2018年秋浙教版数学九年级上期末综合达标测试卷(有答案)-精华版
2018年秋浙教版数学九年级上第4章综合达标测试卷(有答案)AlMHMq

第4章综合达标测试卷(满分:100分 时间:90分钟)一、选择题(每小题2分,共20分)1.已知a b =cd ,则下列式子中正确的是( C )A .a ∶b =c 2∶d 2B .a ∶d =c ∶bC .a ∶b =(a +c )∶(b +d )D .a ∶b =(a -d )∶(b -d )2.下列各组线段的长度成比例的是( C ) A .2 cm,3 cm,4 cm,5 cm B .2.5 cm,3.5 cm,4.5 cm,6.5 cm C .1.1 cm,2.2 cm,4.4 cm,8.8 cmD .1 cm,3 cm,4 cm,6 cm3.已知△ABC ∽△DEF ,S △ABC ∶S △DEF =1∶4.若BC =1,则EF 的长为( B ) A .1 B .2 C .3D .44.如图,已知△ABC 与△ADE 中,∠C =∠AED =90°,点E 在AB 上,那么添加下列一个条件后,仍无法判定△ABC ∽△DAE 的是( B )A .∠B =∠D B .AC DE =ABADC .AD ∥BCD .∠BAC =∠D5.如图,身高1.6米的学生想测量学校旗杆的高度,当他站在点C 处时,他头顶端的影子正好与旗杆的影子重合在点A 处,测量得到AC =2米,BC =20米,则旗杆的高度是( C )A .15米B .16米C .17.6米D .18米6.如图所示的三个矩形中,相似的是( B )第6题A .甲与乙B .乙与丙C .甲与丙D .甲、乙、丙都相似7.△ABC 三个顶点的坐标分别为A (2,2)、B (4,2)、C (6,6),在此直角坐标系中作△DEF ,使得△DEF 与△ABC 位似,且以原点O 为位似中心,位似比为1∶2,则△DEF 的面积为( B )A .12B .1C .2D .48.如图,在△ABC 中,已知MN ∥BC ,DN ∥MC ,某同学由此得出了以下四个结论:①AN NC =AM AB ;②AD DM=DN MC ;③AN NC =AM MB ;④DN MC =MNBC.其中正确结论的个数为( B )第8题A .1B .2C .3D .49.如图,在△ABC 中,AD ∶DC =1∶2,E 为BD 的中点,延长AE 交BC 于点F ,则BF ∶FC =( C )第9题A .1∶5B .1∶4C .1∶3D .1∶210.已知△ABC 的三边长分别为20 cm,50 cm,60 cm ,现要利用长度分别为30 cm 和60 cm 的细木条各一根,做一个三角形木架与△ABC 相似,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,那么另两边的长度(单位:cm)分别为( D )A .10,25B .10,36或12,36C .12,36D .10,25或12,36二、填空题(每小题3分,共24分) 11.如果a -b b =35,那么a b = 85.12.若a =5,b =10,则a 、b 13.已知△ABC 与△DEF 相似且对应中线的比为2∶3,则△ABC 与△DEF 的周长比为__2∶3__. 14.在比例尺为1∶10 000的地图上有一块面积为2 cm 2的地方,它的实际面积为__20_000__m 2. 15.如图,在正方形网格上,若使△ABC ∽△PBD ,则点P 应是P 1、P 2、P 3、P 4中的点__P 3__.第15题16.如图,已知小鱼同学的身高(CD )是1.6米,她与树(AB )在同一时刻的影子长分别为DE =2米,BE =5米,那么树的高度AB = __4__ 米.第16题17.在平面直角坐标系中,点A (2,3)、B (5,-2),以原点O 为位似中心,位似比为1∶2,把△ABO 缩小,则点B 的对应点B ′的坐标是 ⎝⎛⎭⎫52,-1或⎝⎛⎭⎫-52,1 .第17题18.如图,△ABC 中,∠C =90°,AC =BC =2,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2,照此规律作下去,则S 2017= ⎝⎛⎭⎫142016.第18题三、解答题(共56分)19.(8分)如图,在四边形ABCD 中,E 、F 分别在边AB 、DC 上,且AD ∥EF ∥BC ,AE ∶EB =3∶2,AD =3,BC =7,求EF 的长.第19题解:连结BD 交EF 于点G .∵EF ∥AD ∥BC ,∴EG AD =BE BA ,GF BC =DF DC =AE AB ,即EG 3=25,GF 7=35.解得EG =65,GF =215.∴EF =EG +GF =275. 20.(8分)如图,AC =4,BC =6,∠B =36°,∠D =117°,△ABC ∽△DAC . (1)求∠BAD 的大小; (2)求CD 的长.第20题解:(1)∵△ABC ∽△DAC ,∴∠DAC =∠B =36°,∠BAC =∠D =117°,∴∠BAD =∠BAC +∠DAC =153°.(2)∵△ABC ∽△DAC ,∴CD AC =ACBC .又AC =4,BC =6,∴CD =4×46=83.21.(9分)如图,AC 是圆O 的直径,AB 、AD 是圆O 的弦,且AB =AD ,连结BC 、DC . (1)求证:△ABC ≌△ADC ;(2)延长AB 、DC 交于点E ,若EC =5,BC =3,求四边形ABCD 的面积.第21题(1)证明:∵AC 是圆O 的直径,∴∠ABC =∠D =90°.在Rt △ABC 与Rt △ADC 中,∵⎩⎪⎨⎪⎧AC =AC ,AB =AD , ∴Rt △ABC ≌Rt △ADC . (2)由(1)知Rt △ABC ≌Rt △ADC ,∴CD =BC =3,AD =AB ,∴DE =5+3=8.∵∠EAD =∠ECB ,∠D =∠EBC =90°,∴△EAD ∽△ECB ,∴AD BC =DE BE .∵BE =CE 2-BC 2=4,∴AD 3=84,∴AD =6,∴四边形ABCD 的面积=S △ABC +S △ACD =2×12×3×6=18.22.(9分)如图,一条东西走向的笔直公路,点A 、B 表示公路北侧间隔150米的两棵树所在的位置,点C 表示电视塔所在的位置.小王在公路南侧PQ 沿直线行走,当他到达点P 的位置时,观察电视塔,树A 恰好挡住电视塔,即点P 、A 、C 在一条直线上,当他继续走180米到达点Q 的位置时,以同样方法观察电视塔,树B 也恰好挡住电视塔.假设公路两侧AB ∥PQ ,且公路的宽为60米,求电视塔C 到公路南侧PQ 的距离.第22题解:如图所示,作CE ⊥PQ 于点E ,交AB 于点D . 设CD 为x 米,则CE =(60+x )米.∵AB ∥PQ ,∴△ABC ∽△PQC ,∴CD AB =CE PQ ,即x150=x +60180,解得x =300.∴x +60=360 ,即电视塔C 到公路南侧PQ 的距离是360米.23.(10分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (-2,4)、B (-2,1)、C (-5,2).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2、B 2、C 2的坐标,请画出△A 2B 2C 2;(3)S △A 1B 1C 1∶S △A 2B 2C 2=__1∶4__ .第23题(1)(2)略24.(12分)如图,直线y =-x +20与x 轴、y 轴分别交于A 、B 两点,动点P 从点A 开始在线段AO 上以每秒3个单位长度的速度向原点O 运动.动直线EF 从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF ∥x 轴),并且分别与y 轴、线段AB 交于E 、F 两点.连结FP ,设动点P 与动直线EF 同时出发,运动时间为t 秒.(1)当t =1时,求梯形OPFE 的面积;(2)当t 为何值时,梯形OPFE 的面积最大?最大面积是多少?(3)设t 的值分别取t 1、t 2(t 1≠t 2)时,△AFP 所对应的三角形分别为△AF 1P 1和△AF 2P 2,试判断这两个三角形是否相似,并说明你的理由.第24题解:(1)由题意,知A (20,0)、B (0,20),∴OA =OB =20,∠A =∠B =45°.当t =1时,OE =1,AP =3,∴OP =17,EF =BE =19,∴S 梯形OPFE =12(OP +EF )·OE =18.(2)∵OE =t ,AP =3t ,∴OP =20-3t ,EF =BE =20-t ,∴S =12(OP +EF )·OE =12(20-3t +20-t )·t =-2t 2+20t =-2(t -5)2+50⎝⎛⎭⎫0<t <203,∴当t =5时,S 最大值=50.即当t =5时,梯形OPFE 的面积最大,最大面积为50.(3)△AF 1P 1和△AF 2P 2相似.理由如下:作FD ⊥x 轴于点D ,则四边形OEFD 为矩形,∴FD =OE =t ,AF =2FD =2t ,AP =3t .当t =t 1时,AF 1=2t 1,AP 1=3t 1;当t =t 2时,AF 2=2t 2,AP 2=3t 2,∴AF 1AF 2=t 1t 2=AP 1AP 2.又∵∠F 1AP 1=∠F 2AP 2,∴△AF 1P 1∽△AF 2P 2.。
浙教版九年级数学上册期末综合复习检测试卷(有答案)

浙教版九年级数学上册期末综合复习检测试卷(有答案)期末专题复习:浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分) 1.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A. 100° B. 110° C. 120° D. 130° 2.两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( ) A. B. C. D. 3.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为() A. 1:20 B. 1:20000 C. 1:200000 D. 1:2000000 4.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A. 8cm B. 5cm C. 3cm D. 2cm 5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②4a+2b+c<0;③a�b+c>0;④(a+c)2<b2 .其中正确的结论是()A. ①②B. ①③C. ①③④D. ①②③④ 6.围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是,则原来盒子中有白色棋子()A. 4颗 B. 6颗 C. 8颗 D. 12颗 7.一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
如果任意抛掷小正方体两次,那么下列说法正确的是() A. 得到的数字之和必然是4 B. 得到的数字之和可能是3 C. 得到的数字之和不可能是2 D. 得到的数字之和有可能是1 8.函数的图象如图所示,则下列结论中正确的是().A. B. C. D. 当时, 9.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是() A. (-1.4,-1.4) B. (1.4,1.4) C. (- ,- )D. (,) 10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=�1,点B的坐标为(1,0),则下列结论:①AB=4;②b2�4ac>0;③ab<0;④a2�ab+ac<0,其中正确的结论有()个.A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.在一个不透明的纸箱内放有除颜色外无其他差别的2个红球,8个黄球和10个白球,从中随机摸出一个球为黄球的概率是________. 12.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=________°.13.如图,AB、CD是⊙O的两条弦,若∠AOB+∠C=180°,∠COD=∠A,则∠AOB= ________14.在中,,,点D在边AB上,且,点E在边AC上,当 ________时,以A、D、E为顶点的三角形与相似. 15.已知点A(-4,m)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点的坐标为________. 16.某飞机着陆滑行的路程s(米)与时间t(秒)的关系式为:s=60t�1.5t2 ,那么飞机着陆后滑行________ 米才能停止. 17.已知点P为平面内一点,若点P 到⊙O上的点的最长距离为5,最短距离为1,则⊙O 的半径为________. 18.从1、2、3、4中任取一个数作为十位上的数,再从2、3、4中任取一个数作为个位上的数,那么组成的两位数是3的倍数的概率是________19.如图:正方形ABCD中,过点D作DP交AC于点M、交AB于点N,交CB的延长线于点P,若MN=1,PN=3,则DM的长为________ .20.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 ,则另一直角边AE的长为________.三、解答题(共8题;共60分) 21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图,一位测量人员,要测量池塘的宽度的长,他过两点画两条相交于点的射线,在射线上取两点,使,若测得米,他能求出之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案. 23.如图,已知AB,CB为⊙O的两条弦,请写出图中所有的弧.24.有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大和最小的事件分别是哪个?(填写序号)(2)将这些事件的序号按发生的可能性从小到大的顺序排列:25.某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)26.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB 的关系是?27.如图,直线BC与半径为6的⊙O相切于点B,点M是圆上的动点,过点M作MC⊥BC,垂足为C,MC与⊙O交于点D,AB为⊙O的直径,连接MA、MB,设MC的长为x,(6<x<12).(1)当x=9时,求BM 的长和△ABM的面积;(2)是否存在点M,使MD•DC=20?若存在,请求出x的值;若不存在,请说明理由.28.甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨・千米”表示每吨水泥运送1千米所需要人民币). 路程(千米)运费(元/吨・千米)甲库乙库甲库乙库 A地 20 15 12 12 B地 25 20 10 8 设甲库运往A地水泥x吨,总运费W元. (1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?答案解析部分一、单选题 1.【答案】B 2.【答案】A 3.【答案】D 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】B 8.【答案】B 9.【答案】D 10.【答案】C 二、填空题 11.【答案】 12.【答案】55 13.【答案】108° 14.【答案】 , 15.【答案】(0,10) 16.【答案】600 17.【答案】2或3 18.【答案】19.【答案】2 20.【答案】10 三、解答题 21.【答案】解答:如图,∵∠BAD=∠CAE ,∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC .又∵∠B=∠D ,∴△ABC∽△ADE .22.【答案】解: ∵ ,(对顶角相等),∴ ,∴ ,∴ ,解得米.所以,可以求出之间的距离为111.6米 23.【答案】解:图中的弧为 24.【答案】解:∵共3红2黄1绿相等的六部分,∴①指针指向红色的概率为=;②指针指向绿色的概率为;③指针指向黄色的概率为=;④指针不指向黄色为,(1)可能性最大的是④,最小的是②;(2)由题意得:②<③<①<④,故答案为:②<③<①<④. 25.【答案】解:设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:甲乙丙丁甲 / (乙,甲)(丙,甲)(丁,甲)乙(甲,乙) / (丙,乙)(丁,乙)丙(甲,丙)(乙,丙) / (丁,丙)丁(甲,丁)(乙,丁)(丙,丁) / 共有12种可能的结果,且每种的可能性相同,其中恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的结果有2种,所以恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率为 26.【答案】解:连CO ∵DC⊥AD,CE⊥OB CD=EC ∠1=∠227.【答案】证明:(1)∵直线BC与半径为6的⊙O相切于点B,且AB为⊙O的直径,∴AB⊥BC,又∵MC⊥BC,∴AB∥MC,∴∠BMC=∠ABM,∵AB是⊙O的直径,∴∠AMB=90°,∴∠BCM=∠AMB=90°,∴△BCM∽△AMB,∴,∴BM2=AB•MC=12×9=108,∴BM=6,∵BC2+MC2=BM2 ,∴BC==3∴S△ABM=AB•BC=×12×3=18;(2)解:过O作OE⊥MC,垂足为E,∵MD是⊙O的弦,OE⊥MD,∴ME=ED,又∵∠CEO=∠ECB=∠OBC=90°,∴四边形OBCE为矩形,∴CE=OB=6,又∵MC=x,∴ME=ED=MC�CE=x�6,MD=2(x�6),∴CD=MC�MD=x�2(x�6)=12�x,∴MD•DC=2(x�6)•(12�x)=�2x2+36x�144=�2(x�9)2+18 ∵6<x<12,∴当x=9时,MD•DC的值最大,最大值是18,∴不存在点M,使MD•DC=20.28.【答案】(1)解:设甲库运往A地粮食x吨,则甲库运到B地(100-x)吨,乙库运往A地(70-x)吨,乙库运到B地 [80-(70-x)]=(10+x)吨.根据题意得:w=12×20x+10×25(100-x)+12×15(70-x)+8×20(10+x) =-30x+39200(0≤x≤70).∴总运费w(元)关于x(吨)的函数关系式为w=-30x+39200(0≤x≤70).∵一次函数中w=-30x+39200中,k=-30<0 ∴w的值随x的增大而减小∴当x=70吨时,总运费w最省,最省的总运费为:-30×70+39200=37100(元)答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元.(2)解:因为运费不能超过38000元,所以w=-30x+39200≤38000,所以x≥40. 又因为40≤x≤70,所以满足题意的x值为40,50,60,70,所以总共有4种方案.。
2018-2019浙教版九年级上数学期末综合检测试卷含解析

2018-2019浙教版九年级上数学期末综合练习试卷含解析范围:九上-九下第一章姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.2.下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D .同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为3.已知二次函数y=x2+bx的图象经过点(1,﹣2),则b的值为( )A.﹣3 B.3 C.1 D.﹣14.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.教习网-海量精品课件试卷教案免费下载5.如图所示,河堤横断面堤高米,迎水坡面的坡度为(坡度是指坡面的铅直高度与水平宽度之比,又称坡比),则的长是()A.米B.米C.米D.米6.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A.(1,B.C.D.10.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是()A.4 B.8 C.6 D.10二、填空题(本大题共6小题,每小题4分,共24分)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.在中,若,则的度数是______.13.(1)三条平行线截两条直线,所得的的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形.14.在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是____________.15.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.16.如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ= .三、解答题(本大题共8小题,共66分)17.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.18.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB于点E,BD交CE于点F.求证:CF=BF.19.如图,如果,,那么与是否相似?与是否位似?试说明理由.20.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.如图,某仓储中心有一斜坡AB,其坡度为i=1∶2,顶部A处的高AC为4 m,B,C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5 m,EF=2 m,将该货柜沿斜坡向上运送,当BF=3.5 m时,求点D离地面的高.(参考数据:5≈2.236,结果精确到0.1 m)22.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A.B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.23.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.24.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A.B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析一、选择题1.【考点】锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.2.【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.解:A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.3.【考点】二次函数图象上点的坐标特征.【分析】将点(1,﹣2)代入函数解析式,得出关于b的方程,解出即可得出答案.解:将点(1,﹣2)代入函数解析式得:1+b=﹣2,解得:b=﹣3.故选A.【点评】此题考查了待定系数法求二次函数解析式的知识,解答本题的关键是掌握二次函数图象上的点的坐标满足二次函数解析式.4.【考点】几何概率【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.解:如图,连接PA.PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.5.【考点】解直角三角形的应用﹣坡度坡角问题【分析】Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.解:Rt△ABC中,∵BC=5米,tanA=,∴AC=BC÷tanA=15米.故选C.【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用坡度的定义是解答本题的关键.6.【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ADC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.7.【考点】二次函数图象与几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A.三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;教习网-海量精品课件试卷教案免费下载D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.9.【考点】相似三角形的性质;坐标与图形性质.【分析】根据相似三角形对应边成比例求出CB、AC的关系,从而得到===,过点C作CD ⊥y轴于点D,然后求出△AOB和△CDB相似,根据相似三角形对应边成比例求出CD、BD,再求出OD,最后写出点C的坐标即可.解:∵A(﹣4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴==============,∴CO=2CB,AC=2CO,∴AC=4CB,∴===,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴=========,∴CD==AOA==,BD==OOB==,∴OD=OB+BD=2++===,∴点C的坐标为((,,).故选B.【点评】本题考查了相似三角形的性质,坐标与图形性质,主要利用了相似三角形对应边成比例,求出∴===,是解题的关键,也是本题的难点.10.【考点】垂径定理;勾股定理.【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.解:连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE===4,∴AB=2AE=8,故选B.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题11.【考点】概率的意义.【分析】求出一次抛一枚硬币正面朝上的概率即可.解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.【点评】本题考查的是概率的意义,注意抛硬币只有两种情况,每次抛出的概率都是一致的,与次数无关.12.【考点】特殊角的三角函数值【分析】先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.解:在中,,,,,,.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.13.【考点】平行线分线段成比例【分析】根据平行线分线段成比例的定理直接填空.解:(1)三条平行线截两条直线,所得的对应线段的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的两边上的对应线段的比相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形的三边对应成比例.故答案是:对应线段;两边上的对应线段的比;的三边对应成比例.【点评】本题考查了平行线分线段成比例.(1)定理1:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)定理2:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)定理3:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.14.【考点】点与圆的位置关系解:如图,连接AC,∵在矩形ABCD中,AB=8,AD=6,∠ABC=90°,∴,∴AD<AB<AC,∵B,C,D三点中至少有一点在⊙A内,且至少有一点⊙A在外,∴点D一定在⊙A内,点C一定在⊙A外,∴⊙A半径r的取值范围应大于AD的长,小于对角线AC的长,即6<r<10.故答案为:6<r<10.【点睛】要确定点与圆的位置关系,就要确定点到圆心的距离与半径的大小关系,设点与圆心的距离d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.15.【考点】待定系数法求函数解析式【分析】利用抛物线的解析式顶点式确定解:∵抛物线经过顶点(0,-1)∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.16.【考点】正多边形和圆.【分析】连接OA.OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.解:连接OA.OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,,∴△OBP≌△OCQ,∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故答案为:72°.【点评】本题考查的是正多边形和圆、全等三角形的判定和性质,掌握正多边形的中心角的求法、全等三角形的判定定理是解题的关键.三、解答题17.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】此题考查分式的混合运算及特殊角的函数值.18.【考点】圆周角定理【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等,可证得∠2=∠A,又由C是弧BD的中点,证得∠1=∠A,继而可证得CF﹦BF.解:如图所示:∵AB是⊙O的直径,∴∠ACB﹦90°,又∵CE⊥AB,∴∠CEB﹦90°,∴∠2﹦90°-∠3﹦∠A,又∵C是弧BD的中点,∴∠1﹦∠A,∴∠1﹦∠2,∴CF﹦BF.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了直径所对的圆周角为90度和等角的余角相等.19.【考点】位似变换【分析】由AC∥BD,CE∥DF,可证△OAC∽△OBD,△OCE∽△ODF ,继而证得,∠ACE=∠BDF,即可证得△ACE∽△BDF;又由△ACE与△BDF的各对应边的连线过点O,可得△ACE与△BDF位似.解:与相似,与位似.理由:∵,,∴,,教习网-海量精品课件试卷教案免费下载∴,,,,∴,,∴;∵与的各对应顶点的连线过点,∴与位似.【点睛】此题考查了位似变换以及相似三角形的判定与性质.注意相似三角形的各对应顶点连线过同一个点,即可得位似.20.【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A.B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.21.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度定义直接解答即可;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .证出∠GDH=∠SBH ,根据=,得到GH=1m ,利用勾股定理求出DH 的长,然后求出BH=5m ,进而求出HS ,然后得到DS .解:(1)∵坡度为i =1∶2,AC =4 m , ∴BC =4×2=8 m ;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .∵∠DGH =∠BSH ,∠DHG =∠BHS , ∴∠GDH =∠SBH , ∴GH GD =12,∵DG =EF =2 m ,∴GH =1 m , ∴DH =5 m ,BH =BF +FH =3.5+(2.5-1)=5 m ,设HS=x m,则BS=2x m,∴x2+(2x)2=52,∴x= 5 m,∴DS=5+5=25≈4.5 m.∴点D离地面的高为4.5 m.【点评】本题考查了解直角三角形的应用-坡度坡角问题,熟悉坡度坡角的定义和勾股定理是解题的关键.22.【考点】二次函数综合题。
浙江省2018届九年级上学期期末考试数学试题(含答案)

浙江省2018届九年级上学期期末考试数学试题一、选择题(每小题4分,共48分)1.已知,=,则的值等于()A.1B.C.D.2.如图,已知△ABC内接于⊙O,∠BAC=50°,则∠BOC的度数是()A.90°B.100°C.110°D.120°3.抛物线y=x2+2x+1的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=2D.直线x=﹣2 4.如图,⊙O的半径为5,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4B.6C.7D.85.某校组织抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.已知每张奖券获奖的可能性相同,则抽一张奖券中二等奖的概率为()A.B.C.D.6.抛物线y=x2﹣x﹣1与坐标轴的交点个数是()A.0个B.1个C.2个D.3个7.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是()A.120°B.135°C.150°D.165°8.把抛物线y=﹣x2向右平移1个单位,再向下平移2个单位,得到的抛物线是()A.y=﹣(x﹣1)2﹣2B.y=﹣(x﹣1)2+2C.y=﹣(x+1)2﹣2D.y=﹣(x+1)2+29.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m.在点B,C分别测得气球A的仰角∠ABD=45°,∠ACD=60°.则气球A离地面的高度()A.(30﹣10)米B.20米C.(30+10)米D.40米10.如图,点G是△ABC的重心,EF∥BC,交AD于点F,则AF:FG:GD等于()A.3:1:2B.2:1:2C.4:2:3D.4:1:3 11.如图,△ABC是⊙O的一个内接三角形,∠B=60°,AC=6,图中阴影部分面积记为S,则S的最小值()A.8π﹣9B.8π﹣6C.8π﹣3D.8π﹣212.如图,已知AB是半圆O的直径,弦AD,BC相交于点P,若∠A+∠B=α(0<α<90°),那么S△CDP :S△ABP等于()A.sin2αB.cos2αC.tan2αD.二、填空题(本大题共6小题,每小题4分,共24分)13.二次函数y=(x﹣1)2﹣3的最小值是.14.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F.若=,则=.15.已知(﹣2,y1),(﹣1,y2),(3,y3)是抛物线y=x2﹣4x+1上的点,则y1,y2,y3从小到大用“<“排列是.16.如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D分别在OA,OB,上,过点A作AF⊥ED,交ED的延长线于点F,则图中阴影部分的面积等于.17.如图,将一个等腰直角三角形纸片ABC(如图①)沿AD折叠,使直角顶点C落在斜边AB边上的E处(如图②).则可以利用此图求出tan22.5°的值为.18.如图,图中所有四边形都是正方形,其中左上角的n个小正方形与右下角的1个小正方形边长相等,若最大正方形边长是最小正方形边长的m倍,则用含n的代数式表示m的结果为m=.三、解答题(共78分)19.(6分)计算:cos30°﹣sin45°+tan45°cos60°20.(8分)如图,请在三个6×6的网格中各画一个有一个内角的正切值等于3的直角三角形.(要求:所画的这三个直角三角形大小不等)21.(8分)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.(1)从箱子里摸出1个球,是黑球,这属于事件;(填“必然”、“不可能”或“随机”)(2)从箱子里摸出1个球,放回,摇匀后再摸出一个球,请利用树状图或表格计算,这样先后摸得的两个球都是红球的概率.22.(10分)如图,O为Rt△ABC的直角边AC上一点,以OC为半径的圆与斜边AB相切于点D,P是上任意一点,过点P作⊙O的切线,交BC于点M,交AB于点N,已知AB=5,AC=4.(1)△BMN的周长等于;(2)⊙O的半径.23.(10分)已知:如图,AD是△ABC的外角∠EAC的平分线,与△ABC的外接圆交于点D,AC与BD相交于点F.(1)求证:DB=DC;(2)若DA=DF,求证:△BCF∽△BDC.24.(10分)某超市销售一种饮料,每瓶进价为10元.经市场调查表明,当售价在12元到14元之间(含12元,14元)浮动时,日均销售y(瓶)与售价x(元)之间的关系可近似的看作一次函数,且当x=10时,y=500;x=12,y=400.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)应将售价定为每瓶多少元时,所得日均毛利润最大?最大日均毛利润为多少元?(每瓶毛利润=每瓶售价﹣每瓶进价)25.(12分)如图,在边长为5的菱形OABC中,sin∠AOC=,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.26.(14分)我们把经过原点,顶点落在同一抛物线C上的所有抛物线称为抛物线C的派生抛物线.(1)若y1=﹣x2+4x是抛物线C:y=ax2+2的派生抛物线,求a的值.(2)证明:经过原点的抛物线y=﹣mx2+2mx+m﹣2是抛物线C:y=x2+的派生抛物线;(3)如图,抛物线y1,y2,y3,y4…y n都是抛物线C:y=x2﹣2x+2的派生抛物线,其顶点A1,A2,A3,A4…A n的横坐标分别是1、2、3、4…n,它们与x 轴的另一个交点分别是B1,B2,B3,B4…B n,与原点O构成的三角形分别为△OA1B1,△OA2B2,△OA3B3,△OA4B4…△OA n B n.①请用含n的代数式表示抛物线y n的函数表达式;②在这些三角形中,是否存在两个相似的三角形,若存在,请直接写出它们所对应的两个函数的表达式,若不存在,请说明理由.参考答案一、选择题1.解:因为=,则的值=,故选:D.2.解:由圆周角定理得,∠BOC=2∠BAC=100°,故选:B.3.解:∵a=1,b=2,c=1,∴抛物线y=x2+2x+1的对称轴为直线x=﹣=﹣1.故选:B.4.解:连接OA,∵⊙O的半径为5,圆心O到弦AB的距离OM的长为3,∴OA=5,OM=3,∴AM==4,∴AB=2AM=8.故选:D.5.解:抽一张奖券中二等奖的概率为=;故选:C.6.解:令x2﹣x﹣1=0,∵△=(﹣1)2+4=5>0,∴抛物线y=x2﹣x﹣1与x轴有两个交点,与y轴有一个交点,共3个.故选:D.7.解:设这个扇形的圆心角的度数为n°,根据题意得20π=,解得n=150,即这个扇形的圆心角为150°.故选:C.8.解:抛物线y=﹣x2向右平移1个单位,得:y=﹣(x﹣1)2;再向下平移2个单位,得:y=﹣(x﹣1)2﹣2.故选:A.9.解:作AE⊥BD于E,在Rt△ACE中,CE==AE,∵∠ABE=45°,∴BE=AE,由题意得BE﹣CE=20,即AE﹣AE=20,解得AE=30+30≈47.3.答:气球A离地面的高度约为47.3m.故选:C.10.解:∵点G为△ABC的重心,∴E是AC的中点,D是BC的中点,又∵EF∥BC,∴===,即DG=2FG,又∵G是△ABC的重心,∴AG=2DG=4FG,∴AF=3FG,∴AF:FG:GD=3:1:2,故选:A.11.解:连接OA、OC,作OE⊥AC于E.由题意∠AOC =2∠ABC =120°,∵OE ⊥AC ,OA =OC ,∴∠AOE =∠COE =60°,AE =EC =3,∴OE =,OA =2,∵S 阴=S 弓形ABC ﹣S △ACB ,∴当△ABC 面积最大时,S 阴的面积最小,∵当点B 在EO 的延长线上时,△ABC 的面积最大,∴S 阴的最小值=S扇形OAC +S ∠AOC ﹣S △ABC =+×6×﹣×6×3=8π﹣6.故选:B .12.解:连接BD ,由AB 是直径得,∠ADB =90°.∵∠DPB =∠A +∠PBA =α,∴cos α=,∵∠C =∠A ,∠CPD =∠APB∴△CPD ∽△APB ,∴=()2=cos 2α.故选:B .二、填空题(本大题共6小题,每小题4分,共24分) 13.解:二次函数y =(x ﹣1)2﹣3开口向上,其顶点坐标为(1,﹣3), 所以最小值是﹣3.14.解:∵l1∥l2∥l3,∴,∴,故答案为:.15.解:y1=(﹣2)2﹣4×(﹣2)+1=4+8+1=13,y2=(﹣1)2﹣4×(﹣1)+1=1+4+1=6,y3=32﹣4×3+1=9﹣12+1=﹣2,∵﹣2<6<13,∴y3<y2<y1.故答案为:y3<y2<y1.16.解:连接OD,∵正方形的边长为1,即OC=CD=1,∴OD=,∴AC=OA﹣OC=﹣1,∵DE=DC,BE=AC,弧BD=弧AD=长方形ACDF的面积=AC•CD=﹣1.,∴S阴故答案为:﹣117.解:设AC=BC=a,由勾股定理可得AB=a,由折叠的性质可得AE=AC=a,则BE=(﹣1)a,则CD=DE=BE=(﹣1)a,则tan22.5°==﹣1.故答案为:﹣1.18.解:如图,过A作AB⊥FG于B,则△ABC∽△CDE,∴=2,设小正方形的边长为1,则答正方形的边长为m,∴AB=m﹣1,BF=n,DE=1,∴BC=2DE=2,CD=AB=(m﹣1),∴FG=FB+BC+CD+DG=n+2+(m﹣1)+1=m,∴m=2n+5,故答案为:2n+5.三、解答题(共78分)19.解:原式=×﹣×+1×=﹣1+=1.20.解:如图所示:都是符合题意的图形.21.解:(1)∵箱子里放有1个白球和2个红球,∴从箱子里摸出1个球,是黑球,这属于不可能事件;故答案为:不可能;(2)画树状图得:∵摸出的两球一共有9中可能的结果,摸出的球中有两个球刚好是一红一白有4种情况,∴两个球刚好是一红一白的概率=.22.解:(1)在Rt△ABC中,AB=5,AC=4,∴BC=3,∵AC⊥BC,∴BC为⊙O的切线,∵AB为⊙O的切线,∴BD=BC=3,∵MN为⊙O的切线,∴PM=CM,PN=DN,∴BM+BN+MN=BM+PM+BN+PN=BM+MC+BN+ND=BC+BD=3+3=6,即△BMN的周长为6,故答案为:6;(2)如图,连接OD,∵AB为⊙O的切线,∴OD⊥AB,设半径为r,则AO=AC﹣r=4﹣r,AD=AB﹣BD=5﹣3=2,在Rt△AOD中,由勾股定理可得r2+22=(4﹣r)2,解得r=1.5,∴⊙O的半径为1.5.23.证明:(1)∵AD是∠EAC的平分线,∴∠EAD=∠DAC,∵∠EAD是圆内接四边形ABCD的外角,∴∠EAD=∠DCB(圆内接四边形外角等于内对角),又∵∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC;(2)∵DA=DF,∴∠DAF=∠DF A,∵∠DAF=∠FBC,∠DF A=∠BFC,∴∠FBC=∠BFC,∵∠DCB=∠DBC,∴∠DCB=∠BFC,而∠FBC=∠DBC,∴△BCF∽△BDC.24.解:(1)设y=kx+b,根据题意,得:,解得:,则y=﹣50x+1000(10≤x≤14);(2)设毛利润为w,则w=(﹣50x+1000)(x﹣10)=﹣50x2+1500x﹣10000=﹣50(x﹣15)2+1250,∴当x<15时,w随x的增大而增大,∵10≤x≤14,∴当x=14时,w取得最大值,最大值为1200,答:应将售价定为每瓶14元时,所得日均毛利润最大,最大日均毛利润为1200元.25.解:(1)如图1,当CP ⊥OA 时,sin ∠AOC ==,即=,CP =4, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴t ==3…3分(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);…5分当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠P AH ,∴sin ∠P AH =sin ∠AOC =,∴,即PH =﹣4,∴AH =t ﹣3,OH =OA +AH =t +2,∴P (t +2, t ﹣4);…8分(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,⊙P 与直线AB 相切,∵OC ∥AB ,∴∠AOC =∠OAG ,∴sin ∠AOC =sin ∠OAG ==,∴=, ∴t =; ⊙P 与BC 相切时,如图4,则PG =t =OP =4;②当点P 在OC 上时,⊙P 与AB 相切时,如图5,∴OP =PG =4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GCP==,∵OP=PG=20﹣t,∴,∴t=,综上所述,t的值为秒或4秒或16秒或秒…12分26.解:(1)y1=﹣x2+4x的顶点坐标(2,4),∵y1=﹣x2+4x是抛物线C:y=ax2+2的派生抛物线,∴4=4a+2,∴a=.(2)∵抛物线经过原点(0,0),∴m﹣2=0,∴m=2,∴抛物线的解析式为y=﹣2x2+4x,顶点(1,2),当x=1时,y=×12+=2,∴抛物线的解析式为y=﹣2x2+4x,顶点(1,2)在抛物线C:y=x2+上,∴经过原点的抛物线y=﹣mx2+2mx+m﹣2是抛物线C:y=x2+的派生抛物线;(3)①设y n=a(x﹣n)2+n2﹣2n+2,∵经过原点,∴0=a(0﹣n)2+n2﹣2n+2,∴a=﹣,∴y n=﹣(x﹣n)2+n2﹣2n+2.②存在.y1=﹣(x﹣1)2+1,y2=﹣(x﹣2)2+2,理由:△OA1B1,△OA2B2都是等腰直角三角形.∴△OA1B1∽△OA2B2;。
2018年秋浙教版数学九年级上第4章综合达标测试卷(有答案)

第4章综合达标测试卷(满分:100分 时间:90分钟)一、选择题(每小题2分,共20分)1.已知a b =cd ,则下列式子中正确的是( C )A .a ∶b =c 2∶d 2B .a ∶d =c ∶bC .a ∶b =(a +c )∶(b +d )D .a ∶b =(a -d )∶(b -d )2.下列各组线段的长度成比例的是( C ) A .2 cm,3 cm,4 cm,5 cm B .2.5 cm,3.5 cm,4.5 cm,6.5 cm C .1.1 cm,2.2 cm,4.4 cm,8.8 cmD .1 cm,3 cm,4 cm,6 cm3.已知△ABC ∽△DEF ,S △ABC ∶S △DEF =1∶4.若BC =1,则EF 的长为( B ) A .1 B .2 C .3D .44.如图,已知△ABC 与△ADE 中,∠C =∠AED =90°,点E 在AB 上,那么添加下列一个条件后,仍无法判定△ABC ∽△DAE 的是( B )A .∠B =∠D B .AC DE =ABADC .AD ∥BCD .∠BAC =∠D5.如图,身高1.6米的学生想测量学校旗杆的高度,当他站在点C 处时,他头顶端的影子正好与旗杆的影子重合在点A 处,测量得到AC =2米,BC =20米,则旗杆的高度是( C )A .15米B .16米C .17.6米D .18米6.如图所示的三个矩形中,相似的是( B )第6题A .甲与乙B .乙与丙C .甲与丙D .甲、乙、丙都相似7.△ABC 三个顶点的坐标分别为A (2,2)、B (4,2)、C (6,6),在此直角坐标系中作△DEF ,使得△DEF 与△ABC 位似,且以原点O 为位似中心,位似比为1∶2,则△DEF 的面积为( B )A .12B .1C .2D .48.如图,在△ABC 中,已知MN ∥BC ,DN ∥MC ,某同学由此得出了以下四个结论:①AN NC =AM AB ;②AD DM=DN MC ;③AN NC =AM MB ;④DN MC =MNBC.其中正确结论的个数为( B )第8题A .1B .2C .3D .49.如图,在△ABC 中,AD ∶DC =1∶2,E 为BD 的中点,延长AE 交BC 于点F ,则BF ∶FC =( C )第9题A .1∶5B .1∶4C .1∶3D .1∶210.已知△ABC 的三边长分别为20 cm,50 cm,60 cm ,现要利用长度分别为30 cm 和60 cm 的细木条各一根,做一个三角形木架与△ABC 相似,要求以其中一根为一边,将另一根截成两段(允许有余料)作为另外两边,那么另两边的长度(单位:cm)分别为( D )A .10,25B .10,36或12,36C .12,36D .10,25或12,36二、填空题(每小题3分,共24分) 11.如果a -b b =35,那么a b = 85.12.若a =5,b =10,则a 、b 13.已知△ABC 与△DEF 相似且对应中线的比为2∶3,则△ABC 与△DEF 的周长比为__2∶3__. 14.在比例尺为1∶10 000的地图上有一块面积为2 cm 2的地方,它的实际面积为__20_000__m 2. 15.如图,在正方形网格上,若使△ABC ∽△PBD ,则点P 应是P 1、P 2、P 3、P 4中的点__P 3__.第15题16.如图,已知小鱼同学的身高(CD )是1.6米,她与树(AB )在同一时刻的影子长分别为DE =2米,BE =5米,那么树的高度AB = __4__ 米.第16题17.在平面直角坐标系中,点A (2,3)、B (5,-2),以原点O 为位似中心,位似比为1∶2,把△ABO 缩小,则点B 的对应点B ′的坐标是 ⎝⎛⎭⎫52,-1或⎝⎛⎭⎫-52,1 .第17题18.如图,△ABC 中,∠C =90°,AC =BC =2,取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2,照此规律作下去,则S 2017= ⎝⎛⎭⎫142016.第18题三、解答题(共56分)19.(8分)如图,在四边形ABCD 中,E 、F 分别在边AB 、DC 上,且AD ∥EF ∥BC ,AE ∶EB =3∶2,AD =3,BC =7,求EF 的长.第19题解:连结BD 交EF 于点G .∵EF ∥AD ∥BC ,∴EG AD =BE BA ,GF BC =DF DC =AE AB ,即EG 3=25,GF 7=35.解得EG =65,GF =215.∴EF =EG +GF =275.20.(8分)如图,AC =4,BC =6,∠B =36°,∠D =117°,△ABC ∽△DAC . (1)求∠BAD 的大小; (2)求CD 的长.第20题解:(1)∵△ABC ∽△DAC ,∴∠DAC =∠B =36°,∠BAC =∠D =117°,∴∠BAD =∠BAC +∠DAC =153°. (2)∵△ABC ∽△DAC ,∴CD AC =ACBC .又AC =4,BC =6,∴CD =4×46=83.21.(9分)如图,AC 是圆O 的直径,AB 、AD 是圆O 的弦,且AB =AD ,连结BC 、DC . (1)求证:△ABC ≌△ADC ;(2)延长AB 、DC 交于点E ,若EC =5,BC =3,求四边形ABCD 的面积.第21题(1)证明:∵AC 是圆O 的直径,∴∠ABC =∠D =90°.在Rt △ABC 与Rt △ADC 中,∵⎩⎪⎨⎪⎧AC =AC ,AB =AD , ∴Rt △ABC ≌Rt △ADC . (2)由(1)知Rt △ABC ≌Rt △ADC ,∴CD =BC =3,AD =AB ,∴DE =5+3=8.∵∠EAD =∠ECB ,∠D =∠EBC =90°,∴△EAD ∽△ECB ,∴AD BC =DE BE .∵BE =CE 2-BC 2=4,∴AD 3=84,∴AD =6,∴四边形ABCD的面积=S △ABC +S △ACD =2×12×3×6=18.22.(9分)如图,一条东西走向的笔直公路,点A 、B 表示公路北侧间隔150米的两棵树所在的位置,点C 表示电视塔所在的位置.小王在公路南侧PQ 沿直线行走,当他到达点P 的位置时,观察电视塔,树A 恰好挡住电视塔,即点P 、A 、C 在一条直线上,当他继续走180米到达点Q 的位置时,以同样方法观察电视塔,树B 也恰好挡住电视塔.假设公路两侧AB ∥PQ ,且公路的宽为60米,求电视塔C 到公路南侧PQ 的距离.第22题解:如图所示,作CE ⊥PQ 于点E ,交AB 于点D . 设CD 为x 米,则CE =(60+x )米.∵AB ∥PQ ,∴△ABC ∽△PQC ,∴CD AB =CE PQ ,即x150=x +60180,解得x =300.∴x +60=360 ,即电视塔C 到公路南侧PQ 的距离是360米.23.(10分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (-2,4)、B (-2,1)、C (-5,2). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A 2、B 2、C 2的坐标,请画出△A 2B 2C 2; (3)S △A 1B 1C 1∶S △A 2B 2C 2=__1∶4__ .第23题(1)(2)略24.(12分)如图,直线y =-x +20与x 轴、y 轴分别交于A 、B 两点,动点P 从点A 开始在线段AO 上以每秒3个单位长度的速度向原点O 运动.动直线EF 从x 轴开始以每秒1个单位长度的速度向上平行移动(即EF ∥x 轴),并且分别与y 轴、线段AB 交于E 、F 两点.连结FP ,设动点P 与动直线EF 同时出发,运动时间为t 秒.(1)当t =1时,求梯形OPFE 的面积;(2)当t 为何值时,梯形OPFE 的面积最大?最大面积是多少?(3)设t 的值分别取t 1、t 2(t 1≠t 2)时,△AFP 所对应的三角形分别为△AF 1P 1和△AF 2P 2,试判断这两个三角形是否相似,并说明你的理由.第24题解:(1)由题意,知A (20,0)、B (0,20),∴OA =OB =20,∠A =∠B =45°.当t =1时,OE =1,AP =3,∴OP=17,EF =BE =19,∴S 梯形OPFE =12(OP +EF )·OE =18.(2)∵OE =t ,AP =3t ,∴OP =20-3t ,EF =BE =20-t ,∴S =12(OP +EF )·OE =12(20-3t +20-t )·t =-2t 2+20t =-2(t -5)2+50⎝⎛⎭⎫0<t <203,∴当t =5时,S 最大值=50.即当t =5时,梯形OPFE 的面积最大,最大面积为50. (3)△AF 1P 1和△AF 2P 2相似.理由如下:作FD ⊥x 轴于点D ,则四边形OEFD 为矩形,∴FD =OE =t ,AF =2FD =2t ,AP =3t .当t =t 1时,AF 1=2t 1,AP 1=3t 1;当t =t 2时,AF 2=2t 2,AP 2=3t 2,∴AF 1AF 2=t 1t 2=AP 1AP 2.又∵∠F 1AP 1=∠F 2AP 2,∴△AF 1P 1∽△AF 2P 2.。
最新浙教版2018-2019学年上学期九年级数学期末测试题含答案

18.动手画一画,请把下图补成以 A 为对称中心的中心对称图形.
A
19.如图, AB 是⊙ O 的直径,点 C 是⊙ O 上一点,连接 BC, AC,OD ⊥ BC 于 E.
( 1)求证: OD ∥ AC;
( 2)若 BC=8, DE =3,求⊙ O 的直径.
D
C
E
B
A
O
20.已知关于 x 的一元二次方程 x2+ 2( k- 1) x+ k2- 1=0 有两个不相等的实数根. ( 1)求实数 k 的取值范围; ( 2) x=0 可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
16.如图,在⊙ O 中, AB 为⊙ O 的直径, AB=4.动点 P 从 A 点出发,以每秒 π个单位的速度在⊙ O 上按顺时针方 向运动一周.设动点 P 的运动时间为 t 秒,点 C 是圆周上一点,且
∠AOC =40°,当 t= ▲ 秒时,点 P 与点 C 中心对称,且对称中心在直径 AB 上.
A . 70°
B. 110 °
C. 120 °
D. 130 °
C
F E
O
B′
C
C′
B
D
A
(第 4 题)
B
A
(第 5 题)
5.如图,把△ ABC 绕着点 A 顺时针方向旋转 34°,得到△ AB′C′,点 C 刚好落在边 B′C′上. 则∠ C′(= ▲ )
A . 56°
B. 62°
C. 68°
D. 73°
4. 本次考试不得使用计算器,请耐心解答 . 祝你成功!
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确
2018-2019学年浙教版九年级数学第一学期期末试卷(含答案)

2018-2019学年九年级数学(上)期末试卷一•选择题(共12小题,满分48分)1 •对于抛物线y= -(x+2)2+3,下列结论中正」确结论的个数为()①抛物线的开口向下;②对称轴是直线x= - 2;③图象不经过第一象限;④当x>2时,y随x的增大而减小.A. 4B. 3C. 2 D . 12. 已知△ ABC 中,/ C=90°,AC=6 , BC=8,贝U cosB的值是()A. 0.6B. 0.75C. 0.8 D ."3. 下列事件中,是必然事件的是()A .明天太阳从东方升起B. 随意翻到一本书的某页,这页的页码是奇数C. 射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯4. 若2a=3b,贝叮等于()aA.二B. 1C. = D .不能确定5. —个扇形的圆心角是60。
,半径是6cm,那么这个扇形的面积是()A. 3 n CmB. n cmC. 6 n Cm D . 9 n Sm6. 下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂宜于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有()7. 如图,在厶ABC 中,点D 是AB 边上的一点,若/ACD= / B , AD=1 , AC=2 ,△ ADC 的面积为3,则厶BCD 的面积为( )则弧DE 的长为(C .n 4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线y=x 2上的概率是() B. '■ 10. 如图,已知 AB 是。
O 的直径,点P 在BA 的延长线上,PD 与。
O 相切于 点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若。
O 的半径为4, BC=6,B. C . 68.如图,菱形ABCD 中, / B=70 ,AB=3,以AD 为直径的。
O 交CD 于点E , B .B . 2 二C . 3D . 2.5 D . .1A . 12 D9.从 1、2、3、 A . 4则PA的长为()11. 如图,已知点C在以AB为直径的。
2018年秋浙教版数学九年级上第3章综合达标测试卷有答案

第3章综合达标测试卷(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.如图,∠BAC=25°,∠DEC=30°,则圆心角∠BOD的度数为(B)A.55°B.110°C.125°D.150°2.如图,AB是⊙O的直径,C是⊙O上的一点,若AC=8,AB=10,OD⊥BC于点D,则BD的长为(A)A.3 B.4C.5 D.63.过⊙O内一点M的最长弦长为10 cm,最短弦长为8 cm,那么OM的长为(A)A.3 cm B.6 cmC.41 cm D.9 cm4.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段OM的长的取值范围是(B)A.3≤OM≤5 B.4≤OM≤5C.3<OM<5 D.4<OM<55.如图,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为点E,若OE=3,则AB的长是(C)A.4 B.6C.8 D.106.如图,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于( B )A .π2B .π3C .π4D .π67.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点A 旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了( B )A .5π cmB .3π cmC .2π cmD .π cm8.若四边形ABCD 是⊙O 的内接四边形,且∠A ∶∠B ∶∠C =1∶3∶8,则∠D 的度数是( D ) A .10° B .30° C .80°D .120°9.如图,在正六边形ABCDEF 中,四边形BCEF 的面积为30,则正六边形ABCDEF 的面积为( D )A .20 3B .40C .20 5D .4510.如图,将△ABC 绕点C 顺时针旋转60°得到△A ′B ′C ,已知AC =6,BC =4,则线段AB 扫过的图形的面积为( D )A .23πB .83πC .6πD .103π二、填空题(每小题3分,共24分)11.如图,在圆内接△ABC 中,点D 、E 、F 分别是BC 、AB 、CA 的中点,连结DE 、DF ,要使四边形AEDF 是菱形,应补充的一个条件为__AB =AC (答案不唯一)__.12.如图,△ABC 是⊙O 的内接三角形,点D 是BC ︵的中点.已知∠AOB =98°,∠COB =120°,则∠ABD 的度数为__101°__.13.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C =15°,AB =6 cm ,则⊙O 半径为__6__cm.14.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,GB =8 cm ,AG =1 cm ,DE =2 cm ,则EF =__6__cm.15.已知⊙O 的半径OA =6,以点A 为圆心,OA 为半径的弧交⊙O 于B 、C 两点,则BC 16.如图,四边形ABCD 是⊙O 的内接四边形,点E 在AB 的延长线上,BF 是∠CBE 的平分线,∠ADC =110°,则∠FBE =__55°__ .17.如图,在△ABC 中,∠ACB =90°,AC =1,AB =2,以点A 为圆心,AC 为半径画弧,交AB 于点D ,则扇形CAD 的周长是 π3+2 .(结果保留π)18.如图,四边形ABCD 是菱形,∠A =60°,AB =6,扇形BEF 的半径为6,圆心角为60°,则图中阴影部分的三、解答题(共56分)19.(8分)如图,⊙O 是△ABC 的外接圆,∠A =45°,BD 是直径,且BC =2,连结CD ,求BD 的长.第19题解:∵∠A 和∠D 所对的弧都是BC ︵,∴∠D =∠A =45°.∵BD 是直径,∴∠DCB =90°,∴∠D =∠DBC =45°,∴CB =CD =2. 在Rt △BCD 中,由勾股定理,得BD =2 2. 20.(8分)阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖,如图1中的三角形被一个圆所覆盖,图2中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,求r 的最小值并说明理由; (2)边长为1 cm 的等边三角形被一个半径为r 的圆所覆盖,求r 的最小值并说明理由; (3)长为2 cm ,宽为1 cm 的矩形被两个半径都为r 的圆所覆盖,求r 的最小值并说明理由.第20题解:(1)当正方形的中心就是圆心时,r 有最小值,最小值为1+12=22(cm ). (2)当正三角形的中心就是圆心时,r 有最小值,最小值为23×32=33(cm ). (3)当两圆相交于矩形长边中点时,r 有最小值,最小值为22cm .21.(9分)如图所示,⊙O 是△ABC 的外接圆,∠BAC 与∠ABC 的平分线相交于点I ,延长AI 交⊙O 于点D ,连结BD 、DC .(1)求证:BD =DC =DI ;(2)若⊙O 的半径为10,∠BAC =120°,求△BDC 的面积.第21题(1)证明:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∴BD ︵ =DC ︵,∴BD =DC .∵BI 平分∠ABC ,∴∠ABI =∠CBI .∵∠BAD =∠DAC ,∠DBC =∠DAC ,∴∠BAD =∠DBC .又∵∠DBI =∠DBC +∠CBI ,∠DIB =∠ABI +∠BAD ,∴∠DBI =∠DIB ,∴BD =ID ,∴BD =DC =DI .(2)解:∵∠BAC =120°,四边形ABDC 为圆内接四边形,∴∠BDC =60°.∵BD =DC ,∴△BDC 为等边三角形.连结CO 并延长交BD 于点E ,则OE ⊥BD ,连结OB 、OD ,∴BE =12BD .又∵OB =10,OE =12OC =5,∴BE =OB 2-OE 2=53,∴BD =2BE =10 3.又∵CE =OE +OC =15,∴S △BDC =12BD ·CE =12×103×15=75 3.22.(9分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,点C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE =23,∠DP A =45°.求:(1)⊙O 的半径;(2)图中阴影部分的面积.第22题解:(1)∵弦DE 垂直平分半径OA ,∴CD =12DE =3,CO =12AO =12OE .又∵∠OCE =90°,∴∠CEO =30°,∴OA =2.即⊙O 的半径为2.(2)连结OF .在Rt △DCP 中,∵∠DPC =45°,∴∠D =90°-45°=45°,∴∠EOF =2∠D =90°.∵S 扇形OEF =90360×π×22=π,S △OEF =12·OE ·OF =12×2×2=2,∴S 阴影=S 扇形OEF -S △OEF =π-2.23.(10分)如图,A 、B 、C 为⊙O 上的点,PC 过点O ,交⊙O 于点D ,PD =OD ,若OB ⊥AC 于点E . (1)判断A 是否是PB 的中点,并说明理由; (2)若⊙O 半径为8,试求BC 的长.第23题解:(1)A 是PB 的中点.理由:连结AD .∵CD 是⊙O 的直径,∴AD ⊥AC .∵OB ⊥AC ,∴AD ∥OB .∵PD =OD ,∴P A =AB ,∴A 是PB 的中点.(2)∵AD ∥OB ,∴△APD ∽△BPO ,∴AD OB =PD OP =12.∵⊙O 半径为8,∴OB =8,∴AD =4,∴AC =CD 2-AD 2=415.∵OB ⊥AC ,∴AE =CE =215.∵OE =12AD =2,∴BE =6,∴BC =BE 2+CE 2=4 6.24.(12分)如图,已知△ABC 是⊙O 的内接正三角形,P 为弧BC 上一点(与点B 、C 不重合). (1)如果点P 是弧BC 的中点,求证:PB +PC =P A ;(2)如果点P 在弧BC 上移动,(1)的结论还成立吗?请说明理由.第24题(1)证明:连结OB 、OC .∵点P 是弧BC 的中点,△ABC 是⊙O 的内接正三角形,∴AP 为⊙O 的直径,∴∠BPO =∠ACB ,∠APC =∠ABC .∵△ABC 是⊙O 的内接正三角形,∴∠ACB =∠ABC =60°,∴∠BPO =∠APC =60°,∴△OBP 和△OPC 都是等边三角形,∴PB =PC =OP =OA ,∴PB +PC =P A .(2)解:(1)中的结论还成立.理由如下:在P A 上截取PE =PC ,连结CE .∵∠APC =60°,∴△PEC 为等边三角形,∴CE =CP ,∠PCE =60°.∵∠ACB =60°,∴∠ACE =∠BCP .又∵CA =CB ,∴△CAE ≌△CBP ,∴AE =PB ,∴PB +PC =P A .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末综合达标测试卷(满分:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( B )A .4个B .3个C .2个D .1个2.如图,在△ABC 中,D 、E 两点分别在BC 、AC 边上.若BD =CD ,∠B =∠CDE ,DE =2,则AB 的长为( A )第2题A .4B .5C .6D .73.如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 的度数为( A )第3题A .25°B .30°C .40°D .50°4.如图,在△ABC 中,∠B =90°,AB =6,BC =8,将△ABC 沿DE 折叠,使点C 落在AB 边上的点C ′处,并且C ′D ∥BC ,则CD 的长是( A )第4题A .409B .509C .154D .2545.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是( C )A .15B .25C .35D .236.在同一坐标系中,一次函数y =ax +b (a ≠0)与二次函数y =bx 2+a (b ≠0)的图象可能是( C )7.如图,AB 为⊙O 的直径,弦DC ⊥AB 于点E ,∠DCB =30°,EB =3,则弦DC 的长度为( D )第7题A .3 3B .4 3C .5 3D .6 38.如图,在四边形ABCD 中,E 、F 分别在AD 和BC 上,AB ∥EF ∥DC ,且DE =3,DA =5,CF =4,则FB 等于( B )第8题A .32B .83C .5D .69.在一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,应在该盒子中再添加红球( B )A .2个B .3个C .4个D .5个10.已知关于x 的方程a x-x 2+2x -3=0只有一个实数根,则实数a 的取值范围是( C )A .a >0B .a <0C .a ≠0D .a 为一切实数二、填空题(每小题4分,共32分)11.给出下列四个函数:①y =-x ;②y =x ;③y =1x;④y =x 2(x <0).其中,y 随x 的增大而减小的函数有 ①④ .(写出正确答案的序号)12.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件__∠ADE =∠C (答案不唯一)__(写出一个即可)时,△ADE ∽△ACB .第12题13.如图,AB 是⊙O 的直径,BC ︵ =CD ︵ =DE ︵,∠COD =34°,则∠AEO 的度数是__51°__ .第13题14.如图,△ABC 中,点D 、E 分别在边AB 、BC 上,DE ∥AC .若BD =4,DA =2,BC =5,则EC = 53.第14题15.在一个暗箱里放有m 个除颜色外其他完全相同的球,这m 个球中绿球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到绿球的频率稳定在25%,那么可以推算出m 大约是__12__.16.出售某种文具盒,若每个获利x 元,一天可售出(6-x )个,则当x =__3__元时,一天出售该种文具盒的总利润最大.17.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为__9__ .18.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t =6411或245时,△CPQ 与△CBA 相似.第18题三、解答题(共58分)19.(8分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1,2,3,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标,将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标.(1)写出点M 坐标的所有可能的结果; (2)求点M 在直线y =x 上的概率;(3)求点M 的横坐标与纵坐标之和是偶数的概率. 解:(1)列表如下:由表可知,点M 坐标的所有可能的结果有9个:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3). (2)由表可得,点M 在直线y =x 上的结果有(1,1),(2,2),(3,3),共3个,∴所求概率P =39=13.(3)点M 的横、纵坐标之和为偶数的结果有(1,1),(1,3),(2,2),(3,1),(3,3),共5个,∴所求概率P =59.20.(8分)如图,AB =3AC ,BD =3AE ,BD ∥AC ,点B 、A 、E 在同一条直线上.第20题(1)求证:△ABD ∽△CAE ;(2)如果AC =BD ,AD =22BD ,设BD =a ,求BC 的长.(1)证明:∵BD ∥AC ,点B 、A 、E 在同一条直线上,∴∠DBA =∠CAE .又∵AB AC =BDAE=3,∴△ABD ∽△CAE . (2)解:∵AB =3AC =3BD ,AD =22BD ,∴AD 2+BD 2=8BD 2+BD 2=9BD 2=AB 2, ∴∠D =90°.由(1)得∠E =∠D =90°.∵AE =13BD ,EC =13AD =223BD ,AB =3BD ,∴在Rt △BCE 中,BC 2=(AB +AE )2+EC 2=12BD 2=12a 2,∴BC =23a .21.(9分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 于点E ,交BC 于点D .求证:第21题(1)D 是BC 的中点; (2)△BEC ∽△ADC ; (3)BC 2=2AB ·CE .证明:(1)∵AB 是⊙O 的直径,∴∠ADB =90°,即AD 是底边BC 上的高.又∵AB =AC ,∴△ABC 是等腰三角形,∴D 是BC 的中点. (2)∵∠CBE 与∠CAD 是同弧所对的圆周角,∴∠CBE =∠CAD .又∵∠BCE =∠ACD ,∴△BEC ∽△ADC . (3)由△BEC ∽△ADC ,知CD AC =CEBC,即CD ·BC =AC ·CE .∵D 是BC 的中点,∴CD =12BC .又∵AB =AC ,∴12BC ·BC =AB ·CE ,即BC 2=2AB ·CE . 22.(9分)如图,已知AB 是半圆O 的直径,点P 是半圆上一点,连结BP ,并延长BP 到点C ,使PC =PB ,连结AC .(1)求证:AB =AC ;(2)若AB =4,∠ABC =30°,求阴影部分的面积.第22题(1)证明:连结AP .∵AB 是半圆O 的直径,∴∠APB =90°,∴AP ⊥BC .又∵PC =PB ,∴△ABC 是等腰三角形,即AB =AC . (2)解:∵∠APB =90°,AB =4,∠ABC =30°,∴AP =12AB =2,∴BP =AB 2-AP 2=2 3.连结OP .∵∠ABC =30°,∴∠PAB =60°,∴∠POB =120°.∵点O 是AB 的中点,∴S ΔPOB =12S ΔPAB =12×12AP ·PB=14×2×23=3,∴S 阴影=S 扇形BOP -S ΔPOB =120π×22360-3=43π- 3. 23.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y (单位:元)与销售价x (单位:元/件)之间的函数解析式; (2)当销售价定为45元时,计算月销售量和销售利润;(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10 000元,销售价应定为多少? (4)当销售价定为多少元时会获得最大利润?并求出最大利润.解:(1)由题意,得y =(x -30)[600-10(x -40)]=-10x 2+1300x -30 000. (2)当x =45时,600-10(x -40)=550,y =550×(45-30)=8250.即月销售量和销售利润分别为550件,8250元. (3)当y =10 000时,即10 000=-10x 2+1300x -30 000,解得x 1=50,x 2=80.当x =80时,600-10×(80-40)=200<300(不合题意,舍去),故销售价应定为50元. (4)y =-10x 2+1300x -30 000=-10(x -65)2+12 250,故当x =65时,y 有最大值.即当销售价定为65元时获得最大利润,最大利润为12 250元.24.(14分)如图,已知抛物线y =12x 2+bx +c 与y 轴相交于点C ,与x 轴相交于A 、B 两点,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△CDE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.第24题解:(1)将A 、C 的坐标代入y =12x 2+bx +c ,易得二次函数的解析式为y =12x 2-12x -1. (2)设点D 的坐标为(m,0)(0<m <2),则OD =m ,AD =2-m .由△ADE ∽△AOC ,得AD AO =DE OC .∴2-m 2=DE 1,∴DE =2-m2,∴△CDE 的面积为12×2-m 2×m =-14(m -1)2+14.当m =1时,△CDE 的面积最大,此时点D 的坐标为(1,0). (3)存在.易求得直线BC 的解析式为y =-x -1.在Rt △AOC 中,∠AOC =90°,OA =2,OC =1,∴AC = 5.∵OB =OC ,∴∠BCO =45°.①当PC =AC =5时,设P (k ,-k -1).过点P 作PH ⊥y 轴于点H ,如图1,则∠HCP =∠BCO =45°,CH =PH =|k |.在Rt △PCH 中,k 2+k 2=()52,解得k 1=102,k 2=-102.∴点P 坐标为⎝⎛⎭⎪⎫102,-102-1或⎝ ⎛⎭⎪⎫-102,102-1;②当AC =AP =5时,设P (k ,-k -1).过点P 作PG ⊥x 轴于点G ,如图2.AG =|2-k |,GP =|-k -1|.在Rt △APG 中,由AG 2+PG 2=AP 2,可得k 1=1,k 2=0(舍去),∴P (1,-2);③当PC =AP 时,设P (k ,-k -1).过点P 作PQ ⊥y 轴于点Q ,PL ⊥x 轴于点L ,如图3,∴L (k,0),∴△QPC 为等腰直角三角形,PQ =CQ =k ,∴CP =PA =2k .在Rt △APL 中,AL =|k -2|,PL =|-k -1|,∴(2k )2=(k -2)2+(k +1)2,解得k =52,∴P ⎝ ⎛⎭⎪⎫52,-72.综上所述,点P 的坐标为⎝ ⎛⎭⎪⎫102,-102-1或⎝ ⎛⎭⎪⎫-102,102-1或(1,-2)或⎝ ⎛⎭⎪⎫52,-72.图1图2图3。