形 的边 至点 ,使 ,连接 ,如果,则 的值是ABCD BC E CE =BD AE ∠ADB =38∘∠E()19∘18∘20∘21∘9. 下列说法正确的是 ()y =x +1−()231,3()y=x 22y =x +2()210. 如图,一路灯 距地面高 ,身高 的小红从路灯下的点 出发,沿 的方向行走至点 ,若 ,,则小红在点 处的影长相对于点 处的影长变化是B BA=7 m 1.4 m D A →H G AD =6 m DG =4 m G D ()1 m 1.2 m 1.5 m 1.8 mA. B. C. D.A.①③B.②③C.②③④D.②④二、填空题 (4小题 , 共8分)11.一次函数的图象如图所示,则二次函数的图象可能大致是y=ax+c y=ax+2x+c()12.如图,点是边长为的正方形的对角线上的动点,过点分别作于点,于点,连接并延长,交射线于点,交射线于点,连接交于点,当点在上运动时(不包括,两点),以下结论中:①;②;③;④的最小值是.其中正确结论是P2ABCD BD P P E⊥BCE P F⊥DCF AP BC H DC M EFAH G P BD B D MF=MCAH⊥EF AP=2P M⋅P H EF22()1.有三张外观完全相同的卡片,在卡片的正面分别标上数字,,,将正面朝下放在桌面上.现随机翻开一张卡片,则卡片上的数字为负数的概率为______.−10−22.二次函数的对称轴方程是______.y=−x−1x+2()()3.如图,点在曲线上,过点作轴,垂足为,的垂直平分线交,于点,,当时,的周长为______.A y=x>0x3()A AB⊥x B OA OB OA C D AB=1△ABC三、解答题 (7小题 , 共68分)4. 如图,正方形 中,对角线 , 交于点 ,点 是 上一点,且 ,连接 ,过点 作 于点 ,交 边于点 ,连接 ,若 ,则 的长是______.ABCD AC BD O E OB OB =3OE AE D DG ⊥AE F AB G GE AD =6 2GE 1. 计算:.−1−()2018+(31)−12× +(2018)0 272. .x −28x +12=03. 在不透明的布袋中装有 个红球, 个白球,它们除颜色外其余完全相同.(1) 从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2) 若在布袋中再添加 个红球,充分搅匀,从中摸出一个球,使摸到红球的概率为 ,试求 的值.12a 43a4. 如图, 中, 的平分线交 于点 ,作 的垂直平分线,分别交 ,,于点,,,连接 ,.(1) 求证:四边形 是菱形; (2) 若 ,,,试求 的长.△ABC ∠ACB AB D CD AC DC BC E G F DE DF DF CE ∠ABC=60∠ACB =45∘BD =2BF 5. 今年深圳“读书月”期间,某书店将每本成本为 元的一批图书,以 元的单价出售时,每天的销售量是 本.已知在每本涨价幅度不超过 元的情况下,若每本涨价 元,则每天就会少售出 本,设每本书上涨了 元.请解答以下问题:(1) 填空:每天可售出书______本(用含 的代数式表示);(2) 若书店想通过售出这批图书每天获得 元的利润,应涨价多少元?304030010110x x 37506. 如图 ,在平面直角坐标系中,平行四边形 的一个顶点与坐标原点重合, 边落在 轴上,且 ,,.反比例函数 的图象经过点 ,与 交于点 ,连接 ,.(1) 试求反比例函数的解析式; (2) 求证: 平分 ;(3) 如图 ,连接 ,在反比例的函数图象上是否存在一点 ,使得 ?如果存在,请直接写出点 的坐标;如果不存在,请说明理由.1OABC OA x OA=4OC =2 2∠COA =45∘y =k >0,x >0xk ()C AB D AC CD CD ∠ACB 2OD P S =△P OC S 21△COD P7. 如图,在平面直角坐标系中,抛物线 与 轴交于 ,两点,与 轴交于点 ,且 .(1) 试求抛物线的解析式; (2) 直线 与 轴交于点 ,与抛物线交于点 ,与直线 交于点 ,记,试求 的最大值及此时点 的坐标; (3) 在()的条件下,点 是 轴上的一个动点,点 是坐标平面内的一点,是否存在这样的点 ,,使得以 ,,, 四点组成的四边形是矩形?如果存在,请求出点 的坐标;如果不存在,请说明理由.y=ax +2bx +c a <0()x A −2,0()B 4,0()y C OC =2OA y=kx +1k >0()y D P BC M m =DMP Mm P 2Q x N Q N P D Q N N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年第一学期宝安区期末调研试卷
九年级 数学
第一部分 (选择题,共36分)
一、选择题:(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)
1. 一元二次方程x x 32=的根是( )
A.3=x
B.3=x
C.3021-==x x ,
D.3021==x x ,
2.下面左侧几何体的左视图是( )
3.如果2=b a ,则b
a b a -+的值是( ) A.3 B.﹣3 C.
21 D.23 4.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有20个,黑球有n 个,随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球。
经过如此大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值约为( )
A.20
B.30
C.40
D.50
5.关于x 的一元二次方程0232=-+x ax 有两个不相等的实数根,则a 的值可以是( )
A.0
B.﹣1
C.﹣2
D.﹣3
6.中国“一带一路”战略给沿线国家和地区带很大的经济效益,沿线某地区居民2016年人均收入300美元,预计2018年人均年收入将达到950美元,设2016年到2018年该地区居民人均年收入平均增长率为x ,可列方程( )
A.950%13002=+)(x
B.95013002=+)(x
C.95021300=+)(x
D.9501300
2=+)(x 7.今年,某公司推出一款的新手机深受消费者推崇,但价格不菲。
为此,某电子商城推出分期付款购买新手机的活动。
一部售价为9688元的新手机,前期付款2000元,后期每个月分期付相同的数额,则每个月的付款额y (元)与付款月数x (x 为正整数)之间的函数关系式是
( ) A.20007688+=x y B.20009688-=x y C.x y 7688= D.x
y 2000= 8.如图1,延长矩形ABCD 的边BC 至点E ,使CE=BD ,连结AE ,如果∠ADB=38°,则∠E 的值是( )
A.19°
B.18°
C.20°
D.21°
9.下列说法正确的是( )
A.二次函数3)1(2-+=x y 的顶点坐标是(1,﹣3);
B.将二次函数2x y =的图象向上平移2个单位,得到二次函数2)2(+=x y 的图象;
C.菱形的对角线互相垂直且相等;
D.平面内,两条平行线间的距离处处相等;
10.如图2,一路灯B 距地面高BA=7m ,身高1.4m 的小红从路灯下的点D 出发,沿A →H 的方向行走至点G ,若AD=6m ,DG=4m ,则小红在点D 到G 处的影长相对于点G 处的影长变化是( )
A.变长1m
B.变长1.2m
C.变长1.5m
D.变长1.8m
11.一次函数c ax y +=的图象如下图3所示,则二次函数c x ax y ++=2的图象可能大致是( )
12. 如图4,点P 是边长为2的正方形ABCD 的对角线BD 上的动点,过点P 分别作PE ⊥BC 于点E ,PF ⊥DC 于点F ,连接AP 并延长,交射线BC 于点H ,交射线DC 于点M ,连接EF 交AH 于点G 。
当点P 在BD 上运动时(不包括B 、D 两点),以下结论中:①MF=MC ;②AH ⊥EF ;③AP 2=PM ·PH ;
④EF 的最小值为2
2。
其中正确的结论是( )
A. ①③ B 、②③ C 、②③④ D 、 ②④
二、填空题:(本题共有4小题,每小题3分,共12分)
13. 有三张外观完全相同的卡片,在卡片的正面分别标上数字﹣1,0,﹣2,将正面朝下放在桌面上。
现随机翻开一张卡片,则卡片上的数字为负数的概率为________.
14. 二次函数)2)(1(+--=x x y 的对称轴方程是__________.
15. 如图5,点A 在曲线x
y 3=(x > 0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB=1时,△ABC 的周长是____________.
16. 如图6,正方形ABCD 中,对角线AC 、BD 交于点O ,点E 是OB 上一点,且OB=3OE ,连接AE ,过点D 作DG ⊥AE 于点F ,交AB 边于点G ,连接GE 。
若AD=26,则GE 的长是___________.
三、解答题:(本题共7小题,其中第17、18题每题5分,第19、20、21、22每题8分,第23题10分,共52分)
17.(本题5分)计算:27201823
11012018+⨯+--)()()(﹣
18.()本题5分)解方程:01282=+-x x
19.(本题8分)在不透明的布袋中装有1个红球、2个白球,它们除颜色外其余完全相同。
(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(4分)
(2)若在布袋中再添加a 个红球,充分搅匀,从中摸出一个球,使摸到红球的概率为4
3,试求a 的值。
(4分)
20. (本题8分)如图7,△ABC 中,∠ACB 的平分线交AB 于点D 。
作CD 的垂直平分线,分别交AC 、DC 、BC 于点E 、G 、F ,连接DE 、DF .
(1)求证:四边形DFCE 是菱形;(4分)
(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF 的长。
(4分)
21. (本题8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本。
已知在每本涨价幅度不超过10元的情况下,若每本涨
价1元,则每天会少售出10本。
设每本书上涨了x 元,请解答以下问题:
(1)填空:每天可售出___________本.(用含x 的代数式表示)(2分)
(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?(6分)
22.(本题8分)如图8,在平面直角坐标系中,□OABC 的一个顶点与坐标原点重合,OA 边落在x 轴上,且OA=4,OC=22,∠COA=45°,反比例函数x k y =
的图象经过点C ,与AB 交于点D ,连接AC 、CD.
(1)试求反比例函数的解析式;(3分)
(2)求证:CD 平分∠ACB ;(3分)
(3)如图9,连接OD ,在反比例函数的图象上是否存在一点P ,使得S △POC =
2
1S △COD ?如果存在,请直接写出点P 的坐标。
如果不存在,请说明理由。
(2分)
23.(本题10分)如图,在平面直角坐标系中,抛物线c bx ax y ++=2与x 轴交于A (﹣2,0)、B (4,0)两点,与y 轴交于点C ,且OC=2OA.
(1)试求抛物线的解析式;(3分)
(2)直线)(01>+=k kx y 与y 轴交于点D ,与抛物线交于点P ,与直线BC 交于点M ,记DM
PM m =
,试求m 的最大值及此时点P 的坐标;(4分) (3)在(2)的条件下,点Q 是x 轴上的一个动点,点N 是坐标平面内的一点,是否存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形?如果存在,请求出点N 的坐标,如果不存在,请说明理由。
(3分)。