专题突破(五)
专题突破5 开放探究题

3 3 + = , -2 3k+b=0, = k= 10 , ∴ 3 解得 9 + = 2 k+b=4, b=9. =5
3 3 9 ∴直线 AC 的解析式为 y= 10 x+5. = +
·新课标
专题突破五
(3)存在.设抛物线顶点为 N(0,6),在 Rt△AON 中,易得 AN 存在. 存在 , △ 点为圆心, = =4 3,于是以 A 点为圆心,AB=4 3为半径作圆与抛物线在 x 轴 , 为半径作圆与抛物线在 上方一定有交点 Q,连接 AQ,再作∠QAB 平分线 AP 交抛物线于 , ,再作∠ P,连接 BP、PQ,此时由“边角边”易得△AQP≌△ ≌△ABP. , 、 ,此时由“边角边”易得△ ≌△
·新课标
专题突破五
7.[2011·漳州 如图 Z5-2,∠B=∠D,请在不添加辅助线 . 漳州]如图 漳州 - , = , 的情况下,添加一个适当的条件, ≌△ADE 并证明. 并证明. 的情况下,添加一个适当的条件,使△ABC≌△ ≌△ (1)添加的条件是 添加的条件是___________; 添加的条件是 ; (2)证明:△ABC≌△ 证明: ≌△ADE. 证明 ≌△
·新课标
专题突破五
6.[2011·贵阳 在三个整式 x2-1,x2+2x+1,x2+x 中,请 . 贵阳]在三个整式 贵阳 , + , 你从中任意选择两个,将其中一个作为分子, 你从中任意选择两个,将其中一个作为分子,另一个作为分母组 成一个分式,并将这个分式进行化简, 成一个分式,并将这个分式进行化简,再求当 x=2 时分式的值. = 时分式的值.
图 Z5-1 -
[解析 由于该图中出现三个正方形和本身是直角三角形,所以很容 解析] 由于该图中出现三个正方形和本身是直角三角形, 解析 易发现里面所有的直角三角形都是相似的, 的长, 易发现里面所有的直角三角形都是相似的,为此要求 x 的长,可考 x-3 - DF EF 3 虑用相似来求, 易得△ ∽△IGH, 虑用相似来求, 易得△DEF∽△ ∽△ , 所以 IH =GH, 4 = 即 , x-4 - 解得 x=7. =
人教版高考地理一轮总复习第5章 地貌与地表形态的塑造 专题突破五 特殊地貌的成因分析

特殊地貌的成因分析
地理
突破点1 河流阶地
(1)在地势较低平的地方,河流的侧蚀和堆积作用增强,形成河漫滩。 (2)地壳抬升,河流下切。 (3)河流下切至地下含水层,地下水汇入,流速减慢,河流进行新的侧蚀和堆 积,形成新的河漫滩。 (4)原来的河漫滩成为阶地。 (5)河谷里不断重复上述过程,于是形成一级阶地、二级阶地等。
典型例题 阅读图文材料,完成下列各题。 材料一 河流两侧阶梯状的地形称为河流阶地。一条经历长期发展过程 的河流,两岸常出现多级阶地,由河流河漫滩向谷坡上方,依次命名为一级 阶地、二级阶地、三级阶地……(见下图)。
材料二 下图a、b、c的顺序表示河流阶地的形成过程。
河流阶地形成示意图 (1)读材料一判断,河流阶地属于哪种地貌类型?该地貌形成的主要外力作 用是什么? (2)读材料二,按a、b、c三个阶段顺序,简述河流阶地的形成过程。
最可能是( A )
A.向西南 B.向北
C.向湖
D.向东
解析:第1题,图中布哈河三角洲面积较大,主要由来自河流的沉积物至湖口 沉积形成,风力沉积形成的面积较小,分布在三角洲东北部边缘。第2题,根 据材料信息,布哈河三角洲东北缘形成与湖岸线平行的风成沙丘,沙丘的沙 源是湖床;沙丘的形态呈新月形,向湖凸出,而新月形沙丘凸出方向为迎风 坡,由此可以判断三角洲盛行东北风。从而判断风沙堆积区的拓展方向最 可能是向西南。
本课结束
对点训练
下图是我国东南地区某河流顺直河道附近的地质剖面图。据此完成第1~2
题。
1.该河流的流向是( B ) A.自东南向西北
B.自东北向西南
C.自西南向东北
D.自西北向东南
2.近年来,M处出现丰水期水位下降、堆积物减少的趋势,其原因最可能是
中考化学专题突破5 化学工艺流程、物质的转化与推断

专题突破五化学工艺流程、物质的转化与推断类型1化学工艺流程题1.工艺流程路线示意图关注流程图中的出线、进线均表示物料流向或操作流程、可逆线表示原料循环使用和核心化学反应。
2.常考操作术语及目的(1)对原料进行预处理的常用方法及其作用①粉碎(研磨):增大反应物的接触面积,加快反应速率或使反应充分进行或增大转化率。
②灼烧(煅烧):使固体在高温下分解或使杂质在高温下氧化、分解等。
(2)明确常用的分离方法①过滤:固液分离。
所需仪器有铁架台(带铁圈)、滤纸、漏斗、烧杯、玻璃棒。
②蒸发结晶:提纯溶解度随温度变化不大的溶质,如NaCl。
③降温结晶:提纯溶解度随温度变化较大溶质。
操作过程为加热浓缩→冷却结晶→过滤→洗涤→干燥。
浓缩:蒸发部分溶剂,提高溶液的浓度。
洗涤:尽量除去晶体表面的杂质或干扰物质。
干燥:除去固体中的水。
3.答题技巧(1)所设问题一般都是孤立的,在解答时不要求流程全看懂后再解答,看不懂的地方先跳过去,继续解答后面的问题。
(2)抓住一个关键点:一切反应或操作都是为了获得产品。
(3)推断流程图某一步中的物质,可以从上一步操作中反应物可能发生的反应入手进行分析,同时需注意所加试剂是否有剩余。
(4)陌生化学方程式的书写:根据箭头方向,箭头进入的是原料(即反应物),出去的是生成物(包括主产物和副产物);若从已知信息中找出的反应物和生成物不满足质量守恒定律,可以在反应物或生成物中加上水,然后进行配平,还应注意反应条件的有关信息;若在空气中煅烧或通入空气则还需考虑空气中的氧气是否参与反应。
(5)循环利用的物质:步骤中某一步的产物是另一步的原料,根据图中箭头方向(可逆线)即可判断出可循环使用的物质。
例1(2020百色中考)轻质碳酸钙广泛应用于橡胶、塑料、油漆、水性涂料以及造纸等行业,某同学设计流程(如图)以石灰石(杂质不反应也不溶于水)为原料制取轻质碳酸钙和氢氧化钠固体。
(1)写出第②步反应的化学方程式:CaO+H2O===Ca(OH)2。
一轮复习名师导学物理专题突破(五)变力做功求解问题

专题突破(五) 变力做功求解问题对应学生用书p 92功的定义式W =Fs cos α仅适用于恒力F 做功的计算,变力做功可以通过化“变”为“恒”或等效代换的思想求解,主要方法有:1.微元法:就是将变力做功的空间(位移)无限划分为相等的小段,在每个小段里变力便可看做恒力,每个小段里的功可由公式W =Fs cos α计算,整个过程中变力的功就是各小段里“恒力”功的总和,即W 总=∑F Δs cos α.2.图象法:画出变力F 与位移s 的图象,则F -s 图线与s 轴所围的“面积”表示该过程中变力F 做的功.3.力的平均值法:在力的方向不变,大小与位移呈线性关系的直线运动中,可先求该变力对位移的平均值F -=F 1+F 22,再由W =F -s 计算. 4.动能定理法:当物体运动过程中始末两个状态的速度已知时,用动能定理∑W =ΔE k 或功能关系求变力做的功是非常方便的(当然也可求恒力做的功).5.转换研究对象法:运动问题中,在一些特定条件下,可以找到与变力做的功相等的恒力做的功,这样,就可将求变力做的功转化为计算恒力做的功.6.特定情形:①用W =Pt 可求机车恒功率运行时发动机做的功;②电场力做的功可用W AB =qU AB 求解.一、微元法1 在一半径R =6 m 的圆弧形桥面的底端A ,某人把一质量m =8 kg 的物块(可看成质点).用大小始终为F =75 N 的拉力从底端缓慢拉到桥面顶端B(圆弧AB 在同一竖直平面内),拉力的方向始终与物块在该点的切线成37°角,整个圆弧桥面所对的圆心角为120°,g 取10 m /s 2,sin 37°=,cos 37°=0.8.求这一过程中:(1)拉力F 做的功;(2)桥面对物块的摩擦力做的功.[解析] (1)将圆弧AB ︵分成很多小段l 1、l 2…l n ,拉力在每一小段上做的功为W 1、W 2…W n .因拉力F 大小不变,方向始终与物块在该点的切线成37°角,所以W 1=Fl 1cos 37°、W 2=Fl 2cos 37°…W n =Fl n cos 37°所以W F =W 1+W 2+…+W n =F cos 37°(l 1+l 2+…+l n )=F cos 37°·16×2πR ≈ J . (2)重力G 做的功W G =-mgR(1-cos 60°)=-240 J ,因物块在拉力F 作用下缓慢移动,动能不变,由动能定理知W F +W G +W f =0所以W f =-W F -W G =- J +240 J =- J .二、图象法2 一物体所受的力F 随位移x 变化的图象如图所示,在这一过程中,力F 对物体做的功为( )A .3 JB .6 JC .7 JD .8 J[解析] 力F 对物体做的功等于x 轴上方梯形“面积”所表示的正功与x 轴下方三角形“面积”所表示的负功的代数和.W 1=12×(3+4)×2 J =7 J W 2=-12×(5-4)×2 J =-1 J 所以力F 对物体做的功为W =7 J -1 J =6 J .故选项B 正确.[答案] B三、力的平均值法3 (多选)如图甲所示,长为l 、倾角为α的斜面固定在水平地面上,一质量为m 的小物块从斜面顶端由静止释放并沿斜面向下滑动,已知小物块与斜面间的动摩擦因数μ与下滑距离x 的变化图象如图乙所示,则( )A .μ0>tan αB .小物块下滑的加速度逐渐增大C .小物块下滑到斜面底端的过程中克服摩擦力做的功为12μ0mgl cos α D .小物块下滑到低端时的速度为2gl sin α-2μ0gl cos α[解析] 因物块能够下滑,则mg sin α>μ0mg cos α,即μ0<tan α,A 错;μ逐渐减小,则加速度逐渐增大,B 对;因μ随位置均匀变化,则f -=0+μ0mg cos α2=μ0mg cos α2,则克服摩擦力做功为W =μ0mgl cos α2,C 对;根据动能定理有mgl sin α-W =12mv 2,则v =2gl sin α-μ0gl cos α,D 错.[答案] BC四、动能定理法4 一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的压力为2mg ,重力加速度大小为g.质点自P 滑到Q 的过程中,克服摩擦力所做的功为( )A .14mgRB .13mgRC .12mgRD .π4mgR [解析] 在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12mv 2,解得W f =12mgR ,所以克服摩擦力做功12mgR ,C 正确. [答案] C五、转换研究对象法5 人拉着绳通过一定滑轮吊起质量m =50 kg 的物体,如图所示,开始绳与水平方向夹角为60°,当人匀速提起重物由A 点沿水平方向运动s =2 m 而到达B 点,此时绳与水平方向成30°角,已知重力加速度g =10 m /s 2,求人对绳的拉力做了多少功?[解析] 设滑轮距A 、B 点的高度为h ,则:h ()cot 30°-cot 60°=s人由A 走到B 的过程中,重物上升的高度Δh 等于滑轮右侧绳子增加的长度,即:Δh =h sin 30°-h sin 60°,人对绳子做的功为:W =mg·Δh =mgs ()3-1=1 000()3-1 J ≈732 J . 1.(多选)如图甲所示,水平面上有质量相等的两个木块A 、B 用一根轻弹簧相连接,整个系统处于平衡状态.现用一个竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,弹簧始终处于弹性限度内,如图乙所示.研究从力F 刚作用在木块A 上时(x =0)到木块B 刚离开地面时(x =x 0)这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,得到表示力F 和木块A 的位移x 之间关系的图象如图丙,则下列说法正确的是( )A .x =x 02时,弹簧刚好恢复原长 B .该过程中拉力做功W F =F 1+F 22x 0 C .0~x 02过程,拉力做的功大于木块A 机械能的增加量 D .0~x 0过程,木块A 动能的增加量等于拉力和重力做功的总和[解析] A 压着弹簧处于静止状态,mg =kx 1;当力F 作用在A 上,使其向上匀加速直线运动,由牛顿第二定律可知F +k(x 1-x)-mg =ma ,随着x 逐渐增大,导致弹簧的弹力逐渐减小,则力F 逐渐增大,但物体A 的合力却不变,当B 刚离开地面时,弹簧处于伸长状态有mg =kx 2,则x 0=x 1+x 2=2x 1,则当x =x 02=x 1时,弹簧刚好恢复到原长,故A 正确;根据图象可知拉力F 随着位移均匀增大,则W F =F -·x =F 1+F 22·x 0,故B 正确;在A 上升过程中,弹簧从压缩恢复到原长过程,因弹簧弹力对A 做正功,则拉力做功小于A 物体机械能的增加,故C 错误;0~x 0过程因弹簧的初末形变量相同,则弹性势能的变化为零;由动能定理可知W F -W G =ΔE k ,即木块A 动能的增加量等于拉力和重力做功的总和,故D 正确.[答案] ABD2.在水平面上,有一弯曲的槽道,槽道由半径分别为R 2和R 的两个半圆构成.现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时刻与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FRC .2πFRD .32πFR [解析] 因为F 的方向不断改变,不能用W =Fl cos α求解,但由于拉力F 的方向时刻与小球运动方向一致,可采用微元法,把小球的位移分割成许多的小段,在每一小段位移上作用在小球上的力F 可视为恒力,F 做的总功即为F 在各个小段上做功的代数和,W =F ⎝ ⎛⎭⎪⎫πR 2+πR =32πFR ,所以本题答案为D . [答案] D3.如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1和W 2,滑块经B 、C 两点的动能分别为E k B 和E k C ,图中AB =BC ,则( )A .W 1>W 2B .W 1<W 2C .W 1=W 2D .无法确定W 1和W 2的大小关系[解析] 绳子对滑块做的功为变力做功,可以通过转换研究对象,将变力的功转化为恒力的功;因绳子对滑块做的功等于拉力F 对绳子做的功,而拉力F 为恒力,W =F·Δl ,Δl 为绳拉滑块过程中力F 的作用点移动的位移,大小等于滑轮左侧绳长的缩短量,由图可知,Δl AB >Δl BC ,故W 1>W 2,A 正确.[答案] A4.放在地面上的木块与一轻弹簧相连,弹簧处于自由伸长状态.现用手水平拉弹簧,拉力的作用点移动x 1= m 时,木块开始运动,继续拉弹簧,木块缓慢移动了x 2= m 的位移,其F -x 图象如图所示,求上述过程中拉力所做的功.[解析] 由F -x 图象可知,在木块运动之前,弹簧弹力随弹簧伸长量的变化是线性关系,木块缓慢移动时弹簧弹力不变,图线与横轴所围梯形面积即为拉力所做的功,即W =12×(+)×40 J =20 J .5.一个质量为m 的小球拴在细绳的一端,另一端用大小为F 1的拉力作用,在水平面上做半径为R 1的匀速圆周运动,如图所示.今将力的大小改为F 2,使小球仍在水平面上做匀速圆周运动,但半径为R 2.小球运动的半径由R 1变成R 2的过程中拉力对小球做的功多大?[解析] 本题由于绳的拉力是物体在两个轨道圆周运动的向心力,是变力.在轨道变化过程中该力做功属于变力做功,但不能直接求其功,而是先由向心力公式求出初、末状态动能,再由动能定理求出该力的功.设半径为R 1、R 2时小球做圆周运动的速度分别为v 1、v 2,由向心力公式得:F 1=m v 21R 1,F 2=m v 22R 2根据动能定理:W =12mv 22-12mv 21 解得:W =12(F 2R 2-F 1R 1)。
2023新高考数学函数压轴小题专题突破 专题5 函数嵌套问题(解析版)

专题5 函数嵌套1.已知函数2()(1)x f x x x e =--,设关于x 的方程25()()()f x mf x m R e-=∈有n 个不同的实数解,则n 的所有可能的值为( ) A .3B .1或3C .4或6D .3或4或6【解析】解:22()(21))(1)(2)x x x f x e x x x e e x x '=-++--=+-, ∴当2x <-或1x >时,()0f x '>,当21x -<<时,()0f x '<,()f x ∴在(,2)-∞-上单调递增,在(2,1)-上单调递减,在(1,)+∞上单调递增, ()f x 的极大值为25(2)f e -=,()f x 的极小值为f (1)e =-. 作出()f x 的函数图象如图所示:25()()()f x mf x m Re -=∈,25()()0f x mf x e∴--=,△2200m e=+>, 令()f x t =则,则125t t e=-.不妨设120t t <<,(1)若1t e <-,则2250t e<<,此时1()f x t =无解,2()f x t =有三解; (2)若1t e =-,则225t e =,此时1()f x t =有一解,2()f x t =有两解; (3)若10e t -<<,则225t e >,此时1()f x t =有两解,2()f x t =有一解; 综上,25()()f x mf x e-=有三个不同的实数解. 故选:A .2.已知函数())f x x R =∈,若关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根,则实数m 的取值范围为( ) A.(1,1) B.(0 C .1(1,1)e+D.,1)【解析】解:化简可得0()0x f x x =<,当0x >时,()0f x,12()x x e x f x e '===, 当102x <<时,()0f x'>,当12x>时,()0fx '<, 故当12x=时,函数()f x有极大值21()2f e====; 当0x <时,2()0x xxe x e x xf x x e --'==<,()f x 为减函数,作出函数()f x 对应的图象如图:∴函数()f x 在(0,)+∞上有一个最大值为1()2f ;设()t f x =, 当t >()tf x =有1个解, 当t =()t f x =有2个解, 当0t <<时,方程()t f x =有3个解, 当0t =时,方程()t f x =有1个解, 当0t <时,方程()m f x =有0个解,则方程2()()10f x mf x m -+-=等价为210t mt m -+-=,等价为方程21(1)[(1)]0t mt m t t m -+-=---=有两个不同的根1t =,或1t m =-, 当1t =时,方程()t f x =有1个解,要使关于x 的方程2()()10f x mf x m -+-=恰好有4个不相等的实数根, 则1t m =-∈,即01m <-<11m <<+,则m的取值范围是1)+ 故选:A .3.已知函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,若方程2()()20f x bf x ++=有8个相异实根,则实数b 的取值范围()A .(4,2)--B.(4,--C .(3,2)--D.(3,--【解析】解:令()f x t =,则方程2()()20f x bf x ++=⇔方程220t bt ++=. 如图是函数|1|2,0()21,0x e x f x x x x -⎧>=⎨--+⎩,的图象,根据图象可得:方程2()()20f x bf x ++=有8个相异实根⇔方程220t bt ++=.有两个不等实数解1t ,2t 且1t ,2(1,2)t ∈.可得22280112032220122b b b b b ⎧=->⎪++>⎪⎪⇒-<<-⎨++>⎪⎪<-<⎪⎩. 故选:D .4.已知函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩,关于x 的方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根,则a 的取值范围是( )A .(,0)-∞B .[1,)+∞C .(,0)[2-∞,)+∞D .(-∞,0)(1⋃,)+∞【解析】解:函数22,0()(1),0x x x f x ln x x ⎧-+>=⎨-+<⎩的图象如图:方程2()2()10()f x af x a a R -+-=∈有四个相异的实数根, 必须()f x 由两个解,一个()1f x >,一个()(0f x ∈,1), 或者()(0f x ∈,1),另一个()0f x ,2()2()10()f x af x a a R -+-=∈,可得()f x a =,当1a >时,1a >,(0,1)a .满足题意.当1a =时,2a ,0a =,不满足题意. 考察选项可知,D 正确; 故选:D .5.已知函数33,0()1,0x x x x f x x lnx x ex ⎧-⎪=⎨++>⎪⎩,若关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根,则实数m 的取值范围是( ) A .(2-,11e + )B .(2-,0 )(⋃ 0,11e + )C .2321(,)2e e e+-+D .( 32-,0 )(⋃ 0,221)e e e++【解析】解:当0x 时,3()3f x x x =-,则2()333(1)(1)f x x x x '=-=-+, 令()0f x '=得:1x =-,∴当(,1)x ∈-∞-时,()0f x '<,()f x 单调递减;当(1,0)x ∈-时,()0f x '>,()f x 单调递增,且(1)2f -=-,(0)0f =,当0x >时,1()x x lnx f x e x +=+,则21()x x lnxf x e x--'=+,显然f '(1)0=,∴当(0,1)x ∈时,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0f x '<,()f x 单调递减,且f (1)11e=+, 故函数()f x 的大致图象如图所示:,令()t f x =,则关于x 的方程2()()10f x mf x --=化为关于t 的方程210t mt --=, △240m =+>,∴方程210t mt --=有两个不相等的实根,设为1t ,2t , 由韦达定理得:12t t m +=,1210t t =-<,不妨设10t >,20t <, 关于x 的方程2()()10f x mf x --=恰好有6个不相等的实根, ∴由函数()f x 的图象可知:1101t e<<+,220t -<<,设2()1g t t mt =--,则(2)0(0)01(1)0g g g e ⎧⎪->⎪<⎨⎪⎪+>⎩,解得:23212e m e e+-<<+,故选:C .6.已知函数|1|221,0()21,0x x f x x x x -⎧-=⎨++<⎩,若关于x 的方程22()(1)()20f x m f x m -++=有五个不同实根,则m 的值是( ) A .0或12B .12C .0D .不存在【解析】解:画出函数()f x 的图象,如图所示:,当()1f x =时,有三个根,把()1f x =代入方程22()(1)()20f x m f x m -++=得,21(1)20m m -++=, 解得:0m =或12, 当0m =时,方程22()(1)()20f x m f x m -++=为2()()0f x f x -=,所以()0f x =或1,所以有五个根, 当12m =时,方程22()(1)()20f x m f x m -++=为231()()022f x f x -+=,所以()1f x =或12,所以有7个根,舍去,综上所求,0m =时,方程22()(1)()20f x m f x m -++=有五个不同实根, 故选:C .7.已知函数2(2),0()|2|,0x x f x x x ⎧+=⎨->⎩,方程2()()0f x af x -=(其中(0,2))a ∈的实根个数为p ,所有这些实根的和为q ,则p 、q 的值分别为( ) A .6,4 B .4,6C .4,0D .6,0【解析】解:2()()0f x af x -=,()0f x ∴=或()f x a =.作出()f x 的函数图象如图所示:由图象可知()0f x =有两解,()f x a =有四解. 6p ∴=.由图象可知()0f x =的两解为2x =-,2x =,()f x a =的四个解中,较小的两个关于直线2x =-对称,较大的两个关于直线2x =对称, 0q ∴=.故选:D .8.已知函数()(1)(1)g x a x ln x =++的图象在点2(1e -,2(1))g e -处的切线与直线610x y ++=垂直( 2.71828e =⋯是自然对数的底数),函数()f x 满足3()(1)0xf x g x x +--=,若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c <在区间1[,]e e上恰有3个不同的实数解,则实数b 的取值范围是() A .21(1,2]e + B .221[2,2]e e +-C .2221[2,]e e e-+ D .221(2,]e e+ 【解析】解:函数()(1)(1)g x a x ln x =++的导数为()(1)g x aln x a '=++, 可得()g x 图象在点2(1e -,2(1))g e -处的切线斜率为3a , 由切线与直线610x y ++=垂直,可得36a =, 解得2a =,()2(1)(1)g x x ln x =++,3()(1)0xf x g x x +--=,可得2()2f x x lnx =-, 导数为222(1)(1)()2x x f x x x x -+'=-=, 当1x >时,()0f x '>,()f x 递增;当01x <<时,()0f x '<,()f x 递减. 即有1x =处()f x 取得最小值1. 则()f x 在1[e,]e 的图象如右:若关于x 的方程2()()0(f x bf x c b -+=,c R ∈,且0)c < 在区间1[,]e e上恰有3个不同的实数解,可令()t f x =,则20t bt c -+=,(1) 可得t 的范围是[1,22]e -,方程(1)判别式为240b c ->,必有两不同的实数解, 设为1t ,2t ,12t t b +=, 可得11t =,22112t e<+, 即21112b e <-+, 解得2123b e <+,① 又212122t e e+<-, 22112t e <+, 则21222113t t b e e e+<+=+,② 由①②求并可得2212b e e <+, 故选:D .9.已知函数()1xf x x =+,(1,)x ∈-+∞,若关于x 的方程2()|()|230f x m f x m +++=有三个不同的实数解,则m 的取值范围是( ) A .3(2-,0)B .3(2-,4)3-C .3(2-,4]3-D .4(3-,0)【解析】解:1()11f x x -=++,|()|y f x =,(1,)x ∈-+∞的图象如下:设|()|f x t =,则2|()||()|230f x m f x m +++=有三个不同的实数解,即为2230t mt m +++=有两个根, ①0t =时,代入2230t mt m +++=得32m =-,即2302t t -=,另一根为32只有一个交点,舍去②一个在(0,1)上,一个在[1,)+∞上时, 设2()23h t t mt m =+++(0)230(1)1230h m h m m =+>⎧⎨=+++⎩,解得3423m -<-. 故选:C .10.已知函数2()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是( )A .(0,2)B .1(1,2)e-C .24{1,1}e -D .24(1,1)e -【解析】解:函数2()x x f x e =的导数为22()xx x f x e-'=, 当02x <<时,()0f x '>,()f x 递增; 当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象, 设()t f x =,关于x 的方程2()()10f x mf x m ++-=, 即为210t mt m ++-=, 解得1t =-或1t m =-, 当1t =-时,()1f x =-无实根; 由题意可得当241(0,)t m e=-∈, 解得241m e-=或1m =, 所以24(1m e ∈-,1) 故选:D .11.已知函数()1x x f x e=-,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值集合是( )A .(-∞,2)(2⋃,)+∞B .1(2,)e-+∞C .1(2,2)e -D .12e ⎧⎫-⎨⎬⎩⎭【解析】解:由题意1()x x f x e -'=.令1()0x xf x e-'==,解得1x =; 且1x >时,()0f x '<,1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减, 在1x =处取极大值11e=-.()f x 大致图象如下:令()t f x =,则2[()]()10f x mf x m ++-=可化为210t mt m ++-=. 假设2m =,则2210t t ++=.解得1t =-,即()1f x =-. 根据()f x 图象,很明显此时只有一个解, 故2m =不符合题意,由此排除B 选项;假设3m =,则2320t t ++=,解得12t =-,21t =-. 即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解, 故3m =不符合题意,由此排除A 选项.假设12m e =-时,则211(2)10t t e e +-+-=,解得111t e =-,21t =-.即()1f x =-或1()1f x e=-,根据()f x 的图象,很明显此时方程只有两个根, 故12m e=-不符合题意,由此排除D故选:C .12.已知函数||||()1x x f x e =+,2(),0()2,0f x x g x x x a x ⎧=⎨-+>⎩,且g (1)0=,则关于x 的方程(())10g g x t --=实根个数的判断正确的是( )A .当2t <-时,方程(())10g g x t --=没有相异实根B .当110t e-+<<或2t =-时,方程(())10g g x t --=有1个相异实根C .当111t e<<+时,方程(())10g g x t --=有2个相异实根D .当111t e -<<-+或01t <或11t e=+时,方程(())10g g x t --=有4个相异实根 【解析】解:当0x 时,||||()111x x x x xf x xe e e--=+=+=-+, 因为g (1)0=, 所以120a -+=, 所以1a =,所以21,0()21,0x xe x g x x x x ⎧-+=⎨-+>⎩,图象如图所示:当0x 时,0x -,0x e >,则11x xe -+,当且仅当0x =时等号成立, ()g x 在(,1)-∞-上是增加的,在(1,0)-上是减少的;当0x >时,()f x 在(0,1)上是减少的,在(1,)+∞上是增加的, 故()(1)0g x g -=恒成立.故()g x 在(,1)-∞-上是增加的,在(1,1)-上是减少的,在(1,)+∞上是增加的. 令()m g x t =-,则()10g m -=, 解得:0m =或2m =, 当0m =即()0g x t -=时, ()g x t =,当2t <-时,()2g x <-,无解, 当2m =即()2g x t -=时, ()2g x t =+,当2t <-时,()0g x <,无解, 故方程(())10g g x t --=没有相异实根, 故A 正确;当2t =-时,由A 可知:()0g x =,解得1x =, 当110t e -+<<时,12(1,2)t e+∈+, 由上可知()f x 在1x =-时取得极大值为1(1)1g e-=+,结合图象可知,此时2y t =+与()g x 有且仅有一个交点, 故B 正确;当111t e<<+时,()g x t =或()2g x t =+,若()g x t =,结合图象可知()g x 与y t =有三个不同的交点, 若()2g x t =+,12(3,3)t e+∈+,此时()g x 与y t =有一个交点,故方程(())10g g x t --=有4个相异实根, 故C 错误; 当111t e -<<-+时,1()2(1,1)g x t e=+∈+, 由C 可知此时有三个不等实根, 当01t <时,()g x t =或()2g x t =+, 当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 当11t e=+时,()g x t =或()2g x t =+,当()g x t =时,由图可知有两个不等实根, 当()2g x t =+时,由图可知有一个实根, 故此时方程(())10g g x t --=共有9个不等实根, 故D 错误. 故选:AB .13.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,则函数()(()1)g x f f x =+的零点是 1 ,若()(()1)h x f f x m =++有两个零点1x ,2x ,则12x x +的最小值是 .【解析】解:()(()1)g x f f x =+,,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,当1x 时,0lnx ,()11f x +,则(()1)(1)f f x ln lnx +=+, 当1x <时,1112x -+>,则(()1)(2)2xf f x ln +=-. (1),1()(()1)(2),12ln lnx x g x f f x xln x +⎧⎪∴=+=⎨-<⎪⎩, 令()0g x =,则1(1)0x ln lnx ⎧⎨+=⎩或1(2)02x xln <⎧⎪⎨-=⎪⎩, 解得1x =.故函数()(()1)g x f f x =+的零点是1; 由上可知,(()1)(()1)f f x ln f x +=+,()(()1)h x f f x m =++有两个零点1x ,2x ,即(()1)ln f x m +=-有两根,也就是()1m f x e -+=,()1m f x e -=-有两根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则 2lnx t =,2t x e =,112x t -=,122x t =-, ∴1222t x x e t +=+-,12t >, 设()22t t e t ϕ=+-,12t >, 则()2t t e ϕ'=-,可得当1(2t ∈,)lnt 时,()0t ϕ'<,当(,)t lnt ∈+∞时,()0t ϕ'>, 则()t ϕ的最小值为(2)422ln ln ϕ=-. 12x x ∴+的最小值是422ln -.故答案为:1;422ln -.14.已知函数,1()1,12lnx x f x x x ⎧⎪=⎨-<⎪⎩,若()(()1)F x f f x m =++有两个零点1x ,2x ,则12x x 的取值范围(-∞ .【解析】解:当1x 时,()0f x lnx =,则()11f x +, (()1)(()1)f f x ln f x ∴+=+,当1x <时,1()122x f x =->,则3()12f x +>, (()1)(()1)f f x ln f x ∴+=+,综上可知,()(()1)(()1)F x f f x m ln f x m =++=++,令()0F x =,得()1m f x e -+=,依题意,()1m f x e -=-有两个根1x ,2x ,不妨设12x x <, 当1x 时,21m lnx e -=-,当1x <时,1112m x e --=-, 令112m t e -=->,则1221,,1,222t x lnx t x e t x t ==-==-, ∴121(22),2t x x e t t =->, 设1()(22),2t g t e t t =->,则()20t g t te '=-<,()g t ∴在1(,)2+∞上单调递减,∴1()()2g t g <=12x x ∴的取值范围为(-∞.故答案为:(-∞.15.已知函数,2()48,25xexx e f x x x x⎧⎪⎪=⎨-⎪>⎪⎩(其中e 为自然对数的底数),若关于x 的方程22()3|()|20f x a f x a -+=恰有5个相异的实根,则实数a 的取值范围为 12{}[2e ,4)5.【解析】解:当2x 时,令()0xe exf x e -'==,解得1x =, 所以当1x 时,()0f x '>,则()f x 单调递增,当12x 时,()0f x '<,则()f x 单调递减, 当2x >时,4848()555x f x x x -==-单调递增,且()[0f x ∈,4)5作出函数()f x 的图象如图:(1)当0a =时,方程整理得2()0f x =,只有2个根,不满足条件;(2)若0a >,则当()0f x <时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a ++=++=, 则()20f x a =-<,()0f x a =-<,此时各有1解,故当()0f x >时,方程整理得22()3()2[()2][()]0f x af x a f x a f x a -+=--=, ()2f x a =有1解同时()f x a =有2解,即需21a =,12a =,因为f (2)22212e e e==>,故此时满足题意;或()2f x a =有2解同时()f x a =有1解,则需0a =,由(1)可知不成立; 或()2f x a =有3解同时()f x a =有0解,根据图象不存在此种情况,或()2f x a =有0解同时()f x a =有3解,则21245a a e >⎧⎪⎨<⎪⎩,解得245a e <, 故2[a e ∈,4)5(3)若0a <,显然当()0f x >时,()2f x a =和()f x a =均无解, 当()0f x <时,()2f x a =-和()f x a =-无解,不符合题意. 综上:a 的范围是12{}[2e ,4)5故答案为12{}[2e ,4)516.已知函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩,若关于x 的方程()()0f x f x +-=恰有四个不同的解,则实数a 的取值范围是 (2,0)- .【解析】解:已知定义在(-∞,0)(0⋃,)+∞上的函数231,0()26,0ax x f x xlnx x x ⎧++<⎪=⎨⎪->⎩, 若()()0f x f x +-=在定义域上有四个不同的解 等价于231a y x x =++关于原点对称的函数231ay x x=-+-与函数()26(0)f x lnx x x =->的图象有两个交点,联立可得226310alnx x x x-+-+=有两个解, 即23263a xlnx x x x =-++,0x >, 可设23()263g x xlnx x x x =-++,0x >, 2()32129g x lnx x x '=+-+, 22()1812218120g x x x x x''=+-=,可得()g x '在(0,)+∞递增, 由g '(1)0=,可得01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增, 即()g x 在1x =处取得极小值且为2-,作出()y g x =的图象,可得20a -<<时,226310alnx x x x-+-+=有两个解, 故答案为:(2,0)-.17.已知函数21,0()21,0x x f x x x x +⎧=⎨-+>⎩,若关于x 的方程2()()0f x af x -=恰有5个不同的实数解,则a 的取值范围是 (0,1) .【解析】解:作()f x 的图象如下,,2()()()(())0f x af x f x f x a -=-=,()0f x ∴=或()f x a =; ()0f x =有两个不同的解,故()f x a =有三个不同的解, 故(0,1)a ∈; 故答案为:(0,1).18.已知函数()|1|33f x x x x =--+. (1)求函数()f x 的零点;(2)若关于x 的方程2()()0(f x mf x n m -+=、)n R ∈恰有5个不同的实数解,求实数m 的取值范围.【解析】解:(1)由题得2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩,①当1x <时,令()0f x =,得3x =-或1x =(舍); ②当1x 时,令()0f x =,得1x =或3x =, ∴函数()f x 的零点是3-,1,3;(2)作出函数2223,(1)()|1|3343,(1)x x x f x x x x x x x ⎧--+<=--+=⎨-+⎩的大致图象,如图:令()t f x =,若关于x 的方程2()()0f x mf x n -+=恰有5个不同的实数解, 解法一:则函数2()g t t mt n =-+的零点分布情况如下:①当11t =-,2(1,4)t ∈-时,则(1)0(4)0142g g b a ⎧⎪-=⎪>⎨⎪⎪-<-<⎩,得101640142m n m n m ⎧⎪++=⎪-+>⎨⎪⎪-<<⎩,故(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,则(4)0(1)0142g g b a ⎧⎪=⎪->⎨⎪⎪-<-<⎩,得164010142m n m n m ⎧⎪-+=⎪++>⎨⎪⎪-<<⎩,故(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8); 解法二:则方程20t mt n -+=的根的情况如下:①当11t =-,2(1,4)t ∈-时,由11t =-得10m n ++=,则方程2(1)0t mt m --+=,即(1)(1)0t t m +--=,故21(1,4)t m =+∈-,所以(2,3)m ∈-;②当14t =,2(1,4)t ∈-时,由14t =得1640m n -+=,则方程24(4)0t mt m -+-=,即(4)(4)0t t m --+=,故24(1,4)t m =-∈-,所以(3,8)m ∈.综上所述,实数m 的取值范围为(2m ∈-,3)(3⋃,8).19.已知函数2()sin()2cos 1,468f x x x x R πππ=--+∈. (1)求函数()f x 的最小正周期及单调递增区间;(2)若关于x 的方程()()24410,43f x mf x x ⎛⎫-+=∈ ⎪⎝⎭在内有实数解,求实数m 的取值范围. 【解析】解:(1)23()sin()2cos 1sin cos cos sin cos cos 3sin()4684646442443f x x x x x x x x ππππππππππππ=--+=----⋯(3分) ∴函数()f x 的最小正周期为8.⋯(4分)令222432k x k ππππππ--+,k Z ∈,求得2108833k x k -+,k z ∈,故函数的单调递增区间为210[8,8]33k k -+,k Z ∈⋯(6分)(2)设()t f x =,4(3x ∈,4),∴2(0,)433x πππ-∈,()(0f x ∴∈,∴方程2410t mt -+=在(0t ∈内有实数解,即当(0t ∈时方程有实数解.⋯(10分) 11442t t t +=当且仅当时取等号,4m ∴,⋯(8分) 故实数m 的取值范围是[4,)+∞.⋯(12分) 20.已知函数()g x 对一切实数x ,y R ∈都有()()(22)g x y g y x x y +-=+-成立,且g (1)0=,()(1)(h x g x bx c b =+++,)c R ∈,()()g x f x x=. (Ⅰ)求(0)g 的值和()g x 的解析式;(Ⅰ)记函数()h x 在[1-,1上的最大值为M ,最小值为m .若4M m -,当0b >时,求b 的最大值;(Ⅰ)若关于x 的方程2(|21|)30|21|x x k f k -+-=-有三个不同的实数解,求实数k 的取值范围. 【解析】解:(Ⅰ)令1x =,0y =得g (1)(0)1g -=-,g (1)0=,(0)1g ∴=,令0y =得()(0)(2)g x g x x -=-,即2()21g x x x =-+.(Ⅰ)2()(1)h x g x bx c x bx c =+++=++.①当12b -<-,即2b >时,M m h -=(1)(1)24h b --=>,与题设矛盾②当102b --<时,即02b <时,M m h -=(1)2()(1)422b b h --=+恒成立, 综上可知当02b <时,b 的最大值为2.(3)当0x =时,210x -=则0x =不是方程的根,方程2(|21|)30|21|x x k f k -+-=-可化为: 2|21|(23)|21|(12)0x x k k --+-++=,|21|0x -≠,令|21|x t -=,则方程化为2(23)(12)0t k t k -+++=,(0)t >,方程2(|21|)310|21|x x k f k -+--=-有三个不同的实数解, ∴由|21|x t =-的图象知,2(23)(12)0t k t k -+++=,(0)t >,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记2()(23)(12)h t t k t k =-+++,则(0)210(1)0h k h k =+>⎧⎨=-<⎩,此时0k >, 或(0)210(1)032012h k h k k ⎧⎪=+>⎪=-=⎨⎪+⎪<<⎩,此时k 无解,综上实数k 的取值范围是(0,)+∞.。
高考英语一轮总复习 语法专题突破 专题五 并列连词与复合句

结果状 so that
结果
语从句 so/such...that从句
如此……以至于……
条件状 if,unless
如果;除非
语从句 as/so long as
只要
让步状 语从句
though,although,while,as even if,even though no matter+what/who,whatever/whichever...
4.(2022·全国乙卷)The “First International Tea Day Tea Road Cooperative
Initiative” issued(发布) at the ceremony calls for people working in the tea
industry to come together to promote international cooperation ___a_n_d__
“protecting the authenticity and integrity(完整性) of natural ecosystems,
preserving biological diversity,protecting ecological buffer zones, __a_n_d____ leaving behind precious natural assets(资产) for future generations”.
◆宾语从句 3.(2020·北京卷)Oliver says if you’re lucky enough to have someone close to you who enjoys cooking,ask them whether/if you can join in when it’s possible. 4.(2020·浙江卷)Over thousands of years,they began to depend less on
第1讲五年级数学思维能力拓展专题突破系列(五)计算中的常用技巧讲义(含答案)

五年级数学思维能力拓展专题突破系列(五)计算中的常用技巧——计算常用技巧(1)掌握计算中常用的加法凑整和乘法凑整法,会用这些技巧快速的解题。
1、掌握加法凑整法和乘法凑整法。
2、运用加法凑整和乘法凑整快速解题。
1. 136+57+264+1432. (1350+249+468)+(251+332+1650)3. 831-135-67-145-1534. 83+86+95+85+96+94+86+92+97+905. 5×25×125×64(即是该课程的课后测试)1. 计算:36+87+642. 计算:99+136+1013. 计算:1361+972+639+284. 计算:300-73-275. 计算:1000-90-80-20-101. 解析:36+87+64=(36+64)+87=100+87=1872. 解析:99+136+101=(99+101)+136=200+136=3363. 解析:1361+972+639+28=(1361+639)+(972+28)=2000+1000=30004. 解析:300-73-27= 300-(73+27)=300-100=2005. 解析:1000-90-80-20-10=1000-(90+10+80+20)=1000-200=800五年级数学思维能力拓展专题突破系列(五)计算中的常用技巧——计算常用技巧(2)掌握计算中常用的提取公因数的方法,会用和差积商不变性质快速解题。
1、掌握速算中的提取公因数的方法。
2、会用和差积商不变的性质解题。
1. 计算:35×8-35+3×352. 计算:2000×1999-1999×1998+1998×1997-1997×19963. 计算:81×15+57×54. 计算:1995.5×73+0.24×730+153.3(即是该课程的课后测试)1. 计算:36×19+64×192. 计算:136×23+864×233. 计算:113×5-37×154. 计算:9966×6+6678×185. 计算:35×20+70+35×781. 解析:36×19+64×19=(36+64)×19=19002. 解析:136×23+864×23=(136+864)×23=1000×23=230003. 解析:113×5-37×15=113×5﹣37×3×5=113×5-111×5=(113-111)×2=104. 解析:9966×6+6678×18=3322×3×6+6678×18=(3322+6678)×18=1800005. 解析:35×20+70+35×78=35×20+35×2+35×78=35×(20+2+78)=3500 五年级数学思维能力拓展专题突破系列(五)计算中的常用技巧——计算常用技巧(3)掌握计算中常用的公式,会用这些技巧快速的解题。
2022年高考考点完全题数学(文)专题突破练习题 专题突破练5 立体几何的综合问题 Word版含答案

专题突破练(5) 立体几何的综合问题 一、选择题1.已知直线a ⊂平面α,直线b ⊂平面β,则“a ∥b ”是“α∥β ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 D解析 “a ∥b ”不能得出“α∥β”,反之由“α∥β”也得不出“a ∥b ”.故选D.2.如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,A 1A =AB =2,BC =1,AC =5, 若规定正视方向垂直平面ACC 1A 1,则此三棱柱的侧视图的面积为( )A.455B .2 5C .4D .2答案 A解析 在△ABC 中,AC 2=AB 2+BC 2=5,∴AB ⊥BC .作BD ⊥AC 于D ,则BD 为侧视图的宽,且BD =2×15=255,∴侧视图的面积为S =2×255=455.3.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6答案 C解析 如图,既与AB 共面也与CC 1共面的棱有CD 、BC 、BB 1、AA 1、C 1D 1,共5条.4.在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD .将四边形ABCD 沿对角线BD 折成四周体A ′-BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是( )A .A ′C ⊥BDB .∠BA ′C =90°C .CA ′与平面A ′BD 所成的角为30° D .四周体A ′BCD 的体积为13答案 B解析 ∵AB =AD =1,BD =2,∴AB ⊥AD . ∴A ′B ⊥A ′D .∵平面A ′BD ⊥平面BCD ,CD ⊥BD , ∴CD ⊥平面A ′BD ,∴CD ⊥A ′B ,∴A ′B ⊥平面A ′CD , ∴A ′B ⊥A ′C ,即∠BA ′C =90°.5. 如图,在三棱锥P -ABC 中,不能证明AP ⊥BC 的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC答案 B解析由AP⊥PB,AP⊥PC可推出AP⊥平面PBC,∴AP⊥BC,故排解A;由平面BPC⊥平面APC,BC⊥PC 可推出BC⊥平面APC,∴AP⊥BC,故排解C;由AP⊥平面PBC可推出AP⊥BC,故排解D,选B.6.如图所示,已知在多面体ABC-DEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为( )A.2 B.4C.6 D.8答案 B解析如图所示,将多面体补成棱长为2的正方体,那么明显所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.7.设A,B,C,D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD 的最大值是( )A.6 B.7C.8 D.9答案 C解析由题意知42=AB2+AC2+AD2,S△ABC+S△ACD+S△ABD=12(AB·AC+AC·AD+AD·AB)≤12⎣⎢⎡12AB2+AC2+12AC2+AD2+⎦⎥⎤12AD2+AB2=12(AB2+AC2+AD2)=8.8.已知圆锥的底面半径为R,高为3R,在它的全部内接圆柱中,表面积的最大值是( )A.22πR2 B.94πR2C.83πR2 D.52πR2答案 B解析如图所示,为组合体的轴截面,记BO1的长度为x,由相像三角形的比例关系,得PO13R=xR,则PO1=3x,圆柱的高为3R-3x,所以圆柱的表面积为S=2πx2+2πx·(3R-3x)=-4πx2+6πRx,则当x=34R 时,S取最大值,S max=94πR2.9.在正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N 分别为AB,BC边的中点,点Q为平面ABCD内一点,线段D1Q与OP相互平分,则满足MQ→=λMN→的实数λ的值有( )A .0个B .1个C .2个D .3个 答案 C解析 本题可以转化为在MN 上找点Q 使OQ 綊PD 1,可知只有Q 点与M ,N 重合时满足条件,所以选C. 10.四棱锥M -ABCD 的底面ABCD 是边长为6的正方形,若|MA |+|MB |=10,则三棱锥A -BCM 的体积的最大值是( )A .16B .20C .24D .28答案 C解析 ∵三棱锥A -BCM 体积=三棱锥M -ABC 的体积,又正方形ABCD 的边长为6,S △ABC =12×6×6=18,又空间一动点M 满足|MA |+|MB |=10,M 点的轨迹是椭球,当|MA |=|MB |时,M 点到AB 距离最大,h =52-32=4,∴三棱锥M -ABC 的体积的最大值为V =13S △ABC h =13×18×4=24,∴三棱锥A -BCM 体积的最大值为24,故答案为C.11.在一个棱长为4的正方体内,最多能放入的直径为1的球的个数( ) A .64 B .66 C .68 D .70答案 B解析 依据球体的特点,最多应当是放5层,第一层能放16个;第2层放在每4个小球中间的空隙,共放9个;第3层连续往空隙放,可放16个;第4层同第2层放9个;第5层同第1、3层能放16个,所以最多可以放入小球的个数:16+9+16+9+16=66(个),故答案为B.12.如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线E ,F 的平面分别与棱BB ′、DD ′交于M ,N ,设BM =x ,x ∈,给出以下四个命题:①平面MENF ⊥平面BDD ′B ′;②当且仅当x =12时,四边形MENF 的面积最小;③四边形MENF 周长L =f (x ),x ∈是单调函数; ④四棱锥C ′-MENF 的体积V =h (x )为常函数.以上命题中假命题的序号为( ) A .①④ B .② C .③ D .③④答案 C解析 ①连接BD ,B ′D ′,则由正方体的性质可知EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′,所以①正确.②连接MN ,由于EF ⊥平面BDD ′B ′,所以EF ⊥MN ,四边形MENF 的对角线EF 是固定的,所以要使面积最小,则只需MN 的长度最小即可,此时当M 为棱的中点时,即x =12时,此时MN 长度最小,对应四边形MENF 的面积最小,所以②正确.③由于EF ⊥MN ,所以四边形MENF 是菱形.当x ∈⎣⎢⎡⎦⎥⎤0,12时,EM 的长度由大变小,当x ∈⎣⎢⎡⎦⎥⎤12,1时,EM 的长度由小变大,所以函数L =f (x )不单调,所以③错误.④连接C ′E ,C ′M ,C ′N ,则四棱锥分割为两个小三棱锥,它们以C ′EF 为底,以M ,N 分别为顶点的两个小棱锥.由于三角形C′EF的面积是常数.M,N到平面C′EF的距离是常数,所以四棱锥C′-MENF的体积V=h(x)为常函数,所以④正确.所以四个命题中③假命题,选C.二、填空题13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.答案10 5解析连接AD1,AP,则∠AD1P就是所求的角.设AB=2,则AP=D1P=5,AD1=22,∴cos∠AD1P=10 5.14.如图,已知球O的面上有四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案6π解析如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以|CD|=22+22+22=2R,所以R=62,故球O的体积V=4πR33=6π.15. 如图,有一圆柱开口容器(下表面封闭),其轴截面是边长为2的正方形,P是BC的中点,现有一只蚂蚁位于外壁A处,内壁P处有一粒米,则这只蚂蚁取得米粒的所经过的最短路程是________.答案π2+9解析由于圆柱的侧面开放图为矩形(如图所示),则这只蚂蚁取得米粒所经过的最短路程应为AQ+PQ,设点E与点A关于直线CD对称,由于两点之间线段最短,所以Q为PE与CD的交点时有最小值,即最小值为EP=π2+9.16.棱长为a的正方体ABCD-A1B1C1D1中,若与D1B平行的平面截正方体所得的截面面积为S,则S的取值范围是________.答案⎝⎛⎭⎪⎫0,6a22解析 如图,过D 1B 的平面为BMD 1N ,其中M ,N 分别是AA 1,CC 1的中点,由于BD 1=3a ,MN =AC =2a ,AC ⊥BD 1,即MN ⊥D 1B ,所以过D 1B 与M ,N 的截面的面积为S =12AC ·BD =62a 2,因此S 的取值范围是⎝⎛⎭⎪⎫0,6a 22.三、解答题17.在边长为4的菱形ABCD 中,∠DCB =60°,点E ,F 分别是边CD 和CB 的中点,AC 交BD 于点H ,AC 交EF 于点O ,沿EF 将△CEF 翻折到△PEF 的位置,使平面PEF ⊥平面ABD ,得到如图所示的五棱锥P -ABFED .(1)求证:BD ⊥PA ;(2)求点D 到平面PBF 的距离.解 (1)证明:由于四边形ABCD 为菱形,所以AC ⊥BD . 由于EF 为△BCD 的中位线,所以EF ∥BD , 故AC ⊥EF ,即翻折后PO ⊥EF .由于平面PEF ⊥平面ABD ,平面PEF ∩平面ABD =EF ,PO ⊂平面PEF ,所以PO ⊥平面ABD . 由于BD ⊂平面ABD ,所以PO ⊥BD .又AO ⊥BD ,AO ∩PO =O ,AO ⊂平面APO ,PO ⊂平面APO ,所以BD ⊥平面APO . 由于AP ⊂平面APO ,所以BD ⊥PA .(2)连接PC ,由于四边形ABCD 为菱形,且∠DCB =60°,故∠ADC =120°,AD =4,AC =43,BD =4, S △BDF =12S △BDC =12×12×4×23=23,OP =14AC = 3.由于PF =BF =FC ,故△BPC 为直角三角形,∠BPC =90°,PC =OC 2+OP 2=6,PB =BC 2-PC 2=10,S △PBF =12S △BPC =12×12PB ·PC =152. 由于V D -PBF =V P -BDF ,所以13h D ·S △PBF =13OP ·S △BDF ,所以h D =OP ·S △BDF S △PBF =3×23152=4155. 故点D 到平面PBF 的距离为4155.18.如图,在四棱锥P -ABCD 中,底面ABCD 是正方形,点E 是棱PC 的中点,平面ABE 与棱PD 交于点F .(1)求证:AB ∥EF ;(2)若PA =AD ,且平面PAD ⊥平面ABCD ,试证明:AF ⊥平面PCD ;(3)在(2)的条件下,线段PB 上是否存在点M ,使得EM ⊥平面PCD ?(直接给出结论,不需要说明理由) 解 (1)证明:由于底面ABCD 是正方形,所以AB ∥CD . 又由于AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ∥平面PCD .又由于A ,B ,E ,F 四点共面,且平面ABEF ∩平面PCD =EF ,所以AB ∥EF . (2)证明:在正方形ABCD 中,CD ⊥AD .又由于平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD =AD ,所以CD ⊥平面PAD . 又由于AF ⊂平面PAD ,所以CD ⊥AF .由(1)知AB ∥EF ,又由于AB ∥CD ,所以CD ∥EF . 由点E 是棱PC 的中点,可知点F 是棱PD 的中点.在△PAD 中,由于PA =AD ,所以AF ⊥PD ,又由于PD ∩CD =D ,所以AF ⊥平面PCD . (3)不存在.19.一个多面体的直观图和三视图如下:(其中M ,N 分别是AF ,BC 中点) (1)求证:MN ∥平面CDEF ; (2)求多面体A -CDEF 的体积.解 (1)证明:由三视图知该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∠CBF =90°.取BF 中点G ,连接MG ,NG ,由于M ,N 分别是AF ,BC 中点,则NG ∥CF ,∵MG ∥AB ,又∵AB ∥EF ,∴MG ∥EF ,∴面MNG ∥面CDEF ,∴MN ∥面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE -BCF 为直三棱柱,∴AH ⊥面DCEF ,且AH =2, ∴V A -CDEF =13S CDEF ·AH =13×2×22×2=83.20. 如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,AB ∥DC ,AB ⊥AD ,AB =3,CD =2,PD =AD =5,E 是PD 上一点.(1)若PB ∥平面ACE ,求PE ED的值;(2)若E 是PD 中点,过点E 作平面α∥平面PBC ,平面α与棱PA 交于F ,求三棱锥P -CEF 的体积. 解 (1)连接BD 交AC 于O ,在△PBD 中,过O 作OE ∥BP 交PD 于E ,∵OE ⊂平面ACE ,PB ⊄平面ACE , ∴PB ∥平面ACE ,∵AB =3,CD =2,∴AB CD =BO DO =PE ED =32.(2)过E 作EM ∥PC 交CD 于M ,过M 作MN ∥BC 交AB 于N , 则平面EMN 即为平面α,则平面α与平面PAB 的交线与PB 平行,即过N 作NF ∥PB 交PA 于F , ∵E 是PD 的中点,CD =2,∴CM =1,则BN =CM =1, 又AB =3,∴AN NB =2,则FA FP=2,∵PD =AD =5,∴F 到平面PCE 的距离为53,则V P -CEF =V F -PCE =2518.。