单相交流调压电路的设计

合集下载

【精品】单相斩控式交流调压电路设计设计课程设计

【精品】单相斩控式交流调压电路设计设计课程设计

【精品】单相斩控式交流调压电路设计设计课程设计一、实验目的1、熟悉单相斩波电路的构成和基本工作原理。

2、深刻理解交流半波斩波的不足之处,为此掌握单相斩波控制器的工作原理。

3、通过实验,掌握斩波控制电路的设计方法。

二、实验器材设备1、单相电源。

2、变压器:输入电压220V,输出电压0-48V,输出电流1A。

3、单相斩波控制器电路实验板。

4、万用表。

5、示波器。

三、实验内容1、搭建单相斩波控制器电路实验板电路。

2、通过调节斩波控制器电路实验板中的电位器和可调电阻,实现调节输出电压的目的。

3、测量并记录在不同输出电压下控制器的调节时间,分析控制器电路的工作原理和性能。

4、测量单相斩波控制器实验板电路中的主要电参数,包括输入电压、输出电压和输出电流等。

四、实验原理1、单相斩波电路原理单相斩波电路是一种简单的电源控制电路,通常用于直流电源的切割和变频器的输出。

在单相斩波电路中,电源通过晶体管或三极管等器件进行控制,可通过控制器调整输出电压的大小。

在斩波电路中,斩波开关的导通和截止时间是关键,决定着电路的传输与转换功能。

斩波控制可通过电位器和可调电阻来实现。

斩波电路的原理如图1所示。

由图1可知,当电源接入电路时,输入电压经过变压器的降压作用,接入斩波开关Q1的水平校准电路中。

斩波开关Q1被控制,从而使输出电压发生变化。

当斩波开关Q1导通时,电源通过变压器向输出电容充电。

当斩波开关Q1截止时,输出电容电压呈现指数下降趋势,并释放储藏的能量。

最终,输出电压达到预设值。

2、单相斩波控制器原理单相斩波控制器常用于直流电源的控制,以调节输出电压。

斩波控制器内置反馈控制系统,通过调整开关导通和截止时间来实现输出电压的精确调整。

控制器工作原理如图2所示。

如图2所示,单相斩波控制器由斩波开关、强制电路、反馈电路和输出电路等部分组成。

当输入电源接通时,斩波开关打开,输出电路上升到输入电压。

输出电压与比较器输出电压比较,反馈电路会根据比较结果确定斩波开关的导通和截止时间,使输出电压达到所需值。

单相斩控式交流调压电路设计

单相斩控式交流调压电路设计

单相斩控式交流调压电路设计概述单相斩控式交流调压电路的设计用于对交流电源进行调压控制,使输出电压能够稳定在需求范围内。

本文将对该调压电路的设计原理、电路构成、工作原理以及参数选取等进行全面详细的探讨。

设计原理单相斩控式交流调压电路的设计原理基于斩波调压技术,通过控制晶闸管的导通时间来改变输出电压的大小。

其基本思想是在每个交流周期的一定时刻截止半导体器件的导通,从而将源电压锯齿状的波形转换为脉宽调制形式,通过改变脉宽来调节输出电压。

电路构成单相斩控式交流调压电路主要由以下几个部分构成:输入滤波电路输入滤波电路主要用于对输入电压进行平滑滤波,降低谐波成分,获得稳定的直流电压。

常用的输入滤波电路包括电容滤波电路和电感滤波电路。

斩波电路斩波电路是单相斩控式交流调压电路的核心部分,用于将交流电压转换为可调的脉冲电压。

斩波电路一般由晶闸管、二极管以及继电器等组成。

控制电路控制电路用于生成脉宽调制信号,对晶闸管的导通时间进行控制,从而实现输出电压的调节。

一般采用微处理器或者模拟控制电路来生成控制信号。

输出滤波电路输出滤波电路主要用于对输出脉冲进行滤波平滑,得到稳定的直流输出电压。

常用的输出滤波电路包括电感滤波电路和电容滤波电路。

工作原理单相斩控式交流调压电路的工作原理如下:1.输入电压经过输入滤波电路进行滤波后,进入斩波电路。

2.斩波电路将交流电压转换为可调的脉冲电压,通过控制电路的控制信号对晶闸管进行导通和截止控制,改变输出脉冲的脉宽。

3.输出脉冲经过输出滤波电路进行滤波平滑后,得到稳定的直流输出电压。

参数选取在设计单相斩控式交流调压电路时,需要选取合适的参数来保证电路的稳定性和性能。

主要包括以下几个方面:输入电压范围根据实际应用情况选择合适的输入电压范围,通常是根据供电网络的标准电压范围来确定。

输出电压范围根据需求确定输出电压的范围,确保设计的电路可以满足实际需求。

控制信号频率控制信号频率越高,调压速度越快,但也会增加电路的复杂度和功耗。

单相斩控式交流调压电路设计

单相斩控式交流调压电路设计

单相斩控式交流调压电路设计单相斩控式交流调压电路是一种常见的电路设计,它可以将交流电源的电压进行调节,使其符合特定的要求。

本文将介绍单相斩控式交流调压电路的原理、设计和应用。

一、原理单相斩控式交流调压电路的原理是利用斩波器对交流电源进行控制,从而实现电压的调节。

斩波器是一种电子元件,它可以将交流电源的正半周或负半周进行截取,从而得到一个脉冲信号。

这个脉冲信号的宽度可以通过控制斩波器的导通时间来进行调节,从而实现对电压的控制。

在单相斩控式交流调压电路中,斩波器通常采用晶闸管或场效应管。

当斩波器导通时,交流电源的电流会通过斩波器流入负载,从而使负载得到电源的供电。

当斩波器截止时,电源的电流就会被截断,负载也就不再得到电源的供电。

通过不断地重复这个过程,就可以实现对电压的调节。

二、设计单相斩控式交流调压电路的设计需要考虑多个因素,包括电源电压、负载电流、斩波器的选择和控制电路的设计等。

下面将分别介绍这些因素的设计要点。

1. 电源电压电源电压是单相斩控式交流调压电路设计的重要参数,它决定了电路的输出电压范围和负载能力。

一般来说,电源电压越高,输出电压范围就越大,负载能力也就越强。

但是,电源电压过高也会增加电路的复杂度和成本,因此需要根据实际需求进行选择。

2. 负载电流负载电流是单相斩控式交流调压电路设计的另一个重要参数,它决定了电路的输出功率和稳定性。

一般来说,负载电流越大,输出功率就越高,但是电路的稳定性也会受到影响。

因此,在设计电路时需要根据负载的实际需求进行选择。

3. 斩波器的选择斩波器是单相斩控式交流调压电路中最关键的元件之一,它的选择直接影响到电路的性能和稳定性。

一般来说,晶闸管和场效应管是常用的斩波器,它们具有导通压降低、响应速度快等优点。

但是,晶闸管的控制电路比较复杂,而场效应管的价格较高,因此需要根据实际需求进行选择。

4. 控制电路的设计控制电路是单相斩控式交流调压电路中另一个重要的设计要素,它负责控制斩波器的导通和截止。

单相交流调压电路(电阻负载)

单相交流调压电路(电阻负载)

实验一:单相交流调压电路(电阻负载)一、 实验容对单相交流调压电路的原理能够理解,并能够通过MATLAB 仿真得出当α为不同角度时的仿真波形。

最后通过分析仿真波形来了解单相交流调压电路(电阻负载)的工作情况。

电路模型由交流电源、反并联的两个晶闸管、触发模块、电阻负载组成。

单相交流调压电路(电阻负载)如图1-1所示。

我所要分析的问题是α为不同值时,输出电压及电流的波形变化。

图1-1二、 实验原理图1-1为纯电阻负载的单相调压电路。

图中晶闸管VT1和VT2反并联连接与负载电阻R 串联接到交流电源U 2上。

当电源电压正半周开始时出发VT1,负半周开始时触发VT2,形同一个无触点开关,允许频繁操作,因为无电弧,寿命特长。

在交流电源的正半周αω=t 时,触发导通VT1,导通角为1θ= απ-;在负半周αω=t +π时,触发导通VT2,导通角为2θ= απ-。

负载端电压U 为下图所示斜线波形。

这时负载电压U 为正弦波的一部分,宽度为(απ-),若正负半周以同样的移相角α触发VT1和VT2,则负载电压U 的宽度会发生变化,那么负载电压有效值也将随α角而改变,从而实现交流调压。

三、 实验步骤在MATLAB 新建一个Model ,命名为zuxingfuzai ,同时模型建立如下图所示图1-2 电阻负载的电路建模图四、仿真结果仿真参数:选择ode23tb算法,将相对误差设置为1e-3,开始仿真时间设置为0,停止仿真时间设置为0.06,其他的选项为默认设置。

模型参数设置参数设置为频率(Frequency)为50Hz,电压幅值100V,“measurements”测量选“V oltage” 其他为默认设置,如图所示触发信号uG1参数设置:幅值(Amplitude)电压为12V;周期(Period)为0.02s;占空比(Pulse Width)为40%;时相延迟(Phase delay)为(α*0.02/360)其他为默认设置,如图所示。

单相交流调压电路仿真设计

单相交流调压电路仿真设计

单相交流调压电路仿真设计一、单相交流调压电路原理变压器是单相交流调压电路的核心部件,其主要作用是改变输入交流电压的大小。

变压器由两个或多个线圈组成,其中一个线圈称为初级线圈,另一个线圈称为次级线圈。

交流电压作用在初级线圈上,通过磁耦合作用,可以在次级线圈上产生与输入电压不同的输出电压。

通过调整初级线圈与次级线圈的匝数比,可以实现不同的输出电压。

整流电路主要由二极管构成,用于将交流电压转换为直流电压。

二极管具有单向导电性,可以将交流电压中的正半周或者负半周导通,将其它方向的电压截断。

通过适当选择二极管的导通方向和数量,可以实现不同的整流方式,如半波整流、全波整流等。

滤波电路主要由电容器构成,用于去除整流电路输出电压中的纹波。

在整流电路中,由于二极管导通和截断的不完全性,输出电压中会带有交流成分,称为纹波。

通过选择合适的电容器容值和电阻负载,可以将输出电压中的纹波减小到很小的水平。

在进行单相交流调压电路的仿真设计时,首先需要确定输入电压、输出电压和负载电流等参数。

根据需要的输出电压大小和负载电流大小,可以选择合适的变压器匝数比、二极管种类和数量、电容器容值等。

接下来,可以利用电路仿真软件进行电路图设计,如Proteus、Multisim等。

首先,根据变压器匝数比和输入电压确定初级线圈和次级线圈的参数。

然后,设计整流电路,选择合适的二极管种类和数量,以及电容器和电阻负载参数。

最后,连接电路图中的各个元件,形成完整的单相交流调压电路。

完成电路图设计后,可以对电路进行仿真分析。

通过设置输入电压、输出电压和负载电流等参数,可以模拟电路工作情况。

仿真分析可以得到电路的输入电流、输出电流、纹波大小等参数,以及不同工作条件下的性能指标。

仿真结果可以用于评估电路性能和优化设计。

根据仿真结果,可以调整电路参数,以达到更好的性能要求。

比如,可以尝试不同的变压器匝数比、二极管种类和数量、电容器容值等,看看它们对电路性能的影响。

斩控式单相交流调压电路设计

斩控式单相交流调压电路设计

斩控式单相交流调压电路设计一、电路结构1.调压变压器:调压变压器用于将输入电压调整为需要的输出电压。

其一次侧连接到交流电源,二次侧连接到斩波电路。

2.斩波电路:斩波电路由开关管和与之配套的电路组成。

开关管负责控制电源的通断,电路则根据开关管的导通状态,控制输出电压。

3.滤波电路:滤波电路用于对输出电压进行平滑处理,减小其峰值值波动。

4.负载:负载是电路的输出部分,可以是电阻、电感或电容等元件。

二、电路原理1.斩波原理斩波电路采用开关管控制输出电源通断,实现对交流电压的控制。

在正半周,开关管导通,电源输出;在负半周,开关管关断,电源不输出。

通过控制开关管的导通时间,可以实现对输出电压的控制。

2.滤波原理滤波电路主要通过电感、电容等元件,对输出电压进行平滑处理,减小其峰值值波动。

电感对交流信号有滤波作用,而电容则具有存储电荷的特性,可以增大负载电流。

三、设计步骤1.确定输出电压根据实际需求,确定所需的输出电压。

2.选择调压变压器根据所需的输出电压和电流,选择合适的调压变压器。

3.选择开关管根据输出电压和负载要求,选择合适的开关管。

常用的开关管有MOSFET和IGBT等。

4.设计斩波电路根据开关管的参数和工作原理,设计和优化斩波电路。

可以使用各种控制技术,如脉冲宽度调制(PWM)等。

5.设计滤波电路根据输出电压的波动情况,选择合适的滤波电路设计。

可以使用RC 滤波电路、LCL滤波电路等。

6.验证电路设计使用仿真软件对电路进行仿真验证,检查输出电压波形是否稳定、峰值值是否满足要求。

根据仿真结果进行优化调整。

7.电路实现与调试根据设计结果,搭建电路原型并进行实际调试。

检查输出电压是否符合要求,观察电路工作是否稳定。

8.性能评估与改进对实际搭建的电路进行性能评估,并进行必要的优化改进。

通过以上步骤,可以设计出符合实际要求的斩控式单相交流调压电路。

在实际应用中,还需要考虑电压变化范围、功率损耗、开关管和滤波元件的选取等问题。

单相交流调压电路课程设计

单相交流调压电路课程设计

设计收获:对单相交流调压电路有了更深入的理解和掌握
电路设计:考虑电路的稳定性和可靠性
控制策略:优化控制策略,提高系统的响应速度和稳定性
仿真验证:增加仿真验证的准确性和可靠性
实验验证:加强实验验证,提高设计的实用性和可靠性
创新性:提高设计的创新性和实用性,增加设计的竞争力
团队合作:加强团队合作,提高设计的效率和质量
单相交流调压电路可以调节电压,满足不同设备的需求。
单相交流调压电路可以降低电力系统的损耗,提高能源利用效率。
单相交流调压电路在电机控制中的应用广泛,如家用电器、工业设备等。
单相交流调压电路可以实现对电机的转速、转矩、功率等参数的精确控制。
单相交流调压电路可以提高电机的工作效率,降低能耗。
单相交流调压电路可以延长电机的使用寿命,提高设备的可靠性。
电路设计问题:确保电路设计正确,避免短路、断路等问题
电源问题:确保电源稳定,避免电压波动、电源故障等问题
调试问题:确保调试步骤正确,避免误操作、参数设置错误等问题
故障排除:遇到故障时,根据故障现象进行排查,找出问题所在并解决
单相交流调压电路可以提高电力系统的稳定性和可靠性。
单相交流调压电路在电力系统中的应用广泛,如家用电器、工业设备等。
确定设计目标:实现单相交流调压电路的功能
确定设计要求:满足性能指标、安全性、可靠性等要求
确定设计方法:选择合适的电路拓扑、元器件、控制策略等
确定设计步骤:需求分析、方案设计、仿真验证、硬件实现等
单相交流调压电路的拓扑结构设计实例
单相交流调压电路的拓扑结构选择原则
单相交流调压电路的常见拓扑结构
单相交流调压电路的基本结构
电源提供交流电,变压器将交流电转换为所需的电压,整流器将交流电转换为直流电,滤波器滤除直流电中的交流成分,稳压器稳定直流电的电压。

单相交流调压电路设计

单相交流调压电路设计

1 概述电力电子技术就是使用电力电子器件对电能进行变换和控制的技术。

通常所用的电力有交流和直流两种,从公用电网直接得到的电力是交流,从蓄电池和干电池得到的电力是直流。

从这些电源得到的电力往往不能直接满足要求,需进行电力变换。

电力变换通常可分为四大类,即交流变直流(AC-DC)、直流变交流(DC-AC)、直流变直流(DC-DC)、交流边交流(AC-AC)。

交流变直流称为整流,直流变交流成为逆变,直流变直流称为斩波,交流变交流可以是电压或电力的变换,称作交流电力控制,是把一种形式的交流变成另一种形式的交流的电路在进行交流-交流变流时,可以改变相关的电压(电流)、频率和相数等。

把两个晶闸管反并联后串连在交流电路中,通过对晶闸管的控制就可以控制交流输出。

这种电路不改变交流电的频率,称为交流电力控制电路。

在每半个周波内通过对晶闸管的开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。

交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。

在电力系统中,这种电路还常用于对无功功率的连续调节。

此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次侧电压。

在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。

这都是十分不合理的。

采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流可以了。

这样的电路体积小、成本低、易于制造。

2 主电路设计及分析所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。

交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。

此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。

在电力系统中,这种电路还常用于对无功功率的连续调节。

此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。

在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。

这都是十分不合理的。

采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就这样的电路体积小、成本低、易于设计制造。

单相交流调压电路是对单相交流电的电压进行调节的电路。

用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。

与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少关键词:交流;调压;电动机调速;电力系统;变压器;ABSTRACTAc voltage circuit is widely used in lighting control (such as dimmer and stage lighting control)and asynchronous motor,also used in the soft start-up induction motor drive.In the power system,the circuit is also often used to reactive power of continuous adjustment.In addition,in high voltage and low voltage, current, or small current dc power supply, often alsoadopt ac voltage transformer voltage regulating circuit. In these powersuch as using thyristor rectifier circuit control of high voltage, lowcurrent controlled dc power needs many thyristor series, Similarly, lowvoltage dc current needs manythyristor parallel.This is very reasonable. Adopt ac voltage transformer voltage circuit in the side,the voltage and current are moderate, as in transformer with diode rectifier side. Thiscircuit, small volume, low cost, easy to design and manufacture.Single-phase ac voltage circuit of single-phase ac voltage is toadjust the circuit. Used in electric heating system, ac motor speedcontrol,lighting control and ac stabilizer etc.Since the voltage transformer with decoupling method, exchange regulating circuit controland speed regulation, the device, light weight, small size, non-ferrousmetal consumption is lessKey words: communication; Voltage regulation; Motor drive; Powersystem; Transformer;目录1单相交流调压电路设计目的及务 (5)1.1设计目的 (5)1.2设计要求及分析 (5)1.3设计方案选择 (5)2 单相交流调压主电路设计及分析 (5)2.1电阻负载 (6)2.1.1建立模型仿真 (6)2.1.2仿真参数设置 (6)2.1.3结果分析 (10)2.2阻负载感 (11)3触发电路 (16)4保护电路 (18)4.1保护电路设计 (18)4.2过电压的产生及过电压保护 (18)4.3晶闸管过电流保护 (19)5总电路图 (21)6单相交流调压电路参数设定与计算 (21)6.1单相交流调压变流器参数设定 (21)6.2单相交流调压变流器电路分析 (21)6.3输出平均电压、电流及输出有功功率 (22)7总结与体会 (24)参考文献 (25)致谢 (26)附录 (27)1单相交流调压电路设计目的及任务1.1设计目的电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料、选择方案、设计电路、撰写报告、制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。

1.2设计要求及分析:设计一个单相交流调压电路,要求触发角为45度.反电势负载E=40伏,输入交流U2=210伏。

分有LB和没有LB两种情况分析.L足够大,C足够大(1)单相交流调压主电路设计,原理说明;(2)触发电路设计,每个开关器件触发次序与相位分析;(3)保护电路设计,过电流保护,过电压保护原理分析;(4)参数设定与计算(包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等可自己添加分析的参数);由以上要求可知该系统设计可分为四个部分:交流调压主电路设计、触发电路设计、保护电路设计及相关计算和波形分析部分。

下面分别做详细的介绍。

1.3设计方案选择本课程设计方法:采用两个普通晶闸管反向并联设计单相交流调压电路。

2.单相交流调压主电路设计及分析所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。

交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。

此外,在高电压小电流或低电压大电流之流电源中,也常采用交流调压电路调节变压器一次电压。

本次课程设计主要是研究单相交流调压电路的设计。

由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。

2.1电阻负载图1、图2分别为反电势电阻负载单相交流调压电路图及其波形。

图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。

在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角进行控制就可以调节输出电压。

图1反电势电阻负载单相交流调压电路图图2输入输出电压及电流波形图2.1.1建立模型仿真根据原理图用MATALB软件画出正确的仿真电路图2-3,2.1.2仿真参数设置设置触发脉冲α分别为30°、60°、90°、120°。

与其产生的相应波形分别如图2-4、图2-5、图2-6、图2-7。

在波形图中第一列波为晶闸管电流波形,第二列波为晶闸管电压波形,第三列波为负载电流波形,第四列波为负载电压波形。

图3 matlab电阻负载仿真图4 0°时,单相交流调压电路波形图5 30°时,单相交流调压电路波形图6 60°时,单相交流调压电路波形图7 90°时,单相交流调压电路波形图8 150°时,单相交流调压电路波形图9 180°时,单相交流调压电路波形2.1.3结果分析上面图5---图10给出了分别为0度、 30度, 60度,90度、150度和180度时单相交流调压电路的纯电阻负载的电压和电流的仿真波形。

当晶闸管触发控制角=0时,U=U2,负载两端的电压U 和流过其电流L R I 的波形均为正弦波。

当>0时,U 、LR I 的波形为非正弦波,控制角从0~180度范围改变时,输出电压有效值U 从U2下降到0,控制角对输出电压U 的移相可控区域是0---180度。

把角等于0度、 30度, 60度,90度、150度和180度分别代入下式2sin sin 2212221U td t U U可求得:U 22021210sin UUU30U =265432621299.0)2sin(6U U U 23243232126090.0)2sin(3U U U U 221222129071.00)2sin(2U U U U 2212125212150671.00)2sin(125U U U U 000)2sin(2212180U U U 观察图5-----图10的仿真波形,可得到随着角增大,负载两端电压U 的波形的曲线部分的宽度越来越窄,则其有效值将不断减小。

由此可知,理论分析与仿真结果是一致的。

在Sim 库环境下利用电力系统模块库中的电力电子器件组建单相交流调压纯电阻电路,并对电路进行相应的理论分析和仿真实验。

仿真实验结果表明,通过控制角的大小,单相交流调压电路能够得到很好的调压结果。

2.2阻感负载由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角、负载阻抗角都有关系。

其中负载阻抗角)arctan(R wL,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为。

为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分,,三种工况分别进行讨论。

(1)情况图10阻感负载电路图图11阻感负载工作波形图上图所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角触发导通时的输出波形图,同电阻负载一样,在i u 的正半周角时,i T 触发导通,输出电压o u 等于电源电压,电流波形o i 从0开始上升。

由于是感性负载,电流oi 滞后于电压o u ,当电压达到过零点时电流不为0,之后o i 继续下降,输出电压ou 出现负值,直到电流下降到0时,1T 自然关断,输出电压等于0,正半周结束,期间电流o i 从0开始上升到再次下降到0这段区间称为导通角0。

由后面的分析可知,在工况下,180因此在2T 脉冲到来之前1T 已关断,正负电流不连续。

在电源的负半周2T 导通,工作原理与正半周相同,在o i 断续期间,晶闸管两端电压波形如图1-4所示。

为了分析负载电流o i 的表达式及导通角与、之间的关系,假设电压坐标原点如图所示,在t 时刻晶闸管T 1导通,负载电流i 0应满足方程L 0Ri d d t io=i u =i U 2sin t其初始条件为i 0|t =0,解该方程,可以得出负载电流i 0在≤t ≤区间内的表达式为i 0=])sin()[sin()(2tan /)(2t ie t L R U .当t =时,i 0=0,代入上式得,可求出与、之间的关系为sin (-)=sin (-)e tan /利用上式,可以把与、之间的关系用下图的一簇曲线来表示。

相关文档
最新文档